1
|
Safai A, Buckingham WR, Jonaitis EM, Langhough RE, Johnson SC, Powell WR, Kind AJ, Bendlin BB, Tiwari P. Association of neighborhood disadvantage with cognitive function and cortical disorganization in an unimpaired cohort: An exploratory study. Alzheimers Dement 2025; 21:e70095. [PMID: 40110699 PMCID: PMC11923708 DOI: 10.1002/alz.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Neighborhood disadvantage has been shown to impact health and cognitive outcomes, while morphological similarity network (MSN) can elucidate structural morphological patterns underlying cognitive functions. We hypothesized MSNs could provide cortical patterns linked with neighborhood disadvantage and cognitive function, explaining the potential risk of cognitive impairment in disadvantaged neighborhoods. METHODS For cognitively unimpaired participants from the Wisconsin Alzheimer's Disease Research Center or Wisconsin Registry for Alzheimer's Prevention (n = 524), and the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort (n = 100), neighborhood disadvantage was obtained using Area Deprivation Index (ADI) and its association with cognitive performance and MSN features was analyzed using linear regression and mediation analysis. RESULTS Neighborhood disadvantage was associated with worse cognitive performance on memory, executive function, processing speed, and preclinical Alzheimer's tests on both datasets. Local morphological organization of predominantly the frontal and temporal regions showed association trends with ADI. DISCUSSION Morphological patterns associated with ADI, in-part, may explain the risk for poor cognitive functioning in a neighborhood disadvantaged population. HIGHLIGHTS Social determinants of health such as neighborhood context can be studied using ADI. High neighborhood disadvantage was related to worse performance on category fluency, implicit learning speed, story recall memory and pre-clinical Alzheimer's cognitive composite. In this exploratory study, using morphological brain networks that indicate similarity in distribution of cortical thickness between regions, we observed that centrality of predominantly frontal and temporal regions was marginally linked with neighborhood disadvantage status and also partially mediated its association with preclinical Alzheimer's composite test. There is a potential role for considering neighborhood status in early screening of cognitive impairment and dementia.
Collapse
Affiliation(s)
- Apoorva Safai
- Department of RadiologySchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - William R Buckingham
- Center for Health Disparities ResearchUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Erin M Jonaitis
- Department of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Rebecca E Langhough
- Department of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Sterling C. Johnson
- Department of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Division of Geriatrics and GerontologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - W. Ryan Powell
- Center for Health Disparities ResearchUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Division of Geriatrics and GerontologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Amy J. Kind
- Center for Health Disparities ResearchUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Division of Geriatrics and GerontologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Barbara B. Bendlin
- Center for Health Disparities ResearchUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Wisconsin Alzheimer's Disease Research CenterSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Division of Geriatrics and GerontologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Pallavi Tiwari
- Department of RadiologySchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- William S. Middleton Memorial Veterans Affairs (VA) HealthcareMadisonWisconsinUSA
| |
Collapse
|
2
|
Pohl J, Miklashevsky A. Vertical and horizontal space-valence associations: A meta-analysis. Neurosci Biobehav Rev 2025; 170:106054. [PMID: 39952336 DOI: 10.1016/j.neubiorev.2025.106054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Previous research found associations between lower vs. upper space and negative vs. positive stimuli correspondingly (vertical Space-Valence Associations, SVAs) and between the left vs. right side and negative vs. positive stimuli correspondingly (horizontal SVAs). We conducted a comprehensive meta-analysis of SVAs for both dimensions in behavioral studies. We tested the robustness of SVAs and examined factors potentially modulating them: participants' culture, handedness, gender, age, the exact valence domain under study, the experimental task, type of stimuli, publication year, and statistics used. Articles were extracted from Web of Science, PubMed, and ScienceDirect in February 2021. Overall, 91 articles with 199 experiments and 21,951 participants were included in the final analysis. We found robust evidence of SVAs in vertical (r = .440, k = 111 experiments) and horizontal dimensions (r = .310; k = 88 experiments), with little evidence for literature biases. The distribution of effect sizes was highly heterogeneous, even after subgroup analyses, which indicates unidentified factors varying across studies. Experiments on vertical SVAs explicitly asking participants to evaluate valence showed larger effect sizes than experiments where valence remained task-irrelevant. There was a robust effect of handedness on horizontal SVAs: Participants associated positive stimuli with the side of their dominant hand. There was also some evidence of cultural influences on the horizontal SVAs. Overall, our meta-analysis revealed a hierarchy of factors modulating activation of SVAs, which includes both situated and embodied factors. It is, therefore, essential to focus on specific concept categories and contexts rather than consider abstract concepts in general. PUBLIC SIGNIFICANCE STATEMENT: This meta-analysis revealed medium effects of space-valence associations: Upper/right space is associated with positive and lower/right space with negative concepts. On the vertical dimension, this effect is modulated by valence being task-relevant, e.g., directly asking people about valence results in stronger associations. For the horizontal dimension, left-handers robustly showed a reversed effect (i.e., left is good); horizontal space-valence associations might be even stronger in non-Western countries.
Collapse
Affiliation(s)
- Jan Pohl
- Faculty of Psychology, TUD Dresden University of Technology, Germany; Potsdam Embodied Cognition Group, University of Potsdam, Germany.
| | - Alex Miklashevsky
- Potsdam Embodied Cognition Group, University of Potsdam, Germany; Brain Language Laboratory, Free University of Berlin, Germany; Institut für Deutsche und Niederländische Philologie, Free University of Berlin, Germany
| |
Collapse
|
3
|
Brunet NM, Ackerman AR. Effects of Closed Mouth vs. Exposed Teeth on Facial Expression Processing: An ERP Study. Behav Sci (Basel) 2025; 15:163. [PMID: 40001794 PMCID: PMC11851827 DOI: 10.3390/bs15020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
The current study examines the neural mechanisms underlying facial recognition, focusing on how emotional expression and mouth display modulate event-related potential (ERP) waveforms. 42 participants categorized faces by gender in one of two experimental setups: one featuring full-face images and another with cropped faces presented against neutral gray backgrounds. The stimuli included 288 images balanced across gender, race/ethnicity, emotional expression ("Fearful", "Happy", "Neutral"), and mouth display ("closed mouth" vs. "open mouth with exposed teeth"). Results revealed that N170 amplitude was significantly greater for open-mouth (exposed teeth) conditions (p < 0.01), independent of emotional expression, and no interaction between emotional expression and mouth display was found. However, the P100 amplitude exhibited a significant interaction between these variables (p < 0.05). Monte Carlo simulations analyzing N170 latency differences showed that fearful faces elicited a faster response than happy and neutral faces, with a 2 ms delay unlikely to occur by chance (p < 0.01). While these findings challenge prior research suggesting that N170 is directly influenced by emotional expression, they also highlight the potential role of emotional intensity as an alternative explanation. This underscores the importance of further studies to disentangle these effects. This study highlights the critical need to control for mouth display when investigating emotional face processing. The results not only refine our understanding of the neural dynamics of face perception but also confirm that the brain processes fearful expressions more rapidly than happy or neutral ones. These insights offer valuable methodological considerations for future neuroimaging research on emotion perception.
