1
|
Fratto A, Torricelli M, Sebastiani C, Ciullo M, Felici A, Biagetti M. Survey on resistance occurrence for F4 + and F18 + enterotoxigenic Escherichia coli (ETEC) among pigs reared in Central Italy regions. Vet Res Commun 2024; 48:1279-1284. [PMID: 38175328 DOI: 10.1007/s11259-023-10287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Porcine Post Weaning Diarrhoea (PWD) is one of the most important swine disease worldwide, caused by Enterotoxigenic Escherichia coli (ETEC) strains able to provoke management, welfare and sanitary issues. ETEC is determined by proteinaceous surface appendages. Numerous studies conducted by now in pigs have demonstrated, at the enterocytes level, that, the genes mucin 4 (MUC4) and fucosyltransferase (FUT1), coding for ETEC F4 and F18 receptors respectively, can be carriers of single nucleotide polymorphisms (SNPs) associated with natural resistance/susceptibility to PWD. The latter aspect was investigated in this study, evaluating the SNPs of the MUC4 and FUT1 genes in slaughtered pigs reared for the most in Central Italy. Genomic DNA was extracted from 362 swine diaphragmatic samples and then was subjected to the detection of known polymorphisms on MUC4 and FUT1candidate target genes by PCR-RFLP. Some of the identified SNPs were confirmed by sequencing analysis. Animals carrying the SNPs associated with resistance were 11% and 86% for the FUT1 and MUC4 genes respectively. Therefore, it can be assumed that the investigated animals may be an important resource and reservoir of favorable genetic traits for the breeding of pigs resistant to enterotoxigenic E.coli F4 variant.
Collapse
Affiliation(s)
- Anna Fratto
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche - Togo Rosati, Via G. Salvemini 1, Perugia, 06126, Italy
| | - Martina Torricelli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche - Togo Rosati, Via G. Salvemini 1, Perugia, 06126, Italy.
| | - Carla Sebastiani
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche - Togo Rosati, Via G. Salvemini 1, Perugia, 06126, Italy
| | - Marcella Ciullo
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche - Togo Rosati, Via G. Salvemini 1, Perugia, 06126, Italy
| | - Andrea Felici
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche - Togo Rosati, Via G. Salvemini 1, Perugia, 06126, Italy
| | - Massimo Biagetti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche - Togo Rosati, Via G. Salvemini 1, Perugia, 06126, Italy
| |
Collapse
|
2
|
Luise D, Correa F, Negrini C, Virdis S, Mazzoni M, Dalcanale S, Trevisi P. Blend of natural and natural identical essential oil compounds as a strategy to improve the gut health of weaning pigs. Animal 2023; 17:101031. [PMID: 38035660 DOI: 10.1016/j.animal.2023.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Weaning is one of the most critical phases in pig's life, often leading to postweaning diarrhoea (PWD). Zinc oxide (ZnO), at pharmacological doses, has been largely used to prevent PWD; however, due to antimicrobial co-resistant and environmental pollution issues, the EU banned its use in June 2022. Natural or natural identical components of essential oils and their mixture with organic acids are possible alternatives studied for their antimicrobial, anti-inflammatory and antioxidant abilities. This study aimed to evaluate the effect of two blends of natural or natural identical components of essential oils and organic acids compared to ZnO on health, performance, and gut health of weaned pigs. At weaning (d0), 96 piglets (7 058 ± 895 g) were assigned to one of four treatments balanced for BW and litter: CO (control treatment), ZnO (2 400 mg/kg ZnO from d0 to d14); Blend1 (cinnamaldehyde, ajowan and clove essential oils, 1 500 mg/kg feed); Blend2 (cinnamaldehyde, eugenol and short- and medium-chain fatty acids, 2 000 mg/kg feed). Pigs were weighed weekly until d35. Faeces were collected at d13 and d35 for microbiota (v3-v4 regions of the 16 s rRNA gene) and Escherichia coli (E. coli) count analysis. At d14 and d35, eight pigs/treatment were slaughtered; pH was recorded on intestinal contents and jejunal samples were collected for morphological and gene expression analysis. From d7-d14, the Blend2 had a lower average daily gain (ADG) than CO and ZnO (P < 0.05). ZnO and Blend1 never differed in ADG and feed intake. At d14, ZnO had a lower caecum pH than all other treatments. The CO treatment had a higher abundance of haemolytic E. coli than Blend1 (P = 0.01). At d13, the ZnO treatment had a lower alpha diversity (P < 0.01) and a different microbial beta diversity (P < 0.001) compared to the other treatments. At d13, the ZnO treatment was characterised by a higher abundance of Prevotellaceae_NK3B31_group (Linear Discriminant Analysis (LDA) score = 4.5, P = 0.011), Parabacteroides (LDA score = 4.5, P adj. = 0.005), the CO was characterised by Oscillospiraceae UCG-005 (LDA score = 4.3, P adj. = 0.005), Oscillospiraceae NK4A214_group (LDA score = 4.2, P adj. = 0.02), the Blend2 was characterised by Megasphaera (LDA score = 4.1, P adj. = 0.045), and Ruminococcus (LDA score = 3.9, P adj. = 0.015) and the Blend1 was characterised by Christensenellaceae_R-7_group (LDA score = 4.6, P adj. < 0.001) and Treponema (LDA score = 4.5, P adj. < 0.001). In conclusion, Blend1 allowed to maintain the gut health of postweaning piglets through modulation of the gut microbiome, the reduction of haemolytic E. coli while Blend2 did not help piglets.
