1
|
Xie X, Yang J, Du H, Chen J, Sanganyado E, Gong Y, Du H, Chen W, Liu Z, Liu X. Golgi fucosyltransferase 1 reveals its important role in α-1,4-fucose modification of N-glycan in CRISPR/Cas9 diatom Phaeodactylum tricornutum. Microb Cell Fact 2023; 22:6. [PMID: 36611199 PMCID: PMC9826595 DOI: 10.1186/s12934-022-02000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/17/2022] [Indexed: 01/09/2023] Open
Abstract
Phaeodactylum tricornutum (Pt) is a critical microbial cell factory to produce a wide spectrum of marketable products including recombinant biopharmaceutical N-glycoproteins. N-glycosylation modification of proteins is important for their activity, stability, and half-life, especially some special modifications, such as fucose-modification by fucosyltransferase (FucT). Three PtFucTs were annotated in the genome of P. tricornutum, PtFucT1 was located on the medial/trans-Golgi apparatus and PtFucT2-3 in the plastid stroma. Algal growth, biomass and photosynthesis efficiency were significantly inhibited in a knockout mutant of PtFucT1 (PtFucT1-KO). PtFucT1 played a role in non-core fucose modification of N-glycans. The knockout of PtFucT1 might affect the activity of PtGnTI in the complex and change the complex N-glycan to mannose type N-glycan. The study provided critical information for understanding the mechanism of protein N-glycosylation modification and using microalgae as an alternative ecofriendly cell factory to produce biopharmaceuticals.
Collapse
Affiliation(s)
- Xihui Xie
- grid.263451.70000 0000 9927 110XGuangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Sciences, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, 515063 Guangdong China
| | - Jianchao Yang
- grid.495347.8Yantai Academy of Agricultural Sciences, Yantai, 265500 Shandong China
| | - Hong Du
- grid.263451.70000 0000 9927 110XGuangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Sciences, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, 515063 Guangdong China
| | - Jichen Chen
- grid.263451.70000 0000 9927 110XGuangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Sciences, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, 515063 Guangdong China
| | - Edmond Sanganyado
- grid.263451.70000 0000 9927 110XGuangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Sciences, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, 515063 Guangdong China
| | - Yangmin Gong
- grid.263451.70000 0000 9927 110XGuangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Sciences, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, 515063 Guangdong China
| | - Hua Du
- grid.263451.70000 0000 9927 110XGuangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Sciences, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, 515063 Guangdong China
| | - Weizhou Chen
- grid.263451.70000 0000 9927 110XGuangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Sciences, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, 515063 Guangdong China
| | - Zhengyi Liu
- grid.9227.e0000000119573309Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003 Shandong China
| | - Xiaojuan Liu
- grid.263451.70000 0000 9927 110XGuangdong Provincial Key Laboratory of Marine Biotechnology, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of Marine Sciences, STU-UNIVPM Joint Algal Research Center, College of Sciences, Shantou University, Shantou, 515063 Guangdong China
| |
Collapse
|
2
|
Sanchez-Arcos C, Paris D, Mazzella V, Mutalipassi M, Costantini M, Buia MC, von Elert E, Cutignano A, Zupo V. Responses of the Macroalga Ulva prolifera Müller to Ocean Acidification Revealed by Complementary NMR- and MS-Based Omics Approaches. Mar Drugs 2022; 20:md20120743. [PMID: 36547890 PMCID: PMC9783899 DOI: 10.3390/md20120743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Ocean acidification (OA) is a dramatic perturbation of seawater environments due to increasing anthropogenic emissions of CO2. Several studies indicated that OA frequently induces marine biota stress and a reduction of biodiversity. Here, we adopted the macroalga Ulva prolifera as a model and applied a complementary multi-omics approach to investigate the metabolic profiles under normal and acidified conditions. Our results show that U. prolifera grows at higher rates in acidified environments. Consistently, we observed lower sucrose and phosphocreatine concentrations in response to a higher demand of energy for growth and a higher availability of essential amino acids, likely related to increased protein biosynthesis. In addition, pathways leading to signaling and deterrent compounds appeared perturbed. Finally, a remarkable shift was observed here for the first time in the fatty acid composition of triglycerides, with a decrease in the relative abundance of PUFAs towards an appreciable increase of palmitic acid, thus suggesting a remodeling in lipid biosynthesis. Overall, our studies revealed modulation of several biosynthetic pathways under OA conditions in which, besides the possible effects on the marine ecosystem, the metabolic changes of the alga should be taken into account considering its potential nutraceutical applications.
