1
|
Kaewsatuan P, Morawong T, Lu P, Kamkaew A, Molee A, Molee W. In ovo feeding of l-arginine and selenium nanoparticles influences post-hatch growth, muscle development, antioxidant status, and meat quality in slow-growing chickens. J Anim Sci 2024; 102:skae290. [PMID: 39315561 PMCID: PMC11503214 DOI: 10.1093/jas/skae290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024] Open
Abstract
This study investigated the effects of in ovo feeding (IOF) of l-arginine (L-Arg), selenium nanoparticles (SeNP), and a combination of L-Arg and SeNP on the hatchability, post-hatch growth, muscle development, antioxidant status, and meat quality of slow-growing chickens. On day 18 of incubation, a total of 960 fertilized eggs with similar weights were randomly assigned to 4 treatment groups with 4 replicates of 60 eggs each: (1) non-injected control group (Control), (2) injected with 1% of L-Arg (IOF_L-Arg), (3) injected with 0.3 µg/egg of SeNP (IOF_SeNP), and (4), injected with 1% of L-Arg and 0.3 µg/egg of SeNP (IOF_L-Arg + SeNP). A completely randomized design was used. After hatching, 640 mixed-sex chicks were allocated to 4 treatment groups and split into 4 replicate pens (40 birds per pen). All groups of chicks were fed with commercial feed ad libitum until they reached 63 d of age and were subsequently weighed and slaughtered. The results of the present study showed that hatchability was similar among treatments. Final BW or breast muscle yield was not affected (P > 0.05) by IOF treatment. Chickens treated with IOF_L-Arg + SeNP exhibited decreased feed conversion ratio, drip loss, and increased protein content in breast meat (P < 0.05). The IOF_L-Arg + SeNP group exhibited a higher density of breast muscle fibers than the control group (P < 0.05). Overall, in ovo feeding of L-Arg combined with SeNP resulted in improved feed efficiency and enhanced antioxidant capacity at hatch without any adverse effects on chicken hatchability, health, or subsequent growth. Furthermore, meat from chickens in the IOF_L-Arg + SeNP group exhibited a preferable texture with a higher protein content.
Collapse
Affiliation(s)
- Pramin Kaewsatuan
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Thanidtha Morawong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Panpan Lu
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Amonrat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wittawat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
2
|
Kpodo KR, Proszkowiec-Weglarz M. Physiological effects of in ovo delivery of bioactive substances in broiler chickens. Front Vet Sci 2023; 10:1124007. [PMID: 37008350 PMCID: PMC10060894 DOI: 10.3389/fvets.2023.1124007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
The poultry industry has improved genetics, nutrition, and management practices, resulting in fast-growing chickens; however, disturbances during embryonic development may affect the entire production cycle and cause irreversible losses to broiler chicken producers. The most crucial time in the chicks' development appears to be the perinatal period, which encompasses the last few days of pre-hatch and the first few days of post-hatch. During this critical period, intestinal development occurs rapidly, and the chicks undergo a metabolic and physiological shift from the utilization of egg nutrients to exogenous feed. However, the nutrient reserve of the egg yolk may not be enough to sustain the late stage of embryonic development and provide energy for the hatching process. In addition, modern hatchery practices cause a delay in access to feed immediately post-hatch, and this can potentially affect the intestinal microbiome, health, development, and growth of the chickens. Development of the in ovo technology allowing for the delivery of bioactive substances into chicken embryos during their development represents a way to accommodate the perinatal period, late embryo development, and post-hatch growth. Many bioactive substances have been delivered through the in ovo technology, including carbohydrates, amino acids, hormones, prebiotics, probiotics and synbiotics, antibodies, immunostimulants, minerals, and microorganisms with a variety of physiological effects. In this review, we focused on the physiological effects of the in ovo delivery of these substances, including their effects on embryo development, gastrointestinal tract function and health, nutrient digestion, immune system development and function, bone development, overall growth performance, muscle development and meat quality, gastrointestinal tract microbiota development, heat stress response, pathogens exclusion, and birds metabolism, as well as transcriptome and proteome. We believe that this method is widely underestimated and underused by the poultry industry.