Collapse
Affiliation(s)
- D Luise
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - F Correa
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - C Negrini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - S Virdis
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - M Mazzoni
- Department of Veterinary Science, University of Bologna, 40064 Ozzano dell'Emilia, Italy
| | - S Dalcanale
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy.
| |
Collapse
|
3
|
Ferreres-Serafini L, Castillejos L, Martín M, Le Bourgot C, Martín-Orúe SM. Looking for Possible Benefits of Combining Short-Chain Fructo-Oligosaccharides (scFOS) with Saccharomyces cerevisiae Sc 47 on Weaned Pigs Orally Challenged with Escherichia coli F4 . Animals (Basel) 2023; 13:526. [PMID: 36766416 PMCID: PMC9913220 DOI: 10.3390/ani13030526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The objective of this work was to evaluate the effect of supplementing short-chain fructo-oligosaccharides (scFOS) combined or not with live yeast Saccharomyces cerevisiae Sc 47 on weanling pigs challenged with Escherichia coli F4+. We allocated ninety-six piglets to four experimental diets: control (CTR); supplemented with scFOS (5 g/kg Profeed® P95) (scFOS); S. cerevisiae Sc 47 (1 g/kg Actisaf® Sc 47 HR +) (YEA); or both (SYN). Parameters included: performance; E. coli F4+ detection; fermentation activity; inflammatory biomarkers; and ileal histomorphology. Our results showed that supplementing scFOS was able to reduce the incidence of diarrhea, and both supplements were able to lower counts of EHEC along the gut. Supplementing scFOS was mostly associated with changes in the gut ecosystem and increases in the lactobacilli population, while S. cerevisiae Sc 47 registered increases in the numbers of ileal intraepithelial lymphocytes. The synbiotic mixture showed the lowest diarrhea incidence and fecal scores, benefiting from complementary modes of action and possible synergistic effects due to a hypothesized yeast-LAB cross-feeding phenomenon in the foregut. In conclusion, our results evidence that supplementing scFOS or Saccharomyces cerevisiae Sc 47 is efficacious to fight post-weaning colibacillosis, and combining both could be beneficial in high-risk scenarios.
Collapse
Affiliation(s)
- Laia Ferreres-Serafini
- Animal Nutrition and Welfare Service (SNIBA), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Lorena Castillejos
- Animal Nutrition and Welfare Service (SNIBA), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Marga Martín
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | | | - Susana M. Martín-Orúe
- Animal Nutrition and Welfare Service (SNIBA), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| |
Collapse
|
4
|
Caprarulo V, Turin L, Hejna M, Reggi S, Dell’Anno M, Riccaboni P, Trevisi P, Luise D, Baldi A, Rossi L. Protective effect of phytogenic plus short and medium-chain fatty acids-based additives in enterotoxigenic Escherichia coli challenged piglets. Vet Res Commun 2023; 47:217-231. [PMID: 35616772 PMCID: PMC9873745 DOI: 10.1007/s11259-022-09945-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/20/2022] [Indexed: 01/28/2023]
Abstract
Post Weaning Diarrhea (PWD) is the most important multifactorial gastroenteric disease of the weaning in pig livestock. Phytogenic (PHY) natural extracts are largely studied as alternatives to antibiotic treatments in combating the global concern of the antimicrobial resistance. The aim of this study was to evaluate the protective effect of innovative phytogenic premix with or without short and medium chain fatty acids (SCFA and MCFA) in O138 Escherichia coli challenged piglets. Twenty-seven weaned piglets were allotted into four groups fed different diets according to the following dietary treatments: CTRL (n = 13) group fed basal diet, PHY1 (n = 7) fed the basal diet supplemented with 0.2% of phytogenic premix, PHY2 (n = 7) fed the basal diet supplemented with 0.2% of phytogenic premix added with 2000 ppm of SCFA and MCFA. After 6 days of experimental diet feeding, animals were challenged (day 0) with 2 × 109 CFU of E. coli and CTRL group was divided at day 0 into positive (challenged CTRL + ; n = 6) and negative control group (unchallenged CTRL-; n = 7). Body weights were recorded at -14, -6, 0, 4 and 7 days and the feed intake was recorded daily. E. coli shedding was monitored for 4 days post-challenge by plate counting. Fecal consistency was registered daily by a four-point scale (0-3; diarrhea > 1) during the post-challenge period. Tissue samples were obtained for gene expression and histological evaluations at day 7 from four animals per group. Lower average feed intake was observed in CTRL + compared to PHY2 and CTRL during the post-challenge period. Infected groups showed higher E. coli shedding compared to CTRL- during the 4 days post-challenge (p < 0.01). PHY2 showed lower frequency of diarrhea compared to PHY1 and CTRL + from 5 to 7 days post-challenge. No significant alterations among groups were observed in histopathological evaluation. Duodenum expression of occludin tended to be lower in challenged groups compared to CTRL- at 7 days post-challenge (p = 0.066). In conclusion, dietary supplementation of PHY plus SCFA and MCFA revealed encouraging results for diarrhea prevention and growth performance in weaned piglets.
Collapse
Affiliation(s)
- Valentina Caprarulo
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| | - Lauretta Turin
- grid.4708.b0000 0004 1757 2822Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy
| | - Monika Hejna
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| | - Serena Reggi
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| | - Matteo Dell’Anno
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| | - Pietro Riccaboni
- grid.6292.f0000 0004 1757 1758Department of Agricultural and Food Sciences, University of Bologna, 40126 Bologna, Italy
| | - Paolo Trevisi
- grid.6292.f0000 0004 1757 1758Department of Agricultural and Food Sciences, University of Bologna, 40126 Bologna, Italy
| | - Diana Luise
- grid.6292.f0000 0004 1757 1758Department of Agricultural and Food Sciences, University of Bologna, 40126 Bologna, Italy
| | - Antonella Baldi
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| | - Luciana Rossi
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| |
Collapse
|
5
|
Pu L, Luo Y, Wen Z, Dai Y, Zheng C, Zhu X, Qin L, Zhang C, Liang H, Zhang J, Guo L, Wang L. GPX2 Gene Affects Feed Efficiency of Pigs by Inhibiting Fat Deposition and Promoting Muscle Development. Animals (Basel) 2022; 12:ani12243528. [PMID: 36552449 PMCID: PMC9774625 DOI: 10.3390/ani12243528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
GPX2 has been recognized as a potential candidate gene for feed efficiency in pigs. This article aimed to elucidate polymorphism of GPX2 associated with feed efficiency and its related molecular mechanism. In this study, seven single nucleotide polymorphisms (SNP) of GPX2 were found among 383 Duroc pigs. In addition, seven SNPs and ALGA0043483 (PorcineSNP60 BeadChip data in 600 Duroc pigs), which are near the GPX2 gene, were identified in one haplotypes block. Furthermore, associated studies showed that the genotype of GPX2 has significant association with weaning weight and 100 kg BF in Duroc pigs. In addition, the AG had no effect when the backfat became thinner, and the FCR and RFI traits had a tendency to decrease in the G3 + TT combination genotype, accompanied by an increase of GPX2 expression in backfat and muscle tissues. At the cellular level, the adipocyte proliferation and ability of adipogenic differentiation were reduced, and the lipid degradation increased in 3T3-L1 when there was overexpression of GPX2. In contrast, overexpression of the GPX2 gene can promote the muscle cell proliferation and myogenic differentiation in C2C12 cells. In other words, GPX2 has the effect of reducing fat deposition and promoting muscle development, and it is a candidate gene for backfat and feed efficiency.