Collapse
Affiliation(s)
- Nicolas M. Brunet
- Department of Psychology, California State University of San Bernardino, San Bernardino, CA 92407, USA;
| | | |
Collapse
|
4
|
Hagen J, Ramkiran S, Schnellbächer GJ, Rajkumar R, Collee M, Khudeish N, Veselinović T, Shah NJ, Neuner I. Phenomena of hypo- and hyperconnectivity in basal ganglia-thalamo-cortical circuits linked to major depression: a 7T fMRI study. Mol Psychiatry 2025; 30:158-167. [PMID: 39020104 PMCID: PMC11649570 DOI: 10.1038/s41380-024-02669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Major depressive disorder (MDD) typically manifests itself in depressed affect, anhedonia, low energy, and additional symptoms. Despite its high global prevalence, its pathophysiology still gives rise to questions. Current research places alterations in functional connectivity among MDD's most promising biomarkers. However, given the heterogeneity of previous findings, the use of higher-resolution imaging techniques, like ultra-high field (UHF) fMRI (≥7 Tesla, 7T), may offer greater specificity in delineating fundamental impairments. In this study, 7T UHF fMRI scans were conducted on 31 MDD patients and 27 age-gender matched healthy controls to exploratorily contrast cerebral resting-state functional connectivity patterns between both groups. The CONN toolbox was used to generate functional network connectivity (FNC) analysis based on the region of interest (ROI)-to-ROI correlations in order to enable the identification of clusters of significantly different connections. Correction for multiple comparisons was implemented at the cluster level using a false discovery rate (FDR). The analysis revealed three significant clusters differentiating MDD patients and healthy controls. In Clusters 1 and 2, MDD patients exhibited between-network hypoconnectivity in basal ganglia-cortical pathways as well as hyperconnectivity in thalamo-cortical pathways, including several individual ROI-to-ROI connections. In Cluster 3, they showed increased occipital interhemispheric within-network connectivity. These findings suggest that alterations in basal ganglia-thalamo-cortical circuits play a substantial role in the pathophysiology of MDD. Furthermore, they indicate potential MDD-related deficits relating to a combination of perception (vision, audition, and somatosensation) as well as more complex functions, especially social-emotional processing, modulation, and regulation. It is anticipated that these findings might further inform more accurate clinical procedures for addressing MDD.
Collapse
Affiliation(s)
- Jana Hagen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Shukti Ramkiran
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Gereon J Schnellbächer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Ravichandran Rajkumar
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Maria Collee
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Aachen, Germany
| | - Nibal Khudeish
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Tanja Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, Uniklinik RWTH Aachen, Aachen, Germany
- Institute of Neuroscience and Medicine - 11, Forschungszentrum Jülich, Jülich, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH Aachen, Aachen, Germany.
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
5
|
Cocuzza CV, Sanchez-Romero R, Ito T, Mill RD, Keane BP, Cole MW. Distributed network flows generate localized category selectivity in human visual cortex. PLoS Comput Biol 2024; 20:e1012507. [PMID: 39436929 PMCID: PMC11530028 DOI: 10.1371/journal.pcbi.1012507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/01/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
A central goal of neuroscience is to understand how function-relevant brain activations are generated. Here we test the hypothesis that function-relevant brain activations are generated primarily by distributed network flows. We focused on visual processing in human cortex, given the long-standing literature supporting the functional relevance of brain activations in visual cortex regions exhibiting visual category selectivity. We began by using fMRI data from N = 352 human participants to identify category-specific responses in visual cortex for images of faces, places, body parts, and tools. We then systematically tested the hypothesis that distributed network flows can generate these localized visual category selective responses. This was accomplished using a recently developed approach for simulating - in a highly empirically constrained manner - the generation of task-evoked brain activations by modeling activity flowing over intrinsic brain connections. We next tested refinements to our hypothesis, focusing on how stimulus-driven network interactions initialized in V1 generate downstream visual category selectivity. We found evidence that network flows directly from V1 were sufficient for generating visual category selectivity, but that additional, globally distributed (whole-cortex) network flows increased category selectivity further. Using null network architectures we also found that each region's unique intrinsic "connectivity fingerprint" was key to the generation of category selectivity. These results generalized across regions associated with all four visual categories tested (bodies, faces, places, and tools), and provide evidence that the human brain's intrinsic network organization plays a prominent role in the generation of functionally relevant, localized responses.
Collapse
Affiliation(s)
- Carrisa V. Cocuzza
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
- Behavioral and Neural Sciences PhD Program, Rutgers University, Newark, New Jersey, United States of America
- Department of Psychology, Yale University, New Haven, Connecticut, United States of America
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ruben Sanchez-Romero
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
| | - Takuya Ito
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ravi D. Mill
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
| | - Brian P. Keane
- Department of Psychiatry and Neuroscience, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Visual Science, University of Rochester, Rochester, New York, United States of America
- Department of Brain and Cognitive Science, University of Rochester, Rochester, New York, United States of America
| | - Michael W. Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
6
|
Lacroix A, Harquel S, Barbosa LS, Kovarski K, Garrido MI, Vercueil L, Kauffmann L, Dutheil F, Gomot M, Mermillod M. Reduced spatial frequency differentiation and sex-related specificities in fearful face detection in autism: Insights from EEG and the predictive brain model. Autism Res 2024; 17:1778-1795. [PMID: 39092565 DOI: 10.1002/aur.3209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Face processing relies on predictive processes driven by low spatial frequencies (LSF) that convey coarse information prior to fine information conveyed by high spatial frequencies. However, autistic individuals might have atypical predictive processes, contributing to facial processing difficulties. This may be more normalized in autistic females, who often exhibit better socio-communicational abilities than males. We hypothesized that autistic females would display a more typical coarse-to-fine processing for socio-emotional stimuli compared to autistic males. To test this hypothesis, we asked adult participants (44 autistic, 51 non-autistic) to detect fearful faces among neutral faces, filtered in two orders: from coarse-to-fine (CtF) and from fine-to-coarse (FtC). Results show lower d' values and longer reaction times for fearful detection in autism compared to non-autistic (NA) individuals, regardless of the filtering order. Both groups presented shorter P100 latency after CtF compared to FtC, and larger amplitude for N170 after FtC compared to CtF. However, autistic participants presented a reduced difference in source activity between CtF and FtC in the fusiform. There was also a more spatially spread activation pattern in autistic females compared to NA females. Finally, females had faster P100 and N170 latencies, as well as larger occipital activation for FtC sequences than males, irrespective of the group. Overall, the results do not suggest impaired predictive processes from LSF in autism despite behavioral differences in fear detection. However, they do indicate reduced brain modulation by spatial frequency in autism. In addition, the findings highlight sex differences that warrant consideration in understanding autistic females.