Collapse
|
3
|
Kochish II, Brazhnik EA, Vorobyov NI, Nikonov IN, Korenyuga MV, Myasnikova OV, Griffin DK, Surai PF, Romanov MN. Features of Fractal Conformity and Bioconsolidation in the Early Myogenesis Gene Expression and Their Relationship to the Genetic Diversity of Chicken Breeds. Animals (Basel) 2023; 13:521. [PMID: 36766410 PMCID: PMC9913260 DOI: 10.3390/ani13030521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Elements of fractal analysis are widely used in scientific research, including several biological disciplines. In this study, we hypothesized that chicken breed biodiversity manifests not only at the phenotypic level, but also at the genetic-system level in terms of different profiles of fractal conformity and bioconsolidation in the early myogenesis gene expression. To demonstrate this effect, we developed two mathematical models that describe the fractal nature of the expression of seven key genes in the embryonic breast and thigh muscles in eight breeds of meat, dual purpose, egg and game types. In the first model, we produced breed-specific coefficients of gene expression conformity in each muscle type using the slopes of regression dependencies, as well as an integral myogenesis gene expression index (MGEI). Additionally, breed fractal dimensions and integral myogenesis gene expression fractal dimension index (MGEFDI) were determined. The second gene expression model was based on plotting fractal portraits and calculating indices of fractal bioconsolidation. The bioconsolidation index of myogenesis gene expression correlated with the chick growth rate and nitric oxide (NO) oxidation rate. The proposed fractal models were instrumental in interpreting the genetic diversity of chickens at the level of gene expression for early myogenesis, NO metabolism and the postnatal growth of chicks.
Collapse
Affiliation(s)
- Ivan I. Kochish
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 109472 Moscow, Russia
| | | | - Nikolai I. Vorobyov
- All-Russia Institute for Agricultural Microbiology, Pushkin, 196608 St. Petersburg, Russia
| | - Ilya N. Nikonov
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 109472 Moscow, Russia
| | - Maxim V. Korenyuga
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 109472 Moscow, Russia
| | - Olga V. Myasnikova
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 109472 Moscow, Russia
| | | | - Peter F. Surai
- Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllő, Hungary
| | - Michael N. Romanov
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, 109472 Moscow, Russia
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| |
Collapse
|
4
|
Kochish II, Titov VY, Nikonov IN, Brazhnik EA, Vorobyov NI, Korenyuga MV, Myasnikova OV, Dolgorukova AM, Griffin DK, Romanov MN. Unraveling signatures of chicken genetic diversity and divergent selection in breed-specific patterns of early myogenesis, nitric oxide metabolism and post-hatch growth. Front Genet 2023; 13:1092242. [PMID: 36712856 PMCID: PMC9874007 DOI: 10.3389/fgene.2022.1092242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction: Due to long-term domestication, breeding and divergent selection, a vast genetic diversity in poultry currently exists, with various breeds being characterized by unique phenotypic and genetic features. Assuming that differences between chicken breeds divergently selected for economically and culturally important traits manifest as early as possible in development and growth stages, we aimed to explore breed-specific patterns and interrelations of embryo myogenesis, nitric oxide (NO) metabolism and post-hatch growth rate (GR). Methods: These characteristics were explored in eight breeds of different utility types (meat-type, dual purpose, egg-type, game, and fancy) by incubating 70 fertile eggs per breed. To screen the differential expression of seven key myogenesis associated genes (MSTN, GHR, MEF2C, MYOD1, MYOG, MYH1, and MYF5), quantitative real-time PCR was used. Results: We found that myogenesis associated genes expressed in the breast and thigh muscles in a coordinated manner showing breed specificity as a genetic diversity signature among the breeds studied. Notably, coordinated ("accord") expression patterns of MSTN, GHR, and MEFC2 were observed both in the breast and thigh muscles. Also, associated expression vectors were identified for MYOG and MYOD1 in the breast muscles and for MYOG and MYF5 genes in the thigh muscles. Indices of NO oxidation and post-hatch growth were generally concordant with utility types of breeds, with meat-types breeds demonstrating higher NO oxidation levels and greater GR values as compared to egg-type, dual purpose, game and fancy breeds. Discussion: The results of this study suggest that differences in early myogenesis, NO metabolism and post-hatch growth are breed-specific; they appropriately reflect genetic diversity and accurately capture the evolutionary history of divergently selected chicken breeds.