Collapse
Affiliation(s)
- Lei Pu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (L.P.); (L.W.)
| | - Yunyan Luo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Zuochen Wen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yuxin Dai
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Chunting Zheng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xueli Zhu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Lei Qin
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Chunguang Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Hong Liang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Jianbin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Liang Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (L.P.); (L.W.)
| |
Collapse
|
6
|
Supplementation of mixed doses of glutamate and glutamine can improve the growth and gut health of piglets during the first 2 weeks post-weaning. Sci Rep 2022; 12:14533. [PMID: 36008459 PMCID: PMC9411166 DOI: 10.1038/s41598-022-18330-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to test the effect of mixing doses of glutamate (Glu) and glutamine (Gln) on the growth, health and gut health of post-weaning piglets. One hundred twenty weaned piglets (24 ± 2 days of age) were assigned to 6 dietary groups: (1) standard diet (CO); (2) CO plus Glu (6 kg/Ton): 100Glu; (3) CO plus 75Glu + 25Gln; (4) CO plus 50Glu + 50Gln; (5) CO plus 25Glu + 75Gln and (6) CO plus 100Gln. At days 8 and 21, blood was collected for haematological and reactive oxygen metabolite analysis, intestinal mucosa for morphological and gene expression analysis, and caecal content for microbial analysis. Data were fitted using a Generalised Linear Model (GLM). Piglet growth increased linearly with an increase in Gln from d7 to d14. The Glu:Gln ratio had a quadratic effect on faecal consistency and days of diarrhoea, neutrophil% and lymphocyte%, and a positive linear effect on monocyte% in the blood at d8. The amino acids (AAs) reduced the intraepithelial lymphocytes in the jejunum, and 100Gln improved intestinal barrier integrity at d8. The caecal microbiota did not differ. Overall, this study suggested a favourable effect of mixing Glu and Gln (25 + 75-50 + 50) as a dietary supplementation in post-weaning piglets to benefit the immune and barrier function of the gut, resulting in an increase in faecal consistency and improvement of growth during the first 2 weeks post-weaning.
Collapse
|
7
|
Cazals A, Rau A, Estellé J, Bruneau N, Coville JL, Menanteau P, Rossignol MN, Jardet D, Bevilacqua C, Bed’Hom B, Velge P, Calenge F. Comparative analysis of the caecal tonsil transcriptome in two chicken lines experimentally infected with Salmonella Enteritidis. PLoS One 2022; 17:e0270012. [PMID: 35976909 PMCID: PMC9384989 DOI: 10.1371/journal.pone.0270012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Managing Salmonella enterica Enteritidis (SE) carriage in chicken is necessary to ensure human food safety and enhance the economic, social and environmental sustainability of chicken breeding. Salmonella can contaminate poultry products, causing human foodborne disease and economic losses for farmers. Both genetic selection for a decreased carriage and gut microbiota modulation strategies could reduce Salmonella propagation in farms. Two-hundred and twenty animals from the White Leghorn inbred lines N and 61 were raised together on floor, infected by SE at 7 days of age, transferred into isolators to prevent oro-fecal recontamination and euthanized at 12 days post-infection. Caecal content DNA was used to measure individual Salmonella counts (ISC) by droplet digital PCR. A RNA sequencing approach was used to measure gene expression levels in caecal tonsils after infection of 48 chicks with low or high ISC. The analysis between lines identified 7516 differentially expressed genes (DEGs) corresponding to 62 enriched Gene Ontology (GO) Biological Processes (BP) terms. A comparison between low and high carriers allowed us to identify 97 DEGs and 23 enriched GO BP terms within line 61, and 1034 DEGs and 288 enriched GO BP terms within line N. Among these genes, we identified several candidate genes based on their putative functions, including FUT2 or MUC4, which could be involved in the control of SE infection, maybe through interactions with commensal bacteria. Altogether, we were able to identify several genes and pathways associated with differences in SE carriage level. These results are discussed in relation to individual caecal microbiota compositions, obtained for the same animals in a previous study, which may interact with host gene expression levels for the control of the caecal SE load.