Collapse
Affiliation(s)
- Adeline Lacroix
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Sylvain Harquel
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, EPFL, Geneva, Switzerland
| | - Leonardo S Barbosa
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, Virginia, USA
| | - Klara Kovarski
- Sorbonne Université, Faculté des Lettres, INSPE, Paris, France
- LaPsyDÉ, Université Paris-Cité, CNRS, Paris, France
| | - Marta I Garrido
- Cognitive Neuroscience and Computational Psychiatry Lab, Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Laurent Vercueil
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Louise Kauffmann
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Marie Gomot
- Université de Tours, INSERM, Imaging Brain and Neuropsychiatry iBraiN U1253, Tours, France
| | - Martial Mermillod
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| |
Collapse
|
7
|
Hoshi H, Ishii A, Shigihara Y, Yoshikawa T. Binocularly suppressed stimuli induce brain activities related to aesthetic emotions. Front Neurosci 2024; 18:1339479. [PMID: 38855441 PMCID: PMC11159128 DOI: 10.3389/fnins.2024.1339479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction Aesthetic emotions are a class of emotions aroused by evaluating aesthetically appealing objects or events. While evolutionary aesthetics suggests the adaptive roles of these emotions, empirical assessments are lacking. Previous neuroscientific studies have demonstrated that visual stimuli carrying evolutionarily important information induce neural responses even when presented non-consciously. To examine the evolutionary importance of aesthetic emotions, we conducted a neuroscientific study using magnetoencephalography (MEG) to measure induced neural responses to non-consciously presented portrait paintings categorised as biological and non-biological and examined associations between the induced responses and aesthetic ratings. Methods MEG and pre-rating data were collected from 23 participants. The pre-rating included visual analogue scales for object saliency, facial saliency, liking, and beauty scores, in addition to 'biologi-ness,' which was used for subcategorising stimuli into biological and non-biological. The stimuli were presented non-consciously using a continuous flash suppression paradigm or consciously using binocular presentation without flashing masks, while dichotomic behavioural responses were obtained (beauty or non-beauty). Time-frequency decomposed MEG data were used for correlation analysis with pre-rating scores for each category. Results Behavioural data revealed that saliency scores of non-consciously presented stimuli influenced dichotomic responses (beauty or non-beauty). MEG data showed that non-consciously presented portrait paintings induced spatiotemporally distributed low-frequency brain activities associated with aesthetic ratings, which were distinct between the biological and non-biological categories and conscious and non-conscious conditions. Conclusion Aesthetic emotion holds evolutionary significance for humans. Neural pathways are sensitive to visual images that arouse aesthetic emotion in distinct ways for biological and non-biological categories, which are further influenced by consciousness. These differences likely reflect the diversity in mechanisms of aesthetic processing, such as processing fluency, active elaboration, and predictive processing. The aesthetic processing of non-conscious stimuli appears to be characterised by fluency-driven affective processing, while top-down regulatory processes are suppressed. This study provides the first empirical evidence supporting the evolutionary significance of aesthetic processing.
Collapse
Affiliation(s)
- Hideyuki Hoshi
- Department of Sports Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan
| | - Akira Ishii
- Department of Sports Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | | | - Takahiro Yoshikawa
- Department of Sports Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Ficco L, Li C, Kaufmann JM, Schweinberger SR, Kovács GZ. Investigating the neural effects of typicality and predictability for face and object stimuli. PLoS One 2024; 19:e0293781. [PMID: 38776350 PMCID: PMC11111078 DOI: 10.1371/journal.pone.0293781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/08/2024] [Indexed: 05/24/2024] Open
Abstract
The brain calibrates itself based on the past stimulus diet, which makes frequently observed stimuli appear as typical (as opposed to uncommon stimuli, which appear as distinctive). Based on predictive processing theory, the brain should be more "prepared" for typical exemplars, because these contain information that has been encountered frequently, allowing it to economically represent items of that category. Thus, one could ask whether predictability and typicality of visual stimuli interact, or rather act in an additive manner. We adapted the design by Egner and colleagues (2010), who used cues to induce expectations about stimulus category (face vs. chair) occurrence during an orthogonal inversion detection task. We measured BOLD responses with fMRI in 35 participants. First, distinctive stimuli always elicited stronger responses than typical ones in all ROIs, and our whole-brain directional contrasts for the effects of typicality and distinctiveness converge with previous findings. Second and importantly, we could not replicate the interaction between category and predictability reported by Egner et al. (2010), which casts doubt on whether cueing designs are ideal to elicit reliable predictability effects. Third, likely as a consequence of the lack of predictability effects, we found no interaction between predictability and typicality in any of the four tested regions (bilateral fusiform face areas, lateral occipital complexes) when considering both categories, nor in the whole brain. We discuss the issue of replicability in neuroscience and sketch an agenda for how future studies might address the same question.
Collapse
Affiliation(s)
- Linda Ficco
- Department of General Psychology and Cognitive Neuroscience, Friedrich Schiller University, Jena, Germany
- Department of Biological Psychology and Cognitive Neurosciences, Friedrich Schiller University, Jena, Germany
- International Max-Planck Research School for the Science of Human History, Jena, Germany
| | - Chenglin Li
- Department of Biological Psychology and Cognitive Neurosciences, Friedrich Schiller University, Jena, Germany
- School of Psychology, Zhejiang Normal University, Jinhua, China
| | - Jürgen M. Kaufmann
- Department of General Psychology and Cognitive Neuroscience, Friedrich Schiller University, Jena, Germany
| | - Stefan R. Schweinberger
- Department of General Psychology and Cognitive Neuroscience, Friedrich Schiller University, Jena, Germany
- International Max-Planck Research School for the Science of Human History, Jena, Germany
| | - Gyula Z. Kovács
- Department of Biological Psychology and Cognitive Neurosciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
9
|
Liuzzi MT, Harb F, Petranu K, Huggins AA, Webb EK, Fitzgerald JM, Krukowski JL, Miskovich TA, deRoon-Cassini TA, Larson CL. The Dichotomy of Threat and Deprivation as Subtypes of Childhood Maltreatment: Differential Functional Connectivity Patterns of Threat and Reward Circuits in an Adult Trauma Sample. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:227-234. [PMID: 37871776 PMCID: PMC10922968 DOI: 10.1016/j.bpsc.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Childhood maltreatment is associated with reduced activation of the nucleus accumbens, a central region in the reward network, and overactivity in the amygdala, a key region in threat processing. However, the long-lasting impact of these associations in the context of later-life stress is not well understood. The current study explored the association between childhood threat and deprivation and functional connectivity of threat and reward regions in an adult trauma sample. METHODS Trauma survivors (N = 169; mean age [SD] = 32.2 [10.3] years; female = 55.6%) were recruited from a level I trauma center. Two weeks after injury, participants completed the Childhood Trauma Questionnaire (measuring experiences of threat and deprivation) and underwent resting-state functional magnetic resonance imaging. Seed-to-voxel analyses evaluated the effect of childhood threat and deprivation on amygdala and nucleus accumbens resting-state connectivity. RESULTS Higher levels of threat were associated with increased connectivity between the right nucleus accumbens with temporal fusiform gyrus/parahippocampal gyrus and the left amygdala and the precuneus (false discovery rate-corrected p < .05). After controlling for posttraumatic symptoms 2 weeks posttrauma and lifetime trauma exposure, only the nucleus accumbens findings survived. There were no significant relationships between experiences of childhood deprivation and amygdala or nucleus accumbens connectivity. CONCLUSIONS Experiences of threat are associated with increased nucleus accumbens and amygdala connectivity, which may reflect a preparedness to detect salient and visual stimuli. This may also reflect a propensity toward dysregulated reward processing. Overall, these results suggest that childhood threat may be contributing to aberrant neural baseline reward and threat sensitivity later in life in an adult trauma sample.