Collapse
Affiliation(s)
- Ivan I. Kochish
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
| | - Vladimir Yu. Titov
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
- Federal Scientific Center “All-Russian Poultry Research and Technological Institute” of the Russian Academy of Sciences, Sergiev Posad, Moscow Oblast, Russia
| | - Ilya N. Nikonov
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
| | | | - Nikolai I. Vorobyov
- All-Russia Institute for Agricultural Microbiology, Pushkin, St. Petersburg, Russia
| | - Maxim V. Korenyuga
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
| | - Olga V. Myasnikova
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
| | - Anna M. Dolgorukova
- Federal Scientific Center “All-Russian Poultry Research and Technological Institute” of the Russian Academy of Sciences, Sergiev Posad, Moscow Oblast, Russia
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Michael N. Romanov
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
5
|
Lu P, Morawong T, Molee A, Molee W. L-arginine alters myogenic genes expression but does not affect breast muscle characteristics by in ovo feeding technique in slow-growing chickens. Front Vet Sci 2022; 9:1030873. [PMID: 36590799 PMCID: PMC9794582 DOI: 10.3389/fvets.2022.1030873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
In ovo feeding (IOF) of nutrients is a viable method for increasing muscle mass through hyperplasia and hypertrophy. The objective of this study was to evaluate the effects of IOF of L-arginine (Arg) on breast muscle weight, muscle morphology, amino acid profile, and gene expression of muscle development in slow-growing chickens. Four hundred eighty fertilized eggs were randomly divided into two groups: the first group was the non-injected control group, and the second group was the Arg group, injected with 1% Arg (0.5 mL) into the amnion on day 18 of incubation. After hatching, 160 birds from each group were randomly divided into four replicates of 40 birds each. This experiment lasted for 63 days. The results showed that IOF of Arg did not affect (P > 0.05) breast muscle weight, muscle morphology, and mRNA expression of mammalian target of rapamycin (mTOR) signaling pathway in slow-growing chickens. However, the amino acid profile of breast muscle was altered (P < 0.05) on the day of hatching (DOH), day 21 (D21), and day 42 (D42) post-hatch, respectively. Myogenic factor 5 (Myf5) mRNA expression was upregulated (P < 0.05) on D21 post-hatch. Myogenic regulator 4 (MRF4) mRNA expression was increased (P < 0.05) on DOH. And myogenin (MyoG) was increased (P < 0.05) on DOH and D21 post-hatch, in the Arg group compared to the control group. Overall, IOF of 1% Arg improved the expression of myogenic genes but did not influence muscle morphology and BMW. These results indicate that in ovo Arg dosage (0.5 mL/egg) has no adverse effect on breast muscle development of slow-growing chickens.