Collapse
Affiliation(s)
- Anaïs Cazals
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
- Mouse Genetics Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Andrea Rau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
- BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, Peronne, France
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Nicolas Bruneau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Jean-Luc Coville
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | | | | | - Deborah Jardet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Bertrand Bed’Hom
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Philippe Velge
- UMR ISP, INRAE, Université F. Rabelais, Nouzilly, France
| | - Fanny Calenge
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
8
|
Translational Approach to Induce and Evaluate Verocytotoxic E. coli O138 Based Disease in Piglets. Animals (Basel) 2021; 11:ani11082415. [PMID: 34438872 PMCID: PMC8388622 DOI: 10.3390/ani11082415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 01/21/2023] Open
Abstract
Simple Summary The aim of the study was to set up experimental conditions to simulate the simultaneous outbreak of post-weaning diarrhea and enterotoxaemia in weaned piglets, through verocytotoxic O138 Escherichia coli challenge. Zootechnical, clinical, microbiological, histological and immunological parameters were evaluated along the follow-up of control and infected groups. Results showed that experimental infection significantly affected the clinical status. Infected animals showed significant higher total median scores of epiphora, vitality, hair irregularity, oedema and depression; in addition, they displayed evident inflammatory infiltrate of lymphocytes, and follicular hyperplasia, increase of IgG in the intestinal crypts and CD3-positive T cells in intestinal epithelium. The infection model, carried out on receptor-mediated susceptible piglets, allowed to identify a discriminative panel of clinical symptoms related to Escherichia coli O138 infection and could be used to assess the protective effect of antibiotic alternatives. Abstract Pig livestock was influenced by several global concerns that imposed a re-thinking of the farming system, which included the reduction in chemical dependency and the development of antimicrobial alternatives. Post-weaning diarrhea and enterotoxaemia caused by Escherichia coli, are serious threats that are responsible for the economic losses related to mortality, morbidity and stunted growth in weaning piglets. The aim of the study was to set up experimental conditions to simulate the simultaneous outbreak of post-weaning diarrhea and enterotoxaemia in weaned piglets, through verocytotoxic O138 Escherichia coli challenge, with a multidisciplinary approach. Eighteen piglets susceptible to F18 VTEC infection were selected by polymerase chain reaction for polymorphism on the fucosyltransferase 1 gene and randomly divided in two experimental groups, non-infected controls (C; n = 6) and infected ones (I; n = 12) and housed into individual pens at the same environmental conditions for 29 days. At day 20, I pigs were orally inoculated with Escherichia coli O138 and fed a high protein ration for 3 days. Zootechnical, clinical, microbiological, histological and immunological parameters were evaluated along the follow up (3 and 9 days). Experimental infection, confirmed by bacteria faecal shedding of the I group, significantly affected the clinical status. The I group showed significantly higher total scores, corresponding to medians of the sum of daily scores from days 1 to 3 (Σ3) and 1 to 9 (Σ9) post infection, epiphora, vitality, hair irregularity, oedema and depression. Histological examination showed evident inflammatory infiltrate of lymphocytes, and follicular hyperplasia in I pigs; in the same group, the immunohistochemical and immunological assays revealed an increase in IgG in the intestinal crypts and CD3-positive T cells in intestinal epithelium. The experimental Escherichia coli infection in controlled conditions is crucial for both the evaluation of innovative compounds and the elucidation of the mechanisms associated with the persistence of antibacterial resistant strains. In conclusion, the adopted infection model, carried out on receptor-mediated susceptible piglets, allowed us to identify a discriminative panel of clinical symptoms related to Escherichia coli O138 infection, and could be used to assess the protective effect of antibiotic alternatives.
Collapse
|
9
|
Investigation of Early Supplementation of Nucleotides on the Intestinal Maturation of Weaned Piglets. Animals (Basel) 2021; 11:ani11061489. [PMID: 34064055 PMCID: PMC8223990 DOI: 10.3390/ani11061489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Nucleotides represent a group of bioactive compounds essential for the development of the gastrointestinal tract and immune function. This study aimed to evaluate the short-term effect of oral administration of nucleotides before and after weaning on growth performance, health, development of the intestinal immunity and microbiome of piglet. A nucleotide-based product (NU) was orally given four times before weaning and once after to one group of piglets, while a second group was used as a control (CO). The NU pigs did not grow more than the control until 12 days post-weaning but had increased hemoglobin and hematocrit values. At weaning, feces of NU piglets had a microbial profile more typical of growing pigs, while those of CO were more representative of suckling pigs. The upregulation of genes in the blood of control pigs at weaning was indicative of more activation towards an inflammatory response, while genes of erythropoiesis were more active in NU pigs post-weaning. NU supplementation stimulated genes for proliferative activity in the intestinal immune system, a sign of possible anticipated maturation. NU supplementation did not influence the growth performance of piglets but may have expressed a positive effect on pig microbiota anticipating its maturation at weaning, with possible immunostimulant activity on the intestinal immune system. Abstract Nucleotides are essential for the development of the gastrointestinal tract and immune function, but their intake with milk by piglets could be insufficient. The effect of nucleotides on growth and health was tested on 98 piglets divided into two groups: NU, orally administrated with 4 mL of a nucleotide-based product (SwineMOD®) at 10, 15, 18, 21, 27 days, or not (CO). Blood and feces were sampled at weaning (26 d, T1), and at 38 d (T2). Per each group and time-point, eight piglets were slaughtered and jejunal Peyer’s patches (JPPs) were collected. NU increased hemoglobin content and hematocrit, but not growth. At weaning, the NU fecal microbiota was characterized by the abundance of Campylobacteraceae, more typical of the growing phase, compared to CO, with a greater abundance of Streptococcaceae. For the blood transcriptome, an initial greater inflammatory activation was seen in CO, while at T2, NU enriched gene sets related to erythropoiesis. The activation of gene groups ranging from epigenetic response to transcriptional regulation evidenced an intense proliferative activity in NU JPPs. NU supplementation did not influence the growth performance of piglets but could have expressed a positive effect on pig microbiota anticipating its maturation at weaning. This immunostimulant activity in the JPPs could moderate the inflammation in the immediate pre-weaning.