Collapse
Affiliation(s)
- Michael T Liuzzi
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin.
| | - Farah Harb
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Kevin Petranu
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Ashley A Huggins
- Brain Imaging & Analysis Center, Duke University, Durham, North Carolina
| | - E Kate Webb
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts
| | | | | | | | - Terri A deRoon-Cassini
- Division of Trauma and Acute Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christine L Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| |
Collapse
|
10
|
Duell N, Perino MT, McCormick EM, Telzer EH. Differential processing of risk and reward in delinquent and non-delinquent youth. Soc Cogn Affect Neurosci 2023; 18:nsad040. [PMID: 37572094 PMCID: PMC10439709 DOI: 10.1093/scan/nsad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/06/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023] Open
Abstract
The present study examined the behavioral and neural differences in risky decision-making between delinquent (n = 23) and non-delinquent (n = 27) youth ages 13-17 years (M = 16, SD = 0.97) in relation to reward processing. While undergoing functional neuroimaging, participants completed an experimental risk task wherein they received feedback about the riskiness of their behavior in the form of facial expressions that morphed from happy to angry. Behavioral results indicated that delinquent youth took fewer risks and earned fewer rewards on the task than non-delinquent youth. Results from whole-brain analyses indicated no group differences in sensitivity to punishments (i.e. angry faces), but instead showed that delinquent youth evinced greater neural tracking of reward outcomes (i.e. cash-ins) in regions including the ventral striatum and inferior frontal gyrus. While behavioral results show that delinquent youth were more risk-averse, the neural results indicated that delinquent youth were also more reward-driven, potentially suggesting a preference for immediate rewards. Results offer important insights into differential decision-making processes between delinquent and non-delinquent youth.
Collapse
Affiliation(s)
- Natasha Duell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
- Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Michael T Perino
- Department of Psychiatry, Washington University School of Medicine in St. Louis, Missouri 63110, United States
| | - Ethan M McCormick
- Institute of Psychology, Leiden University, Leiden 2333 AK, The Netherlands
| | - Eva H Telzer
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
11
|
Doganci N, Iannotti GR, Ptak R. Task-based functional connectivity identifies two segregated networks underlying intentional action. Neuroimage 2023; 268:119866. [PMID: 36610680 DOI: 10.1016/j.neuroimage.2023.119866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
While much of motor behavior is automatic, intentional action is necessary for the selection and initiation of controlled motor acts and is thus an essential part of goal-directed behavior. Neuroimaging studies have shown that self-generated action implicates several dorsal and ventral frontoparietal areas. However, knowledge of the functional coupling between these brain regions during intentional action remains limited. We here studied brain activations and functional connectivity (FC) of thirty right-handed healthy participants performing a finger pressing task instructed to use a specific finger (externally-triggered action) or to select one of four fingers randomly (internally-generated action). Participants performed the task in alternating order either with their dominant right hand or the left hand. Consistent with previous studies, we observed stronger involvement of posterior parietal cortex and premotor regions when contrasting internally-generated with externally-triggered action. Interestingly, this contrast also revealed significant engagement of medial occipitotemporal regions including the left lingual and right fusiform gyrus. Task-based FC analysis identified increased functional coupling among frontoparietal regions as well as increased and decreased coupling between occipitotemporal regions, thus differentiating between two segregated networks. When comparing results of the dominant and nondominant hand we found less activation, but stronger connectivity for the former, suggesting increased neural efficiency when participants use their dominant hand. Taken together, our results reveal that two segregated networks that encompass the frontoparietal and occipitotemporal cortex contribute independently to intentional action.
Collapse
Affiliation(s)
- Naz Doganci
- Department of Clinical Neurosciences, Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland
| | - Giannina Rita Iannotti
- Department of Clinical Neurosciences, Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland; Department of Radiology and Medical Informatics, University Hospitals of Geneva, Switzerland; Department of Neurosurgery, University Hospitals of Geneva, Switzerland
| | - Radek Ptak
- Department of Clinical Neurosciences, Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland; Division of Neurorehabilitation, University Hospitals of Geneva, Switzerland.
| |
Collapse
|
12
|
Canoluk MU, Moors P, Goffaux V. Contributions of low- and high-level contextual mechanisms to human face perception. PLoS One 2023; 18:e0285255. [PMID: 37130144 PMCID: PMC10153715 DOI: 10.1371/journal.pone.0285255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
Contextual modulations at primary stages of visual processing depend on the strength of local input. Contextual modulations at high-level stages of (face) processing show a similar dependence to local input strength. Namely, the discriminability of a facial feature determines the amount of influence of the face context on that feature. How high-level contextual modulations emerge from primary mechanisms is unclear due to the scarcity of empirical research systematically addressing the functional link between the two. We tested (62) young adults' ability to process local input independent of the context using contrast detection and (upright and inverted) morphed facial feature matching tasks. We first investigated contextual modulation magnitudes across tasks to address their shared variance. A second analysis focused on the profile of performance across contextual conditions. In upright eye matching and contrast detection tasks, contextual modulations only correlated at the level of their profile (averaged Fisher-Z transformed r = 1.18, BF10 > 100), but not magnitude (r = .15, BF10 = .61), suggesting the functional independence but similar working principles of the mechanisms involved. Both the profile (averaged Fisher-Z transformed r = .32, BF10 = 9.7) and magnitude (r = .28, BF10 = 4.58) of the contextual modulations correlated between inverted eye matching and contrast detection tasks. Our results suggest that non-face-specialized high-level contextual mechanisms (inverted faces) work in connection to primary contextual mechanisms, but that the engagement of face-specialized mechanisms for upright faces obscures this connection. Such combined study of low- and high-level contextual modulations sheds new light on the functional relationship between different levels of the visual processing hierarchy, and thus on its functional organization.
