1
|
Blanco‐Pintos T, Regueira‐Iglesias A, Relvas M, Alonso‐Sampedro M, Bravo SB, Balsa‐Castro C, Tomás I. Diagnostic Accuracy of Novel Protein Biomarkers in Saliva to Detect Periodontitis Using Untargeted 'SWATH' Mass Spectrometry. J Clin Periodontol 2025; 52:199-214. [PMID: 39730307 PMCID: PMC11743018 DOI: 10.1111/jcpe.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/18/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024]
Abstract
AIM To discover new salivary biomarkers to diagnose periodontitis and evaluate the impact of age and smoking on predictive capacity. MATERIAL AND METHODS Saliva samples were collected from 44 healthy periodontal individuals and 41 with periodontitis. Samples were analysed by sequential window acquisition of all theoretical mass spectra (SWATH-MS), and proteins were identified by employing the UniProt database. The diagnostic capacity of the molecules was determined with generalized additive models. The models obtained were single-protein unadjusted and adjusted for age and smoking status, besides two-protein combinations. RESULTS Eight single salivary proteins had a bias-corrected accuracy (bc-ACC) of 78.8%-86.8% (bc-sensitivity/bc-specificity of 62.5%-86.9%/60.9%-98.1%) to diagnose periodontitis. Predictive capacity increased more by adjusting for age (bc-ACC: 94.1%-98.2%; bc-sensitivity/bc-specificity: 90.2%-98.6%/93.6%-97.2%) than smoking (bc-ACC: 83.9%-90.4%; bc-sensitivity/bc-specificity: 73.6%-89.9%/76.2%-96.4%). These proteins were keratin, type II cytoskeletal 1, protein S100-A8, β-2-microglobulin, neutrophil defensin 1, lysozyme C, ubiquitin-60S ribosomal protein L40, isoform 2 of tropomyosin α-3 chain and resistin. Two dual combinations showed bc-sensitivity/bc-specificity of > 90%: β-2-microglobulin with profilin-1, and lysozyme C with zymogen granule protein 16 homologue B. CONCLUSIONS New salivary biomarkers show good or excellent ability to diagnose periodontitis. Age has a more significant influence on the accuracy of the single biomarkers than smoking, with results comparable to two-protein combinations.
Collapse
Affiliation(s)
- T. Blanco‐Pintos
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical‐Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de CompostelaHealth Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
| | - A. Regueira‐Iglesias
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical‐Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de CompostelaHealth Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
| | - M. Relvas
- Oral Pathology and Rehabilitation Research Unit (UNIPRO)University Institute of Health Sciences (IUCS‐CESPU)GandraPortugal
| | - M. Alonso‐Sampedro
- Department of Internal Medicine and Clinical EpidemiologyComplejo Hospitalario Universitario; Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
| | - S. B. Bravo
- Proteomic UnitHealth Research Institute of Santiago de Compostela (IDIS)Santiago de CompostelaSpain
| | - C. Balsa‐Castro
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical‐Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de CompostelaHealth Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
| | - I. Tomás
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical‐Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de CompostelaHealth Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
| |
Collapse
|
2
|
Silbereisen A, Bao K, Wolski W, Nanni P, Kunz L, Afacan B, Emingil G, Bostanci N. Probing the salivary proteome for prognostic biomarkers in response to non-surgical periodontal therapy. J Clin Periodontol 2025; 52:56-67. [PMID: 38660744 PMCID: PMC11671166 DOI: 10.1111/jcpe.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/04/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
AIM This prospective study investigated the salivary proteome before and after periodontal therapy. MATERIALS AND METHODS Ten systemically healthy, non-smoking, stage III, grade C periodontitis patients underwent non-surgical periodontal treatment. Full-mouth periodontal parameters were measured, and saliva (n = 30) collected pre- (T0), and one (T1) and six (T6) months post-treatment. The proteome was investigated by label-free quantitative proteomics. Protein expression changes were modelled over time, with significant protein regulation considered at false discovery rate <0.05. RESULTS Treatment significantly reduced bleeding scores, percentages of sites with pocket depth ≥5 mm, plaque and gingival indexes. One thousand seven hundred and thirteen proteins were identified and 838 proteins (human = 757, bacterial = 81) quantified (≥2 peptides). At T1, 80 (T1 vs. T0: 60↑:20↓), and at T6, 118 human proteins (T6 vs. T0: 67↑:51↓) were regulated. The salivary proteome at T6 versus T1 remained stable. Highest protein activity post- versus pre-treatment was observed for cellular movement and inflammatory response. The small proline-rich protein 3 (T1 vs. T0: 5.4-fold↑) and lymphocyte-specific protein 1 (T6 vs. T0: 4.6-fold↓) were the top regulated human proteins. Proteins from Neisseria mucosa and Treponema socranskii (T1 vs. T0: 8.0-fold↓, 4.9-fold↓) were down-regulated. CONCLUSIONS Periodontal treatment reduced clinical disease parameters and these changes were reflected in the salivary proteome. This underscores the potential of utilizing saliva biomarkers as prognostic tools for monitoring treatment outcomes.