Collapse
|
10
|
Luise D, Le Sciellour M, Buchet A, Resmond R, Clement C, Rossignol MN, Jardet D, Zemb O, Belloc C, Merlot E. The fecal microbiota of piglets during weaning transition and its association with piglet growth across various farm environments. PLoS One 2021; 16:e0250655. [PMID: 33905437 PMCID: PMC8078812 DOI: 10.1371/journal.pone.0250655] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
This study describes the fecal microbiota from piglets reared in different living environments during the weaning transition, and presents the characteristics of microbiota associated with good growth of piglets after weaning. Fecal samples were collected pre- (d26) and post-weaning (d35) from 288 male piglets in 16 conventional indoor commercial farms located in the West of France. The changes one week after weaning on the most abundant microbial families was roughly the same in all farms: alpha diversity increased, the relative abundance of Bacteroidaceae (-61%), Christensenellaceae (-35%), Enterobacteriaceae (-42%), and Clostridiaceae (-32%) decreased, while the relative abundance of Prevotellaceae (+143%) and Lachnospiraceae (+21%) increased. Among all the collected samples, four enterotypes that were ubiquitous in all farms were identified. They could be discriminated by their respective relative abundances of Prevotella, Faecalibacterium, Roseburia, and Lachnospira, and likely corresponded to a gradual maturational shift from pre- to post-weaning microbiota. The rearing environment influenced the frequency of enterotypes, as well as the relative abundance of 6 families at d26 (including Christensenellaceae and Lactobacillaceae), and of 21 families at d35. In all farms, piglets showing the highest relative growth rate during the first three weeks after weaning, which were characterized as more robust, had a higher relative abundance of Bacteroidetes, a lower relative abundance of Proteobacteria, and showed a greater increase in Prevotella, Coprococcus, and Lachnospira in the post-weaning period. This study revealed the presence of ubiquitous enterotypes among the farms of this study, reflecting maturational stages of microbiota from a young suckling to an older cereal-eating profile. Despite significant variation in the microbial profile between farms, piglets whose growth after weaning was less disrupted were, those who had reached the more mature phenotype characterized by Prevotella the fastest.
Collapse
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Sciences (DISTAL), Agricultural, Environmental, Food Science and Technology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Arnaud Buchet
- PEGASE, INRAE, Institut Agro, Saint Gilles, France
- Cooperl Arc Atlantique, Lamballe, France
| | - Rémi Resmond
- PEGASE, INRAE, Institut Agro, Saint Gilles, France
| | | | | | | | | | | | - Elodie Merlot
- PEGASE, INRAE, Institut Agro, Saint Gilles, France
- * E-mail:
| |
Collapse
|
11
|
Rodríguez-Sorrento A, Castillejos L, López-Colom P, Cifuentes-Orjuela G, Rodríguez-Palmero M, Moreno-Muñoz JA, Luise D, Trevisi P, Martín-Orúe SM. Effects of the Administration of Bifidobacterium longum subsp. infantis CECT 7210 and Lactobacillus rhamnosus HN001 and Their Synbiotic Combination With Galacto-Oligosaccharides Against Enterotoxigenic Escherichia coli F4 in an Early Weaned Piglet Model. Front Microbiol 2021; 12:642549. [PMID: 33935999 PMCID: PMC8086512 DOI: 10.3389/fmicb.2021.642549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/23/2021] [Indexed: 01/09/2023] Open
Abstract
We evaluated the potential of multi-strain probiotic (Bifidobacterium longum subsp. infantis CECT 7210 and Lactobacillus rhamnosus HN001) with or without galacto-oligosaccharides against enterotoxigenic Escherichia coli (ETEC) F4 infection in post-weaning pigs. Ninety-six piglets were distributed into 32 pens assigned to five treatments: one non-challenged (CTR+) and four challenged: control diet (CTR-), with probiotics (>3 × 1010 CFU/kg body weight each, PRO), prebiotic (5%, PRE), or their combination (SYN). After 1 week, animals were orally inoculated with ETEC F4. Feed intake, weight, and clinical signs were recorded. On days 4 and 8 post-inoculation (PI), one animal per pen was euthanized and samples from blood, digesta, and tissues collected. Microbiological counts, ETEC F4 real-time PCR (qPCR) quantification, fermentation products, serum biomarkers, ileal histomorphometry, and genotype for mucin 4 (MUC4) polymorphism were determined. Animals in the PRO group had similar enterobacteria and coliform numbers to the CTR+ group, and the ETEC F4 prevalence, the number of mitotic cells at day 4 PI, and villus height at day 8 PI were between that observed in the CTR+ and CTR- groups. The PRO group exhibited reduced pig major acute-phase protein (Pig-MAP) levels on day 4 PI. The PRE diet group presented similar reductions in ETEC F4 and Pig-MAP, but there was no effect on microbial groups. The SYN group showed reduced fecal enterobacteria and coliform counts after the adaptation week but, after the inoculation, the SYN group showed lower performance and more animals with high ETEC F4 counts at day 8 PI. SYN treatment modified the colonic fermentation differently depending on the MUC4 polymorphism. These results confirm the potential of the probiotic strains and the prebiotic to fight ETEC F4, but do not show any synergy when administered together, at least in this animal model.
Collapse
Affiliation(s)
- Agustina Rodríguez-Sorrento
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lorena Castillejos
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Paola López-Colom
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | - Diana Luise
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Science, University of Bologna, Bologna, Italy
| | - Susana María Martín-Orúe
- Servicio de Nutrición y Bienestar Animal, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
12
|
Trevisi P, Luise D, Correa F, Bosi P. Timely Control of Gastrointestinal Eubiosis: A Strategic Pillar of Pig Health. Microorganisms 2021; 9:313. [PMID: 33546450 PMCID: PMC7913656 DOI: 10.3390/microorganisms9020313] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
The pig gastrointestinal tract (GIT) is an open ecosystem in which microorganisms and their host are mutually involved and continually adapt to different factors and problems which may or may not be host dependent or due to the production system. The aim of the present review is to highlight the factors affecting the GIT microbial balance in young pigs, focusing on the pre- and post-weaning phases, to define a road map for improving pig health and the production efficiency of the food chain. Birth and weaning body weight, physiological maturation, colostrum and milk (composition and intake), genetic background, environmental stressors and management practices, antibiotic use and diet composition are considered. Overall, there is a lack of knowledge regarding the effect that some factors, including weaning age, the use of creep feed, the composition of the colostrum and milk and the use of antibiotics, may have on the gut microbiome of piglets. Furthermore, the information on the gut microbiome of piglets is mainly based on the taxonomy description, while there is a lack of knowledge regarding the functional modification of the microbiota, essential for the exploitation of microbiota potential for modulating pig physiology.