Collapse
|
6
|
Lu P, Morawong T, Molee A, Molee W. Influences of L-Arginine In Ovo Feeding on the Hatchability, Growth Performance, Antioxidant Capacity, and Meat Quality of Slow-Growing Chickens. Animals (Basel) 2022; 12:ani12030392. [PMID: 35158714 PMCID: PMC8833405 DOI: 10.3390/ani12030392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The nutrition and health status of the embryo in the hatching process directly influence the hatchability and chicken performance post-hatch in poultry production. The in ovo feeding (IOF) technique provides a viable way to improve the embryonic development and chicken performance post-hatch. Thus, the hypothesis of this study was that supplementing L-arginine (Arg) into embryos could positively affect the hatchability, growth performance, antioxidant capacity, and meat quality of slow-growing chickens. The results of this study demonstrate that IOF of Arg positively affected the antioxidant capacity of the breast muscle in the starter period, and there was no effect on the hatchability, growth performance, carcass traits, and meat quality. Overall, our findings suggest that IOF of Arg may have beneficial effects on chicken health without compromising the hatchability, subsequent growth, and meat quality. Abstract The aim of this study was to evaluate the effects of in ovo feeding (IOF) of L-arginine (Arg) on the hatchability, growth performance, antioxidant capacity, and meat quality of slow-growing chickens. A total of 480 eggs were randomly divided into a non-injected control group (NC group) and a 1% Arg-injected group (Arg group). On day 18 of incubation, 0.5 mL of Arg solution was injected into the embryonic amnion in the Arg group. Upon hatching, 160 mixed-sex chickens were randomly assigned to two groups, with four replicates per group. This experiment lasted for 63 days. The results showed that the hatchability, growth performance, carcass traits, and meat quality were not significantly different (p > 0.05) between the two groups. However, the malondialdehyde (MDA) content was lower (p < 0.05), and the glutathione (GSH) level was higher (p < 0.05) on day of hatching in the Arg group. The total antioxidant capacity (T-AOC) activity was increased (p < 0.05) on day 21 post-hatch in the Arg group compared to that in the NC group. In conclusion, IOF of Arg increased the antioxidant capacity of the breast muscle in the starter period, which may have a positive effect on health status of slow-growing chickens post-hatch.
Collapse
|
7
|
Andrieux C, Petit A, Collin A, Houssier M, Métayer-Coustard S, Panserat S, Pitel F, Coustham V. Early Phenotype Programming in Birds by Temperature and Nutrition: A Mini-Review. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2021.755842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early development is a critical period during which environmental influences can have a significant impact on the health, welfare, robustness and performance of livestock. In oviparous vertebrates, such as birds, embryonic development takes place entirely in the egg. This allows the effects of environmental cues to be studied directly on the developing embryo. Interestingly, beneficial effects have been identified in several studies, leading to innovative procedures to improve the phenotype of the animals in the long term. In this review, we discuss the effects of early temperature and dietary programming strategies that both show promising results, as well as their potential transgenerational effects. The timing, duration and intensity of these procedures are critical to ensure that they produce beneficial effects without affecting animal survival or final product quality. For example, cyclic increases in egg incubation temperature have been shown to improve temperature tolerance and promote muscular growth in chickens or fatty liver production in mule ducks. In ovo feeding has also been successfully used to enhance digestive tract maturation, optimize chick development and growth, and thus obtain higher quality chicks. In addition, changes in the nutritional availability of methyl donors, for example, was shown to influence offspring phenotype. The molecular mechanisms behind early phenotype programming are still under investigation and are probably epigenetic in nature as shown by recent work in chickens.
Collapse
|
8
|
Gong L, Zhang X, Qiu K, He L, Wang Y, Yin J. Arginine promotes myogenic differentiation and myotube formation through the elevation of cytoplasmic calcium concentration. ACTA ACUST UNITED AC 2021; 7:1115-1123. [PMID: 34738042 PMCID: PMC8543491 DOI: 10.1016/j.aninu.2021.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
This study aimed to explore the mechanism underlying arginine-promoted myogenesis of myoblasts. C2C12 cells were cultured with a medium containing 0.1, 0.4, 0.8, or 1.2 mmol/L arginine, respectively. Cell proliferation, viability, differentiation indexes, cytoplasmic Ca2+ concentration, and relative mRNA expression levels of myogenic regulatory factors (MRF) and key Ca2+ channels were measured in the absence or presence of 2 chemical inhibitors, dantrolene (DAN, 10 μmol/L) and nisoldipine (NIS, 10 μmol/L), respectively. Results demonstrated that arginine promoted myogenic differentiation and myotube formation. Compared with the control (0.4 mmol/L arginine), 1.2 mmol/L arginine upregulated the relative mRNA expression levels of myogenin (MyoG) and Myomaker at d 2 during myogenic induction (P < 0.05). Cytoplasmic Ca2+ concentrations were significantly elevated by arginine supplementation at d 2 and 4 (P < 0.05). Relative mRNA expression levels of Ca2+ channels including the type 1 ryanodine receptor (RyR1) and voltage-gated Ca2+ channel (Cav1.1) were upregulated by 1.2 mmol/L arginine during 2-d myogenic induction (P < 0.01). However, arginine-promoted myogenic potential of myoblasts was remarkably compromised by DAN and NIS, respectively (P < 0.05). These findings evidenced that the supplementation of arginine promoted myogenic differentiation and myotube formation through increasing cytoplasmic Ca2+ concentration from both extracellular and sarcoplasmic reticulum Ca2+.