Collapse
Affiliation(s)
- Mehmet Umut Canoluk
- Research Institute for Psychological Science (IPSY), UCLouvain, Louvain-la-Neuve, Belgium
| | - Pieter Moors
- Department of Brain and Cognition, Laboratory of Experimental Psychology, KU Leuven, Leuven, Belgium
| | - Valerie Goffaux
- Research Institute for Psychological Science (IPSY), UCLouvain, Louvain-la-Neuve, Belgium
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Institute of Neuroscience (IoNS), UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Amlerova J, Laczó J, Nedelska Z, Laczó M, Vyhnálek M, Zhang B, Sheardova K, Angelucci F, Andel R, Hort J. Emotional prosody recognition is impaired in Alzheimer’s disease. Alzheimers Res Ther 2022; 14:50. [PMID: 35382868 PMCID: PMC8985328 DOI: 10.1186/s13195-022-00989-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 03/10/2022] [Indexed: 11/17/2022]
Abstract
Background The ability to understand emotions is often disturbed in patients with cognitive impairments. Right temporal lobe structures play a crucial role in emotional processing, especially the amygdala, temporal pole (TP), superior temporal sulcus (STS), and anterior cingulate (AC). Those regions are affected in early stages of Alzheimer´s disease (AD). The aim of our study was to evaluate emotional prosody recognition (EPR) in participants with amnestic mild cognitive impairment (aMCI) due to AD, AD dementia patients, and cognitively healthy controls and to measure volumes or thickness of the brain structures involved in this process. In addition, we correlated EPR score to cognitive impairment as measured by MMSE. The receiver operating characteristic (ROC) analysis was used to assess the ability of EPR tests to differentiate the control group from the aMCI and dementia groups. Methods Eighty-nine participants from the Czech Brain Aging Study: 43 aMCI due to AD, 36 AD dementia, and 23 controls, underwent Prosody Emotional Recognition Test. This experimental test included the playback of 25 sentences with neutral meaning each recorded with different emotional prosody (happiness, sadness, fear, disgust, anger). Volume of the amygdala and thickness of the TP, STS, and rostral and caudal parts of AC (RAC and CAC) were measured using FreeSurfer algorithm software. ANCOVA was used to evaluate EPR score differences. ROC analysis was used to assess the ability of EPR test to differentiate the control group from the aMCI and dementia groups. The Pearson’s correlation coefficients were calculated to explore relationships between EPR scores, structural brain measures, and MMSE. Results EPR was lower in the dementia and aMCI groups compared with controls. EPR total score had high sensitivity in distinguishing between not only controls and patients, but also controls and aMCI, controls and dementia, and aMCI and dementia. EPR decreased with disease severity as it correlated with MMSE. There was a significant positive correlation of EPR and thickness of the right TP, STS, and bilateral RAC. Conclusions EPR is impaired in AD dementia and aMCI due to AD. These data suggest that the broad range of AD symptoms may include specific deficits in the emotional sphere which further complicate the patient’s quality of life.
Collapse
|
14
|
Palamarchuk IS, Vaillancourt T. Integrative Brain Dynamics in Childhood Bullying Victimization: Cognitive and Emotional Convergence Associated With Stress Psychopathology. Front Integr Neurosci 2022; 16:782154. [PMID: 35573445 PMCID: PMC9097078 DOI: 10.3389/fnint.2022.782154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Bullying victimization is a form of psychological stress that is associated with poor outcomes in the areas of mental health and learning. Although the emotional maladjustment and memory impairment following interpersonal stress are well documented, the mechanisms of complex cerebral dysfunctions have neither been outlined nor studied in depth in the context of childhood bullying victimization. As a contribution to the cross-disciplinary field of developmental psychology and neuroscience, we review the neuropathophysiology of early life stress, as well as general psychological stress to synthesize the data and clarify the versatile dynamics within neuronal networks linked to bullying victimization. The stress-induced neuropsychological cascade and associated cerebral networks with a focus on cognitive and emotional convergence are described. The main findings are that stress-evoked neuroendocrine reactivity relates to neuromodulation and limbic dysregulation that hinder emotion processing and executive functioning such as semantic cognition, cognitive flexibility, and learning. Developmental aspects and interacting neural mechanisms linked to distressed cognitive and emotional processing are pinpointed and potential theory-of-mind nuances in targets of bullying are presented. The results show that childhood stress psychopathology is associated with a complex interplay where the major role belongs to, but is not limited to, the amygdala, fusiform gyrus, insula, striatum, and prefrontal cortex. This interplay contributes to the sensitivity toward facial expressions, poor cognitive reasoning, and distress that affect behavioral modulation and emotion regulation. We integrate the data on major brain dynamics in stress neuroactivity that can be associated with childhood psychopathology to help inform future studies that are focused on the treatment and prevention of psychiatric disorders and learning problems in bullied children and adolescents.
Collapse
|
15
|
Coundouris SP, Henry JD, Lehn AC. Moving beyond emotions in Parkinson's disease. BRITISH JOURNAL OF CLINICAL PSYCHOLOGY 2022; 61:647-665. [PMID: 35048398 DOI: 10.1111/bjc.12354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Emotion recognition is a fundamental neurocognitive capacity that is a critical predictor of interpersonal function and, in turn, mental health. Although people with Parkinson's disease (PD) often exhibit difficulties recognizing emotions, almost all studies to date have focused on basic emotions (happiness, sadness, anger, surprise, fear, and disgust), with little consideration of how more cognitively complex self-conscious emotions such as contempt, embarrassment, and pride might also be affected. Further, the few studies that have considered self-conscious emotions have relied on high intensity, static stimuli. The aim of the present study was to therefore provide the first examination of how self-conscious emotion recognition is affected by PD using a dynamic, dual-intensity measure that more closely captures how emotion recognition judgements are made in daily life. METHOD People with PD (n = 42) and neurotypical controls (n = 42) completed a validated measure of self-conscious facial emotion recognition. For comparative purposes, in addition to a broader clinical test battery, both groups also completed a traditional static emotion recognition measure and a measure of self-conscious emotional experience. RESULTS Relative to controls, the PD group did not differ in their capacity to recognize basic emotions but were impaired in their recognition of self-conscious emotions. These difficulties were associated with elevated negative affect and poorer subjective well-being. CONCLUSIONS Difficulties recognizing self-conscious emotions may be more problematic for people with PD than difficulties recognizing basic ones, with implications for interventions focused on helping people with this disorder develop and maintain strong social networks. PRACTITIONER POINTS This is the first direct investigation into how the recognition of self-conscious emotion is affected in Parkinson's disease using dynamic, dual-intensity stimuli, thus providing an important extension to prior literature that has focused solely on basic emotion recognition and/or relied on static, high-intensity stimuli. Results revealed preserved basic facial emotional recognition coexisting with impairment in all three self-conscious emotions assessed, therefore suggesting that the latter stimuli type may function as a more sensitive indicator of Parkinson's disease-related social cognitive impairment. Problems with self-conscious emotion recognition in people with Parkinson's disease were associated with poorer broader subjective well-being and increased negative affect. This aligns with the broader literature linking interpersonal difficulties with poorer clinical outcomes in this cohort.