Collapse
Affiliation(s)
- Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127 Bologna, Italy; (D.L.); (F.C.); (P.B.)
| | | | | | | |
Collapse
|
13
|
Luise D, Spinelli E, Correa F, Salvarani C, Bosi P, Trevisi P. Effects of E. coli bivalent vaccine and of host genetic susceptibility to E. coli on the growth performance and faecal microbial profile of weaned pigs. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Luc DD, Thinh NH, Bo HX, Vinh NT, Manh TX, Hung NV, Ton VD, Farnir F. Mutation c.307G>A in FUT1 gene has no effect on production performance of Yorkshire pigs in the tropics: the case of Vietnam. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The alpha (1) fucosyltransferase gene (FUT1) is a candidate gene for controlling the adhesion of Escherichia coli F18 receptor. Indeed, a single-nucleotide polymorphism, c.307G>A, located in the gene is such that pigs with AA genotype are resistant to entero-toxigenic E. coli F18, whereas those with AG and GG genotypes are sensitive. An experiment was carried out in northern Vietnam from March 2016 to May 2017 to determine FUT1 genotype frequencies and the effect of these genotypes on production performance of Yorkshire pigs. A total of 613 animals were genotyped using polymerase chain reaction – restriction fragment length polymorphism method. The body weights at birth, weaning, initial fattening period, and final fattening period were collected from 611, 516, 479, and 418 animals, respectively, whereas backfat thickness, depth of longissimus dorsi, and lean meat percentage were recorded from 328 animals. The frequencies of FUT1 genotypes were found to be in Hardy–Weinberg equilibrium (P = 0.51). Effect of FUT1 genotype was not observed for all production traits (P > 0.05), whereas final body weight and depth of longissimus dorsi were significantly different between females and males (P < 0.05). These results suggest that selection of Yorkshire pigs resistant to entero-toxigenic E. coli F18 could be effective without adversely affecting average daily gain and lean meat.
Collapse
Affiliation(s)
- Do Duc Luc
- Department of Animal Breeding and Genetics, Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Nguyen Hoang Thinh
- Department of Animal Breeding and Genetics, Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Ha Xuan Bo
- Department of Animal Breeding and Genetics, Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Nguyen Thi Vinh
- Department of Biology and Zoology, Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Tran Xuan Manh
- Dabaco Nucleus Breeding Pig Company, Tien Du District, Bac Ninh Province 16416, Vietnam
| | - Nguyen Van Hung
- Dabaco Nucleus Breeding Pig Company, Tien Du District, Bac Ninh Province 16416, Vietnam
| | - Vu Dinh Ton
- Center of Multidiscipline Research for Rural Development, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Frédéric Farnir
- Department of Animal Production, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
15
|
Improvement of the Enterotoxigenic Escherichia coli Infection Model for Post-Weaning Diarrhea by Controlling for Bacterial Adhesion, Pig Breed and MUC4 Genotype. Vet Sci 2020; 7:vetsci7030106. [PMID: 32784676 PMCID: PMC7557722 DOI: 10.3390/vetsci7030106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of post-weaning diarrhea (PWD) in pigs and causes significant damage to the swine industry worldwide. In recent years, there has been increased regulation against the use of antibacterial agents in swine due to their health risks. Utilizing experimental models that consistently recapitulate PWD is important for the development of non-antibacterial agents against PWD in pigs. In this study, we established a highly reproducible PWD infection model by examining differences in adhesion of ETEC to the intestinal tissue as well as the association between MUC4 polymorphisms and sensitivity to PWD. Post-weaning diarrhea differences between pig breeds were also examined. The adhesion to enterocytes varied from 104.0 to 106.4 CFU/mL even among the F4 ETEC strains. Experimental infection revealed that PWD can be induced in all MUC4 genotypes after infection with 1010 CFU/pig of highly adherent ETEC, although there were variable sensitivities between the genotypes. Lowly adherent ETEC did not cause PWD as efficiently as did highly adherent ETEC. The incidence of PWD was confirmed for all pigs with the ETEC-susceptible MUC4 genotypes in all of the breeds. These results indicate that high-precision and reproducible experimental infection is possible regardless of pig breeds by controlling factors on the pig-end (MUC4 genotype) and the bacterial-end (adhesion ability).
Collapse
|
16
|
Luise D, Correa F, Bosi P, Trevisi P. A Review of the Effect of Formic Acid and Its Salts on the Gastrointestinal Microbiota and Performance of Pigs. Animals (Basel) 2020; 10:E887. [PMID: 32438743 PMCID: PMC7278376 DOI: 10.3390/ani10050887] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 12/20/2022] Open
Abstract
Out of the alternatives to antibiotics and zinc oxide, organic acids, or simply acidifiers, play significant roles, especially in ensuring gut health and the growth performance of pigs. Regarding acidifiers, formic acid and its salts have shown very promising results in weaning, growing and finishing pigs. Although it is known that the main mechanisms by which acidifiers can improve livestock performance and health are related to the regulation of gastrointestinal pH, an improvement in intestinal digestibility and mineral utilization, and their antimicrobial properties against specific pathogens has been observed, while poor consensus remains in relation to the effect of acidifers on bacteria and the complex microbiome. Therefore, the aim of the present review was to critically evaluate the effects of formic acid and its salts on the performance and the gastrointestinal microbiota balance of pigs.
Collapse
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127 Bologna, Italy; (F.C.); (P.B.); (P.T.)