Collapse
Affiliation(s)
- Lu Gong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kai Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
9
|
Ayansola H, Liao C, Dong Y, Yu X, Zhang B, Wang B. Prospect of early vascular tone and satellite cell modulations on white striping muscle myopathy. Poult Sci 2020; 100:100945. [PMID: 33652536 PMCID: PMC7936185 DOI: 10.1016/j.psj.2020.12.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Polyphasic myodegeneration potentially causes severe physiological and metabolic disorders in the breast muscle of fast-growing broiler chickens. To date, the etiology of recent muscle myopathies, such as the white striping (WS) phenotype, is still unknown. White striping–affected breast meats compromise the water holding capacity and predispose muscle to poor vascular tone, leading to the deterioration of meat qualities. Herein, this review article provides insight on the complexities around chicken breast myopathies: (i) the etiologies of WS occurrence in chicken; (ii) the metabolic changes that occur in WS defect in pectoralis major; and (iii) the interactions between breast muscle physiology and vascular tone. It also addressed the effects of nutritional supplements on muscle myopathies on chicken breast meats. Moreover, the review explored breast muscle biology focusing on the early preparation of satellite and vascular cells in fast-growth chicken breeds. Transcriptomics and histological analyses revealed poor vascularity in breast muscle of fast growth chickens. Thus, we suggest in ovo feeding of nutrients promoting vascularization and satellite cells replenishment as a potential strategy to enhance endothelium-derived nitric oxide availability to promote vascularization in the pectoralis major muscle region.
Collapse
Affiliation(s)
- Hammed Ayansola
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chaoyong Liao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuanyang Dong
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoxiao Yu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Alami-Durante H, Cluzeaud M, Bazin D, Vachot C, Kaushik S. Variable impacts of L-arginine or L-NAME during early life on molecular and cellular markers of muscle growth mechanisms in rainbow trout. Comp Biochem Physiol A Mol Integr Physiol 2020; 242:110652. [DOI: 10.1016/j.cbpa.2020.110652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
|
11
|
Titov VY, Dolgorukova AM, Vertiprakhov VG, Ivanova AV, Osipov AN, Slesarenko NA, Kochish II. Synthesis and Metabolism of Nitric Oxide (NO) in Chicken Embryos and in the Blood of Adult Chicken. Bull Exp Biol Med 2020; 168:321-325. [PMID: 31938913 DOI: 10.1007/s10517-020-04700-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Indexed: 10/25/2022]
Abstract
In chicken embryos, nitric oxide (NO) is accumulated in the pool of NO donors: S-nitrosothiols, nitrosyl-iron complexes, high-molecular-weight nitro-compounds. Oxidation of NO to nitrate occurs with different intensity in the embryos of different chicken breeds. In some embryos, NO donors accumulate almost without oxidation. Stable concentration of NO donors and nitrate in the blood of adult chicken is a result of dynamic equilibrium between NO synthesis and elimination (oxidation, consumption by other tissues, and excretion). As NO oxidation occurs mainly not in the blood, but in other tissues, decomposition of NO donors and NO oxidation are determined the properties of these tissues, in particular, the presence of physiological targets of NO, rather than spontaneous processes. Hence, evaluation of the intensity of NO metabolism is important for prediction of the efficiency of preparations containing NO donors and stimulators of its synthesis.