Collapse
Affiliation(s)
- Sarah P Coundouris
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Julie D Henry
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Alexander C Lehn
- Department of Neurology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.,The University of Queensland Princess Alexandra Hospital Clinical School, Woolloongabba, Queensland, Australia
| |
Collapse
|
16
|
Eye Direction Detection and Perception as Premises of a Social Brain: A Narrative Review of Behavioral and Neural Data. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 22:1-20. [PMID: 34642895 DOI: 10.3758/s13415-021-00959-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 11/08/2022]
Abstract
The eyes and the gaze are important stimuli for social interaction in humans. Impaired recognition of facial identity, facial emotions, and inference of the intentions of others may result from difficulties in extracting information relevant to the eye region, mainly the direction of gaze. Therefore, a review of these data is of interest. Behavioral data demonstrating the importance of the eye region and how humans respond to gaze direction are reviewed narratively, and several theoretical models on how visual information on gaze is processed are discussed to propose a unified hypothesis. Several issues that have not yet been investigated are identified. The authors tentatively suggest experiments that might help progress research in this area. The neural aspects are subsequently reviewed to best describe the low-level and higher-level visual information processing stages in the targeted subcortical and cortical areas. A specific neural network is proposed on the basis of the literature. Various gray areas, such as the temporality of the processing of visual information, the question of salience priority, and the coordination between the two hemispheres, remain unclear and require further investigations. Finally, disordered gaze direction detection mechanisms and their consequences on social cognition and behavior are discussed as key deficiencies in several conditions, such as autism spectrum disorder, 22q11.2 deletion, schizophrenia, and social anxiety disorder. This narrative review provides significant additional data showing that the detection and perception of someone's gaze is an essential part of the development of our social brain.
Collapse
|
17
|
Alzueta E, Kessel D, Capilla A. The upside-down self: One's own face recognition is affected by inversion. Psychophysiology 2021; 58:e13919. [PMID: 34383323 DOI: 10.1111/psyp.13919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/18/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
One's own face is recognized more efficiently than any other face, although the neural mechanisms underlying this phenomenon remain poorly understood. Considering the extensive visual experience that we have with our own face, some authors have proposed that self-face recognition involves a more analytical perceptual strategy (i.e., based on face features) than other familiar faces, which are commonly processed holistically (i.e., as a whole). However, this hypothesis has not yet been tested with brain activity data. In the present study, we employed an inversion paradigm combined with event-related potential (ERP) recordings to investigate whether the self-face is processed more analytically. Sixteen healthy participants were asked to identify their own face and a familiar face regardless of its orientation, which could either be upright or inverted. ERP analysis revealed an enhanced amplitude and a delayed latency for the N170 component when faces were presented in an inverted orientation. Critically, both the self and a familiar face were equally vulnerable to the inversion effect, suggesting that the self-face is not processed more analytically than a familiar face. In addition, we replicated the recent finding that the attention-related P200 component is a specific neural index of self-face recognition. Overall, our results suggest that the advantage for self-face processing might be better explained by the engagement of self-related attentional mechanisms than by the use of a more analytical visuoperceptual strategy.
Collapse
Affiliation(s)
- Elisabet Alzueta
- Departamento de Psicología Biológica y de la Salud, Universidad Autónoma de Madrid, Madrid, Spain.,Center for Health Sciences, SRI International, Menlo Park, California, USA
| | - Dominique Kessel
- Departamento de Psicología Biológica y de la Salud, Universidad Autónoma de Madrid, Madrid, Spain
| | - Almudena Capilla
- Departamento de Psicología Biológica y de la Salud, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
18
|
Haatveit B, Mørch-Johnsen L, Alnæs D, Engen MJ, Lyngstad SH, Færden A, Agartz I, Ueland T, Melle I. Divergent relationship between brain structure and cognitive functioning in patients with prominent negative symptomatology. Psychiatry Res Neuroimaging 2021; 307:111233. [PMID: 33340940 DOI: 10.1016/j.pscychresns.2020.111233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022]
Abstract
Investigating commonalities in underlying pathology of cognitive dysfunction and negative symptoms in schizophrenia is important, as both are core features of the disorder and linked to brain structure abnormalities. We aimed to explore the relationship between cognition, negative symptoms and brain structure in schizophrenia. A total of 225 patients with Schizophrenia spectrum disorder and 283 healthy controls from the Norwegian Thematically Organized Psychosis (TOP) cohort were included in this study. Patients were categorized into four patient subgroups based on severity of negative symptoms: no-negative- (NNS), threshold-negative- (TNS), moderate-negative- (MNS), and prominent-negative (PNS) subgroups. MRI measures of brain volume, mean cortical thickness and surface area from pre-selected brain regions were tested for relationships with general cognitive ability and negative symptom subgroups. Positive associations were found between brain volume, thickness, surface area and cognition in the dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), fusiform gyrus (FG) and the left anterior cingulate cortex (ACC), but with no differences between subgroups. In the PNS subgroup, cognition was conversely negatively associated with brain volume in the left ACC. These results indicate that patients with prominent negative symptoms have different associations between cognition and brain structure in the left ACC, which may point to abnormal neurodevelopment.