| | | | | | | |
Collapse
|
17
|
Luise D, Bertocchi M, Bosi P, Correa F, Spinelli E, Trevisi P. Contribution of L-Arginine supplementation during gestation on sow productive performance and on sow microbial faecal profile. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1743210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Diana Luise
- Dipartimento di Scienze agrarie e alimentari (DISTAL), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Micol Bertocchi
- Dipartimento di Scienze agrarie e alimentari (DISTAL), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Paolo Bosi
- Dipartimento di Scienze agrarie e alimentari (DISTAL), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Federico Correa
- Dipartimento di Scienze agrarie e alimentari (DISTAL), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Elisa Spinelli
- Dipartimento di Scienze agrarie e alimentari (DISTAL), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Dipartimento di Scienze agrarie e alimentari (DISTAL), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Trevisi P, Luise D, Won S, Salcedo J, Bertocchi M, Barile D, Bosi P. Variations in porcine colostrum oligosaccharide composition between breeds and in association with sow maternal performance. J Anim Sci Biotechnol 2020; 11:21. [PMID: 32190297 PMCID: PMC7066846 DOI: 10.1186/s40104-020-0430-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background Oligosaccharides (OS) are indigestible carbohydrates naturally found in milk. The composition of porcine colostrum OS may influence the growth and the health of the neonate and consuming optimal concentrations of OS may reduce piglet susceptibility to illness. In this manner, targeted supplementation of animal feed with OS is being explored as a health management tool in the livestock industry. The variation in OS composition between different breeds of pig and its association with the litter performance is currently unknown. The aim of this study was to characterize the colostrum OS composition from sows of different breed and parity and correlate this data with sow maternal traits. Methods Eighty-three colostrum samples from parities 1 to 8 were gathered from 3 different breeds of sow: 44 Large White sows, 27 Landrace sows and 12 Duroc sows. Samples were taken between the birth of the first and the last piglet from sows that were not pharmacologically induced to farrow. OS were purified from the samples and analysed by MALDI-ToF mass spectrometry (21 OS compositions detected). The farrowing season and the maternal data were recorded for each sow, including the number of live piglets and the litter body weight at birth, at day (d) 3 and at weaning. Results Five OS compositions, including isomers of the bifidogenic Sialyllactose, Lacto-N-Tetraose and Lacto-N-Hexaose series, were detected in all the samples. Twelve other OS were identified in at least 50% of samples, and their abundances were affected by breed (P < 0.05; 6 of 12), marginally affected by season (P < 0.10; 3 of 12) and never by parity number. The abundances of each OS component were standardized by Z-score scaling (μ = 0 and SD = 1), transformed by principal component analysis, and four similarity clusters were generated. Cluster membership was associated with litter weight gain within 3 days (P = 0.063) and at weaning (P < 0.05), but not with piglet mortality within 3 days. Conclusions OS composition of colostrum may partially explain the variability in maternal performance within and between different breeds of sow. The obtained OS data can provide useful information for the development of novel prebiotic food supplements for suckling and weaning pigs.
Collapse
Affiliation(s)
- Paolo Trevisi
- 1Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Diana Luise
- 1Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Savanna Won
- 2Department of Food Science and Technology, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Jaime Salcedo
- 2Department of Food Science and Technology, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Micol Bertocchi
- 1Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Daniela Barile
- 2Department of Food Science and Technology, University of California-Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Paolo Bosi
- 1Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| |
Collapse
|
19
|
Luise D, Bovo S, Bosi P, Fanelli F, Pagotto U, Galimberti G, Mazzoni G, Dall'Olio S, Fontanesi L. Targeted metabolomic profiles of piglet plasma reveal physiological changes over the suckling period. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Luise D, Bertocchi M, Motta V, Salvarani C, Bosi P, Luppi A, Fanelli F, Mazzoni M, Archetti I, Maiorano G, Nielsen BKK, Trevisi P. Bacillus sp. probiotic supplementation diminish the Escherichia coli F4ac infection in susceptible weaned pigs by influencing the intestinal immune response, intestinal microbiota and blood metabolomics. J Anim Sci Biotechnol 2019; 10:74. [PMID: 31528339 PMCID: PMC6740008 DOI: 10.1186/s40104-019-0380-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background Probiosis is considered a potential strategy to reduce antibiotics use and prevent post-weaning diarrhea (PWD). This study investigated the effect of Bacillus amyloliquefaciens DSM25840 or Bacillus subtilis DSM25841 supplementation on growth, health, immunity, intestinal functionality and microbial profile of post-weaning pigs after enterotoxigenic E. coli (ETEC) F4 challenge. Methods Sixty-four post-weaning piglets (7748 g ± 643 g) were randomly allocated to four groups: control basal diet (CO); CO + 1.28 × 106 CFU/g of B. amyloliquefaciens (BAA); CO + 1.28 × 106 CFU/g feed of B. subtilis (BAS); CO + 1 g colistin/kg of feed (AB). At day (d) 7, animals were challenged with 105 CFU/mL of ETEC F4ac O149 and then followed for fecal score and performance until d 21. Blood was collected at d 6, d 12 and d 21 for immunoglobulins, at d 8 for acute phase proteins, at d 8 and d 21 for metabolomics analysis. Jejunum was sampled for morphometry, quantification of apoptosis, cell proliferation, neutral and acid mucine and IgA secretory cells, and microarray analysis at d 21. Jejunum and cecum contents were collected for microbiota at d 21. Results AB and BAS reduced the fecal score impairment compared to CO (P < 0.05) at d 14. Body weight (BW), average daily weight gain (ADWG), average daily feed intake (ADFI) and gain to feed ratio (G:F) did not differ between Bacillus groups and CO. AB improved BW at d 7, d 14 and d 21, ADWG ADFI and G:F from d 0 to d 7 (P < 0.05). At d 8, CO had higher plasma arginine, lysine, ornithine, glycine, serine and threonine than other groups, and higher haptoglobin than AB (P < 0.05). At d 21, CO had lower blood glycine, glutamine and IgA than BAS. Morphology, cells apoptosis and mucins did not differ. BAS and AB increased the villus mitotic index. Transcriptome profile of BAS and AB were more similar than CO. Gene sets related to adaptive immune response were enriched in BAA, BAS and AB. CO had enriched gene set for nuclear structure and RNA processing. CO had a trend of higher Enterobacteriaceae in cecum than the other groups (P = 0.06). Conclusion Bacillus subtilis DSM25841 treatment may reduce ETEC F4ac infection in weaned piglets, decreasing diarrhea and influencing mucosal transcriptomic profile.