Collapse
Affiliation(s)
- V Yu Titov
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
- All-Russian Research and Technological Institute of Poultry, Russian Academy of Sciences, Sergiev Posad, Moscow region, Russia.
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia.
| | - A M Dolgorukova
- All-Russian Research and Technological Institute of Poultry, Russian Academy of Sciences, Sergiev Posad, Moscow region, Russia
| | - V G Vertiprakhov
- All-Russian Research and Technological Institute of Poultry, Russian Academy of Sciences, Sergiev Posad, Moscow region, Russia
| | - A V Ivanova
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A N Osipov
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N A Slesarenko
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
| | - I I Kochish
- K. I. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Moscow, Russia
| |
Collapse
|
12
|
Dolgorukova AM, Titov VY, Petrov VA, Osipov AN, Slesarenko NA, Kochish II. Mechanisms of Specific Embryonic Effects of Nitrogen Oxide. Bull Exp Biol Med 2018; 165:635-639. [PMID: 30225706 DOI: 10.1007/s10517-018-4230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Indexed: 11/28/2022]
Abstract
The study of NO metabolism in chicken embryos showed that the intensity of oxidation of both endogenous and exogenous for the embryo NO donors to nitrate is determined by the presence or state of NO targets, rather than donor concentration. The mechanism of this oxidation and its physiological role are discussed. It was also shown that oxidation product nitrate is actively eliminated from the amnionic sac.
Collapse
Affiliation(s)
- A M Dolgorukova
- Federal Research Centre All-Russian Research and Technology Institute of Poultry Industry, Russian Academy of Sciences, Moscow, Russia
| | - V Yu Titov
- Federal Research Centre All-Russian Research and Technology Institute of Poultry Industry, Russian Academy of Sciences, Moscow, Russia. .,N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - V A Petrov
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A N Osipov
- N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N A Slesarenko
- K. I. Skryabin Moscow State Academy of Veterinary and Biotechnology, Moscow, Russia
| | - I I Kochish
- K. I. Skryabin Moscow State Academy of Veterinary and Biotechnology, Moscow, Russia
| |
Collapse
|
13
|
Zhao M, Gong D, Gao T, Zhang L, Li J, Lv P, Yu L, Gao F, Zhou G. In ovo feeding of creatine pyruvate increases hatching weight, growth performance, and muscle growth but has no effect on meat quality in broiler chickens. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
NAYAK NIBEDITA, RAJINI RASHA, EZHILVALAVAN S, SAHU AMIYARANJAN, KIRUBAHARAN JJOHN. Comparative effect of arginine and/or tryptophan in ovo feeding on hatchability percentage, growth performance and economic importance of commercial broiler. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2017. [DOI: 10.56093/ijans.v87i2.67695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
In ovo feeding is the administration of exogenous nutrients into the amnion of the late-term avian embryo so that the avian embryo orally consumes the amniotic fluid (primarily water and albumen protein) prior to pipping the air cell. So the study was carried out to find out the effect of in ovo nutrition on post-hatch performances in broilers. Total 700 fertile eggs of Cobb 400 with uniform egg weight were divided into 5 groups: non-injected control, injected control (0.5 ml of 0.9% normal saline), arginine (0.5 ml of 0.5% arginine), tryptophan (0.5 ml of 0.5% tryptophan) and combination (0.25 ml of 0.5% each of arginine and tryptophan); and injected on 18 d of incubation into amnion. On the 21d, 108 chicks were randomly selected from each treatment in total accounting 540 chicks. The hatchability and hatch weight were studied where arginine had shown a highly significant improved hatch weight and placement weight. There was no significant difference in feed efficiency, but cumulative feed intake was higher in tryptophan and combination groups. Body weight and body weight gain had also resulted significantly in arginine fed in ovo groups up to 21d of age. The broiler farm economy index (BFEI) and broiler feed price ratio (BFPR) were best in tryptophan and arginine in ovo fed groups, respectively.
Collapse
|