Collapse
Affiliation(s)
- Beathe Haatveit
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Lynn Mørch-Johnsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Ostfold Hospital Trust, Graalum, Norway
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Magnus Johan Engen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Siv Hege Lyngstad
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ann Færden
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Acute Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, 0319 Oslo, Norway; Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Torill Ueland
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Nucci C, Garaci F, Altobelli S, Di Ciò F, Martucci A, Aiello F, Lanzafame S, Di Giuliano F, Picchi E, Minosse S, Cesareo M, Guerrisi MG, Floris R, Passamonti L, Toschi N. Diffusional Kurtosis Imaging of White Matter Degeneration in Glaucoma. J Clin Med 2020; 9:jcm9103122. [PMID: 32992559 PMCID: PMC7600134 DOI: 10.3390/jcm9103122] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is an optic neuropathy characterized by death of retinal ganglion cells and loss of their axons, progressively leading to blindness. Recently, glaucoma has been conceptualized as a more diffuse neurodegenerative disorder involving the optic nerve and also the entire brain. Consistently, previous studies have used a variety of magnetic resonance imaging (MRI) techniques and described widespread changes in the grey and white matter of patients. Diffusion kurtosis imaging (DKI) provides additional information as compared with diffusion tensor imaging (DTI), and consistently provides higher sensitivity to early microstructural white matter modification. In this study, we employ DKI to evaluate differences among healthy controls and a mixed population of primary open angle glaucoma patients ranging from stage I to V according to Hodapp–Parrish–Anderson visual field impairment classification. To this end, a cohort of patients affected by primary open angle glaucoma (n = 23) and a group of healthy volunteers (n = 15) were prospectively enrolled and underwent an ophthalmological evaluation followed by magnetic resonance imaging (MRI) using a 3T MR scanner. After estimating both DTI indices, whole-brain, voxel-wise statistical comparisons were performed in white matter using Tract-Based Spatial Statistics (TBSS). We found widespread differences in several white matter tracts in patients with glaucoma relative to controls in several metrics (mean kurtosis, kurtosis anisotropy, radial kurtosis, and fractional anisotropy) which involved localization well beyond the visual pathways, and involved cognitive, motor, face recognition, and orientation functions amongst others. Our findings lend further support to a causal brain involvement in glaucoma and offer alternative explanations for a number of multidomain impairments often observed in glaucoma patients.
Collapse
Affiliation(s)
- Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (F.A.); (M.C.)
- Correspondence: (C.N.); (F.G.); (L.P.); Tel.: +39-06-7259-6145 (C.N.); +39-06-2090-2471 (F.G.); +44-01223-330293 (L.P.)
| | - Francesco Garaci
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
- San Raffaele Cassino, 03043 Frosinone, Italy
- Correspondence: (C.N.); (F.G.); (L.P.); Tel.: +39-06-7259-6145 (C.N.); +39-06-2090-2471 (F.G.); +44-01223-330293 (L.P.)
| | - Simone Altobelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.A.); (F.D.C.); (S.L.); (E.P.); (S.M.); (M.G.G.); (N.T.)
| | - Francesco Di Ciò
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.A.); (F.D.C.); (S.L.); (E.P.); (S.M.); (M.G.G.); (N.T.)
| | - Alessio Martucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (F.A.); (M.C.)
| | - Francesco Aiello
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (F.A.); (M.C.)
| | - Simona Lanzafame
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.A.); (F.D.C.); (S.L.); (E.P.); (S.M.); (M.G.G.); (N.T.)
| | - Francesca Di Giuliano
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Eliseo Picchi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.A.); (F.D.C.); (S.L.); (E.P.); (S.M.); (M.G.G.); (N.T.)
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Silvia Minosse
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.A.); (F.D.C.); (S.L.); (E.P.); (S.M.); (M.G.G.); (N.T.)
| | - Massimo Cesareo
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.M.); (F.A.); (M.C.)
| | - Maria Giovanna Guerrisi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.A.); (F.D.C.); (S.L.); (E.P.); (S.M.); (M.G.G.); (N.T.)
| | - Roberto Floris
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Luca Passamonti
- Institute of Bioimaging and Molecular Physiology, National Research Council, 20090 Milano, Italy
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Correspondence: (C.N.); (F.G.); (L.P.); Tel.: +39-06-7259-6145 (C.N.); +39-06-2090-2471 (F.G.); +44-01223-330293 (L.P.)
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (S.A.); (F.D.C.); (S.L.); (E.P.); (S.M.); (M.G.G.); (N.T.)
- Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, 149 13th Street, Boston, MA 02129, USA
| |
Collapse
|
20
|
The Effects of Attentional Focus on Brain Function During a Gross Motor Task. J Sport Rehabil 2019; 29:441-447. [PMID: 31629324 DOI: 10.1123/jsr.2018-0026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 01/23/2019] [Accepted: 02/06/2019] [Indexed: 11/18/2022]
Abstract
CONTEXT Although the beneficial effects of using an external focus of attention are well documented in attainment and performance of movement execution, neural mechanisms underlying external focus' benefits are mostly unknown. OBJECTIVE To assess brain function during a lower-extremity gross motor movement while manipulating an internal and external focus of attention. DESIGN Cross-over study. SETTING Neuroimaging center Participants: A total of 10 healthy subjects (5 males and 5 females) Intervention: Participants completed external and internal focus of attention unilateral left 45° knee extension/flexion movements at a rate of 1.2 Hz laying supine in a magnetic resonance imaging scanner for 4 blocks of 30 seconds interspersed with 30-second rest blocks. During the internal condition, participants were instructed to "squeeze their quadriceps." During the external condition, participants were instructed to "focus on a target" positioned above their tibia. MAIN OUTCOME MEASURES T1 brain structural imaging was performed for registration of the functional data. For each condition, 3T functional magnetic resonance imaging blood oxygenation level dependent data representing 90 whole-brain volumes were acquired. RESULTS During the external relative to internal condition, increased activation was detected in the right occipital pole, cuneal cortex, anterior portion of the lingual gyrus, and intracalcarine cortex (Zmax = 4.5-6.2, P < .001). During the internal relative to external condition, increased activation was detected in the left primary motor cortex, left supplementary motor cortex, and cerebellum (Zmax = 3.4-3.5, P < .001). CONCLUSIONS Current results suggest that an external focus directed toward a visual target produces more brain activity in regions associated with vision and ventral streaming pathways, whereas an internal focus manipulated through instruction increases activation in brain regions that are responsible for motor control. Results from this study serve as baseline information for future prevention and rehabilitation investigations of how manipulating focus of attention can constructively affect neuroplasticity during training and rehabilitation.
Collapse
|
21
|
Kätsyri J, de Gelder B, de Borst AW. Amygdala responds to direct gaze in real but not in computer-generated faces. Neuroimage 2019; 204:116216. [PMID: 31553928 DOI: 10.1016/j.neuroimage.2019.116216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/22/2019] [Accepted: 09/19/2019] [Indexed: 10/25/2022] Open
Abstract
Computer-generated (CG) faces are an important visual interface for human-computer interaction in social contexts. Here we investigated whether the human brain processes emotion and gaze similarly in real and carefully matched CG faces. Real faces evoked greater responses in the fusiform face area than CG faces, particularly for fearful expressions. Emotional (angry and fearful) facial expressions evoked similar activations in the amygdala in real and CG faces. Direct as compared with averted gaze elicited greater fMRI responses in the amygdala regardless of facial expression but only for real and not for CG faces. We observed an interaction effect between gaze and emotion (i.e., the shared signal effect) in the right posterior temporal sulcus and other regions, but not in the amygdala, and we found no evidence for different shared signal effects in real and CG faces. Taken together, the present findings highlight similarities (emotional processing in the amygdala) and differences (overall processing in the fusiform face area, gaze processing in the amygdala) in the neural processing of real and CG faces.