Collapse
Affiliation(s)
- Carlos Sanchez-Arcos
- Institute for Zoology, Cologne Biocenter University of Cologne, 50674 Köln, Germany
| | - Debora Paris
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), 80078 Pozzuoli, Italy
| | - Valerio Mazzella
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Ischia Marine Center, 80077 Ischia, Italy
| | - Mirko Mutalipassi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, 87071 Amendolara, Italy
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Maria Cristina Buia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Ischia Marine Center, 80077 Ischia, Italy
| | - Eric von Elert
- Institute for Zoology, Cologne Biocenter University of Cologne, 50674 Köln, Germany
| | - Adele Cutignano
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), 80078 Pozzuoli, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
- Correspondence: (A.C.); (V.Z.); Tel.: +39-081-8675313 (A.C.); +39-081-5833503 (V.Z.)
| | - Valerio Zupo
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80077 Ischia, Italy
- Correspondence: (A.C.); (V.Z.); Tel.: +39-081-8675313 (A.C.); +39-081-5833503 (V.Z.)
| |
Collapse
|
3
|
Environmental nitrogen and phosphorus nutrient variability triggers intracellular resource reallocation in Gracilariopsis lemaneiformis (Rhodophyta). ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
4
|
Characterization of curly branch of Gracilariopsis lemaneiformis (Rhodophyta) at morphological, physiological, and molecular levels. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Wang W, Fang H, Aslam M, Du H, Chen J, Luo H, Chen W, Liu X. MYB gene family in the diatom Phaeodactylum tricornutum revealing their potential functions in the adaption to nitrogen deficiency and diurnal cycle. JOURNAL OF PHYCOLOGY 2022; 58:121-132. [PMID: 34634129 DOI: 10.1111/jpy.13217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/19/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The MYB transcription factor (TF) family is one of the largest and most important TF families, regulating the growth and response of microalgae to stress. However, the gene structure and characteristics of Phaeodactylum tricornutum MYB TFs, and their functions under nitrogen deficiency, have not been explored yet. To identify all P. tricornutum MYB (PtMYB) genes, the MYB gene family was analyzed at the genome-wide level in this study. A total ofm26 PtMYB genes were identified from the genome of P. tricornutum. These PtMYB genes were divided into 5 subfamilies: 5R-MYB, 4R-MYB, R2R3-MYB, R1R2R3-MYB, and MYB-related proteins. Phylogenetical motif and gene structure analyses of MYB genes indicated that the number and proportion of MYB TFs were species-specific, and MYB genes exhibited a lot of duplication events from microalgae to higher plants. Furthermore, the differentially expressed patterns of all 26 PtMYB TFs implied that PtMYB genes might have functional specificity under nitrogen deficiency. Homology analysis of MYB genes revealed that PtMYB3, PtMYB15, and PtMYB21 might play important roles in the regulation of the diurnal cycle and response to nitrogen stress in P. tricornutum. PtMYB3, PtMYB15, and PtMYB21 genes might be used as potential candidate genes for further studying the regulatory mechanisms of P. tricornutum under nitrogen deficiency. This work provides an important foundation for the future research of the potential functions of PtMYB genes and its diurnal regulatory mechanisms under nitrogen deficiency.