Collapse
Affiliation(s)
- Diana Luise
- 1Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Micol Bertocchi
- 2Department of Agricultural, Environmental and Food Sciences, University of Molise, Via F. De Sanctis, Campobasso, Italy
| | - Vincenzo Motta
- 1Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Chiara Salvarani
- 1Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Paolo Bosi
- 1Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Andrea Luppi
- 3Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna Bruno Ubertini, V. Bianchi 9, 25124 Brescia, Italy
| | - Flaminia Fanelli
- 4Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna - S.Orsola-Malpighi Hospital, via Massarenti 9, 40138 Bologna, Italy
| | - Maurizio Mazzoni
- 5Department of Veterinary Medical Sciences, University of Bologna, Via. Tolara di Sopra 50, 40064 Ozzano Emilia, Italy
| | - Ivonne Archetti
- 3Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna Bruno Ubertini, V. Bianchi 9, 25124 Brescia, Italy
| | - Giuseppe Maiorano
- 2Department of Agricultural, Environmental and Food Sciences, University of Molise, Via F. De Sanctis, Campobasso, Italy
| | | | - Paolo Trevisi
- 1Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| |
Collapse
|
21
|
Massacci FR, Tofani S, Forte C, Bertocchi M, Lovito C, Orsini S, Tentellini M, Marchi L, Lemonnier G, Luise D, Blanc F, Castinel A, Bevilacqua C, Rogel-Gaillard C, Pezzotti G, Estellé J, Trevisi P, Magistrali CF. Host genotype and amoxicillin administration affect the incidence of diarrhoea and faecal microbiota of weaned piglets during a natural multiresistant ETEC infection. J Anim Breed Genet 2019; 137:60-72. [PMID: 31482656 DOI: 10.1111/jbg.12432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/27/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the aetiological agent of postweaning diarrhoea (PWD) in piglets. The SNPs located on the Mucine 4 (MUC4) and Fucosyltransferase 1 (FUT1) genes have been associated with the susceptibility to ETEC F4 and ETEC F18, respectively. The interplay between the MUC4 and FUT1 genotypes to ETEC infection and the use of amoxicillin in modifying the intestinal microbiota during a natural infection by multiresistant ETEC strains have never been investigated. The aim of this study was to evaluate the effects of the MUC4 and FUT1 genotypes and the administration of amoxicillin through different routes on the presence of diarrhoea and the faecal microbiota composition in piglets naturally infected with ETEC. Seventy-one piglets were divided into three groups: two groups differing by amoxicillin administration routes-parenteral (P) or oral (O) and a control group without antibiotics (C). Faecal scores, body weight, presence of ETEC F4 and F18 were investigated 4 days after the arrival in the facility (T0), at the end of the amoxicillin administration (T1) and after the withdrawal period (T2). The faecal bacteria composition was assessed by sequencing the 16S rRNA gene. We described that MUC4 and FUT1 genotypes were associated with the presence of ETEC F4 and ETEC F18. The faecal microbiota was influenced by the MUC4 genotypes at T0. We found the oral administration to be associated with the presence of diarrhoea at T1 and T2. Furthermore, the exposure to amoxicillin resulted in significant alterations of the faecal microbiota. Overall, MUC4 and FUT1 were confirmed as genetic markers for the susceptibility to ETEC infections in pigs. Moreover, our data highlight that group amoxicillin treatment may produce adverse outcomes on pig health in course of multiresistant ETEC infection. Therefore, alternative control measures able to maintain a healthy faecal microbiota in weaners are recommended.
Collapse
Affiliation(s)
- Francesca Romana Massacci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy.,Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy.,GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Silvia Tofani
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Claudio Forte
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Micol Bertocchi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Carmela Lovito
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Serenella Orsini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Michele Tentellini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Lucia Marchi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Gaetan Lemonnier
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Fany Blanc
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Adrien Castinel
- GeT-PlaGe, Genotoul, INRA US1426, Castanet-Tolosan Cedex, France
| | - Claudia Bevilacqua
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Giovanni Pezzotti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Jordi Estellé
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
22
|
Luise D, Lauridsen C, Bosi P, Trevisi P. Methodology and application of Escherichia coli F4 and F18 encoding infection models in post-weaning pigs. J Anim Sci Biotechnol 2019; 10:53. [PMID: 31210932 PMCID: PMC6567477 DOI: 10.1186/s40104-019-0352-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023] Open
Abstract
The enterotoxigenic Escherichia coli (ETEC) expressing F4 and F18 fimbriae are the two main pathogens associated with post-weaning diarrhea (PWD) in piglets. The growing global concern regarding antimicrobial resistance (AMR) has encouraged research into the development of nutritional and feeding strategies as well as vaccination protocols in order to counteract the PWD due to ETEC. A valid approach to researching effective strategies is to implement piglet in vivo challenge models with ETEC infection. Thus, the proper application and standardization of ETEC F4 and F18 challenge models represent an urgent priority. The current review provides an overview regarding the current piglet ETEC F4 and F18 challenge models; it highlights the key points for setting the challenge protocols and the most important indicators which should be included in research studies to verify the effectiveness of the ETEC challenge. Based on the current review, it is recommended that the setting of the model correctly assesses the choice and preconditioning of pigs, and the timing and dosage of the ETEC inoculation. Furthermore, the evaluation of the ETEC challenge response should include both clinical parameters (such as the occurrence of diarrhea, rectal temperature and bacterial fecal shedding) and biomarkers for the specific expression of ETEC F4/F18 (such as antibody production, specific F4/F18 immunoglobulins (Igs), ETEC F4/F18 fecal enumeration and analysis of the F4/F18 receptors expression in the intestinal brush borders). On the basis of the review, the piglets’ response upon F4 or F18 inoculation differed in terms of the timing and intensity of the diarrhea development, on ETEC fecal shedding and in the piglets’ immunological antibody response. This information was considered to be relevant to correctly define the experimental protocol, the data recording and the sample collections. Appropriate challenge settings and evaluation of the response parameters will allow future research studies to comply with the replacement, reduction and refinement (3R) approach, and to be able to evaluate the efficiency of a given feeding, nutritional or vaccination intervention in order to combat ETEC infection.
Collapse
Affiliation(s)
- Diana Luise
- 1Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Charlotte Lauridsen
- 2Faculty of Science and Technology, Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Paolo Bosi
- 1Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- 1Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|