Collapse
Affiliation(s)
- Jari Kätsyri
- Brain and Emotion Laboratory, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Computer Science, Aalto University, Espoo, Finland.
| | - Beatrice de Gelder
- Brain and Emotion Laboratory, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Computer Science, University College London, London, United Kingdom
| | - Aline W de Borst
- UCL Interaction Centre, University College London, London, United Kingdom
| |
Collapse
|
22
|
Thye MD, Murdaugh DL, Kana RK. Brain Mechanisms Underlying Reading the Mind from Eyes, Voice, and Actions. Neuroscience 2018; 374:172-186. [DOI: 10.1016/j.neuroscience.2018.01.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 01/06/2023]
|
23
|
Cygan HB, Okuniewska H, Jednoróg K, Marchewka A, Wypych M, Nowicka A. Face processing in a case of high functioning autism with developmental prosopagnosia. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
|
25
|
fNIRS can robustly measure brain activity during memory encoding and retrieval in healthy subjects. Sci Rep 2017; 7:9533. [PMID: 28842618 PMCID: PMC5572719 DOI: 10.1038/s41598-017-09868-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/31/2017] [Indexed: 11/17/2022] Open
Abstract
Early intervention in Alzheimer’s Disease (AD) requires novel biomarkers that can capture changes in brain activity at an early stage. Current AD biomarkers are expensive and/or invasive and therefore unsuitable for use as screening tools, but a non-invasive, inexpensive, easily accessible screening method could be useful in both clinical and research settings. Prior studies suggest that especially paired-associate learning tasks may be useful in detecting the earliest memory impairment in AD. Here, we investigated the utility of functional Near Infrared Spectroscopy in measuring brain activity from prefrontal, parietal and temporal cortices of healthy adults (n = 19) during memory encoding and retrieval under a face-name paired-associate learning task. Our findings demonstrate that encoding of novel face-name pairs compared to baseline as well as compared to repeated face-name pairs resulted in significant activation in left dorsolateral prefrontal cortex while recalling resulted in activation in dorsolateral prefrontal cortex bilaterally. Moreover, brain response to recalling was significantly higher than encoding in medial, superior and middle frontal cortices for novel faces. Overall, this study shows that fNIRS can reliably measure cortical brain activation during a face-name paired-associate learning task. Future work will include similar measurements in populations with progressing memory deficits.
Collapse
|
26
|
Del Bene VA, Foxe JJ, Ross LA, Krakowski MI, Czobor P, De Sanctis P. Neuroanatomical Abnormalities in Violent Individuals with and without a Diagnosis of Schizophrenia. PLoS One 2016; 11:e0168100. [PMID: 28030584 PMCID: PMC5193361 DOI: 10.1371/journal.pone.0168100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 11/18/2016] [Indexed: 01/17/2023] Open
Abstract
Several structural brain abnormalities have been associated with aggression in patients with schizophrenia. However, little is known about shared and distinct abnormalities underlying aggression in these subjects and non-psychotic violent individuals. We applied a region-of-interest volumetric analysis of the amygdala, hippocampus, and thalamus bilaterally, as well as whole brain and ventricular volumes to investigate violent (n = 37) and non-violent chronic patients (n = 26) with schizophrenia, non-psychotic violent (n = 24) as well as healthy control subjects (n = 24). Shared and distinct volumetric abnormalities were probed by analysis of variance with the factors violence (non-violent versus violent) and diagnosis (non-psychotic versus psychotic), adjusted for substance abuse, age, academic achievement and negative psychotic symptoms. Patients showed elevated vCSF volume, smaller left hippocampus and smaller left thalamus volumes. This was particularly the case for non-violent individuals diagnosed with schizophrenia. Furthermore, patients had reduction in right thalamus size. With regard to left amygdala, we found an interaction between violence and diagnosis. More specifically, we report a double dissociation with smaller amygdala size linked to violence in non-psychotic individuals, while for psychotic patients smaller size was linked to non-violence. Importantly, the double dissociation appeared to be mostly driven by substance abuse. Overall, we found widespread morphometric abnormalities in subcortical regions in schizophrenia. No evidence for shared volumetric abnormalities in individuals with a history of violence was found. Finally, left amygdala abnormalities in non-psychotic violent individuals were largely accounted for by substance abuse. This might be an indication that the association between amygdala reduction and violence is mediated by substance abuse. Our results indicate the importance of structural abnormalities in aggressive individuals.
Collapse
Affiliation(s)
- Victor A. Del Bene
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory Children’s Evaluation and Rehabilitation Center (CERC) Departments of Pediatrics and Neuroscience Albert Einstein College of Medicine Van Etten, New York, United States of America
- Ferkauf Graduate School of Psychology Albert Einstein College of Medicine Bronx, New York, United States of America
| | - John J. Foxe
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory Children’s Evaluation and Rehabilitation Center (CERC) Departments of Pediatrics and Neuroscience Albert Einstein College of Medicine Van Etten, New York, United States of America
- The Nathan S. Kline Institute for Psychiatric Research Orangeburg, NY, United States of America
- The Ernest J. Del Monte Institute for Neuromedicine Department of Neurobiology and Anatomy University of Rochester Medical Center Rochester, New York, United States of America
| | - Lars A. Ross
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory Children’s Evaluation and Rehabilitation Center (CERC) Departments of Pediatrics and Neuroscience Albert Einstein College of Medicine Van Etten, New York, United States of America
| | - Menahem I. Krakowski
- The Nathan S. Kline Institute for Psychiatric Research Orangeburg, NY, United States of America
- New York University Langone Medical Center Department of Psychiatry New York, New York, United States of America
| | - Pal Czobor
- Departments of Psychiatry and Psychotherapy Semmelweis University ÜllőiWay 26, Budapest, Hungary
| | - Pierfilippo De Sanctis
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory Children’s Evaluation and Rehabilitation Center (CERC) Departments of Pediatrics and Neuroscience Albert Einstein College of Medicine Van Etten, New York, United States of America
- The Nathan S. Kline Institute for Psychiatric Research Orangeburg, NY, United States of America
- Center for Psychiatric Neuroscience The Feinstein Institute for Medical Research Manhasset, NY, United States of America
- Department of Psychiatry Hofstra Northwell School of Medicine Zucker Hillside Hospital Glen Oaks, NY, United States of America
| |
Collapse
|