Collapse
Affiliation(s)
- Wanna Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Hao Fang
- Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Muhammad Aslam
- Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Faculty of Marine Sciences, Water and Marine Sciences, Lasbela University of Agriculture, Uthal, Pakistan
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Jichen Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Haodong Luo
- Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Weizhou Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology and STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
6
|
Xie X, Du H, Chen J, Aslam M, Wang W, Chen W, Li P, Du H, Liu X. Global Profiling of N-Glycoproteins and N-Glycans in the Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2021; 12:779307. [PMID: 34925422 PMCID: PMC8678454 DOI: 10.3389/fpls.2021.779307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/05/2021] [Indexed: 05/04/2023]
Abstract
N-glycosylation is an important posttranslational modification in all eukaryotes, but little is known about the N-glycoproteins and N-glycans in microalgae. Here, N-glycoproteomic and N-glycomic approaches were used to unveil the N-glycoproteins and N-glycans in the model diatom Phaeodactylum tricornutum. In total, 863 different N-glycopeptides corresponding to 639 N-glycoproteins were identified from P. tricornutum. These N-glycoproteins participated in a variety of important metabolic pathways in P. tricornutum. Twelve proteins participating in the N-glycosylation pathway were identified as N-glycoproteins, indicating that the N-glycosylation of these proteins might be important for the protein N-glycosylation pathway. Subsequently, 69 N-glycans corresponding to 59 N-glycoproteins were identified and classified into high mannose and hybrid type N-glycans. High mannose type N-glycans contained four different classes, such as Man-5, Man-7, Man-9, and Man-10 with a terminal glucose residue. Hybrid type N-glycan harbored Man-4 with a terminal GlcNAc residue. The identification of N-glycosylation on nascent proteins expanded our understanding of this modification at a N-glycoproteomic scale, the analysis of N-glycan structures updated the N-glycan database in microalgae. The results obtained from this study facilitate the elucidation of the precise function of these N-glycoproteins and are beneficial for future designing the microalga to produce the functional humanized biopharmaceutical N-glycoproteins for the clinical therapeutics.
Collapse
Affiliation(s)
- Xihui Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Jichen Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Muhammad Aslam
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water & Marine Sciences, Uthal, Pakistan
| | - Wanna Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Weizhou Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Hua Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
7
|
Ma Y, He B, Wang X, He L, Niu J, Huan L, Lu X, Xie X, Wang G. Differential proteomic analysis by iTRAQ reveals the growth mechanism in Pyropia yezoensis mutant. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Zhang P, Xin Y, Zhong X, Yan Z, Jin Y, Yan M, Liu T. Integrated effects of Ulva prolifera bloom and decay on nutrients inventory and cycling in marginal sea of China. CHEMOSPHERE 2021; 264:128389. [PMID: 33038757 DOI: 10.1016/j.chemosphere.2020.128389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Ulva prolifera blooms occur annually in the Yellow Sea. Most studies focus on how U. prolifera blooming is influenced by nitrogen chemical forms and concentrations, while little concern goes to how U. prolifera bloom-decay cycle would impact local seawater nutrients structure. Therefore, we use 15N-labeled NO3 tracers and transcriptome analysis to determine N uptake, metabolism, and interconversion during U. prolifera growth and decay, so that we can quantify the conversions rate and fluxes of different nitrogen chemical forms. U. prolifera absorbes 17.37 μmol g-1·d-1 NO3-N during growth. NO3-N predominates (73.75-92.15%) in the dissolved inorganic nitrogen (DIN) in U. prolifera. During decay, NH4-N accountes for 60.87-92.13% of the in-cell DIN. The decomposing U. prolifera releases considerable amounts of NH4-N and dissolved organic nitrogen (DON) (63.8-98.2% < 1 kDa fraction and 1.8-36.2% is > 1 kDa fraction) into the ambient environment. The high DON release rate (59.57 μmol g-1 d-1) indicates active DON biosynthesis in U. prolifera. The isotope 15NO3-N tracer showes that 73.6% of the 15NO3-N is transformed to DON. The <1 kDa and the >1 kDa fractions account for 67.46-90.86% and 9.14-32.54% of the DON, respectively. The high efficiency of U. prolifera in utilizing NO3-N is explained by the responsive nitrate/nitrite transporter in cell membrane, and the DON biosynthesized capability is attributed to the up-regulated glutamine synthetase. Our study highlights the unique role of U. prolifera as a "Nitrogen-Pump" in converting nitrogen chemical forms during its bloom-decay cycle and quantifies its impacts on local N-nutrients inventory.
Collapse
Affiliation(s)
- Pengyan Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266005, China.
| | - Yu Xin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Xiaosong Zhong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Zhenwei Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Yuemei Jin
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266005, China.
| | - Maojun Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Tao Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|