Collapse
Affiliation(s)
- Angelika Silbereisen
- Division of Oral Health and Periodontology, Department of Dental MedicineKarolinska InstitutetStockholmSweden
| | - Kai Bao
- Division of Oral Health and Periodontology, Department of Dental MedicineKarolinska InstitutetStockholmSweden
| | - Witold Wolski
- Functional Genomics Center ZurichETH Zurich and University of ZurichZurichSwitzerland
| | - Paolo Nanni
- Functional Genomics Center ZurichETH Zurich and University of ZurichZurichSwitzerland
| | - Laura Kunz
- Functional Genomics Center ZurichETH Zurich and University of ZurichZurichSwitzerland
| | - Beral Afacan
- Department of Periodontology, Faculty of DentistryAdnan Menderes UniversityAydınTurkey
| | - Gülnur Emingil
- Department of Periodontology, School of DentistryEge UniversityİzmirTurkey
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
3
|
Gavila P, Ajrithirong P, Chumnanprai S, Kalpongnukul N, Pisitkun T, Chantarangsu S, Sriwattanapong K, Tagami J, Porntaveetus T. Salivary proteomic signatures in severe dental fluorosis. Sci Rep 2024; 14:18372. [PMID: 39112609 PMCID: PMC11306554 DOI: 10.1038/s41598-024-69409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
The relationship between dental fluorosis and alterations in the salivary proteome remains inadequately elucidated. This study aimed to investigate the salivary proteome and fluoride concentrations in urine and drinking water among Thai individuals afflicted with severe dental fluorosis. Thirty-seven Thai schoolchildren, aged 6-16, were stratified based on Thylstrup and Fejerskov fluorosis index scores: 10 with scores ranging from 5 to 9 (SF) and 27 with a score of 0 (NF). Urinary and water fluoride levels were determined using an ion-selective fluoride electrode. Salivary proteomic profiling was conducted via LC-MS/MS, followed by comprehensive bioinformatic analysis. Results revealed significantly elevated urinary fluoride levels in the SF group (p = 0.007), whereas water fluoride levels did not significantly differ between the two cohorts. Both groups exhibited 104 detectable salivary proteins. The NF group demonstrated notable upregulation of LENG9, whereas the SF group displayed upregulation of LDHA, UBA1, S100A9, H4C3, and LCP1, all associated with the CFTR ion channel. Moreover, the NF group uniquely expressed 36 proteins, and Gene Ontology and pathway analyses suggested a link with various aspects of immune defense. In summary, the study hypothesized that the CFTR ion channel might play a predominant role in severe fluorosis and highlighted the depletion of immune-related salivary proteins, suggesting compromised immune defense in severe fluorosis. The utility of urinary fluoride might be a reliable indicator for assessing excessive fluoride exposure.
Collapse
Affiliation(s)
- Patcharaporn Gavila
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Intercountry Centre for Oral Health, Department of Health, Ministry of Public Health, Chiangmai, 50000, Thailand
- Graduate Program in Geriatric and Special Patients Care, Clinical Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Penpitcha Ajrithirong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supoj Chumnanprai
- Intercountry Centre for Oral Health, Department of Health, Ministry of Public Health, Chiangmai, 50000, Thailand
| | - Nuttiya Kalpongnukul
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Soranun Chantarangsu
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kanokwan Sriwattanapong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Junji Tagami
- Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Graduate Program in Geriatric and Special Patients Care, Clinical Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Buduneli N, Bıyıkoğlu B, Kinane DF. Utility of gingival crevicular fluid components for periodontal diagnosis. Periodontol 2000 2024; 95:156-175. [PMID: 39004819 DOI: 10.1111/prd.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Periodontal diseases are highly prevalent chronic diseases, and severe periodontitis creates functional and esthetic problems and decreases self-esteem for a large percentage of the older population worldwide. In many cases of periodontitis, there is no distinct tell-tale pain that motivates a patient to seek treatment, rather the signs become clinically detectable late, and typically when the disease has progressed to a problematic level for the life of the dentition. Early periodontal screening and diagnostics tools will provide early recognition of periodontal diseases and facilitate timely management of the disease to reduce tooth loss. To this goal, gingival crevicular fluid is easily sampled, can be repeatedly and non-invasively collected, and can be tested for potential biomarkers. Moreover, the site specificity of periodontal diseases enhances the usefulness of gingival crevicular fluid sampled from specific sites as a biofluid for diagnosis and longitudinal monitoring of periodontal diseases. The present review aimed to provide up-to-date information on potential diagnostic biomarkers with utility that can be assayed from gingival crevicular fluid samples, focusing on what is new and useful and providing only general historic background textually and in a tabulated format.
Collapse
Affiliation(s)
- Nurcan Buduneli
- Department of Periodontology, School of Dentistry, Ege University, Izmir, Turkey
| | - Başak Bıyıkoğlu
- Department of Periodontology, School Dentistry, Altinbas University, Istanbul, Turkey
| | - Denis F Kinane
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Foratori-Junior GA, Ventura TMO, Grizzo LT, Carpenter GH, Buzalaf MAR, Sales-Peres SHDC. Label-Free Quantitative Proteomic Analysis Reveals Inflammatory Pattern Associated with Obesity and Periodontitis in Pregnant Women. Metabolites 2022; 12:1091. [PMID: 36355174 PMCID: PMC9692340 DOI: 10.3390/metabo12111091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 07/30/2023] Open
Abstract
Obesity and pregnancy may have synergistic effects on periodontal condition, and proteomics could be an ideal approach to highlight the pathophysiological mechanisms associated with these outcomes. This study analyzed the salivary proteomics related to obesity and periodontitis in women during pregnancy (T1) and after delivery (T2). Initially, 126 women were recruited and forty were allocated into groups: with obesity and periodontitis (OP); with obesity, but without periodontitis (OWP); with normal BMI, but with periodontitis (NP); with normal BMI and without periodontitis (NWP). Whole-mouth saliva was collected in T1 and T2, and proteins were extracted and individually processed by label-free proteomics (nLC-ESI-MS/MS). The up-regulations of Heat shock 70 kDa protein 1A, 1B, and 1-like were related to both obesity and periodontitis, separately. Albumin and Thioredoxin were up-regulated in periodontitis cases, while Cystatins (mainly S, SA, SN) and Lactotransferrin were down-regulated. The high abundances of Submaxillary gland androgen-regulated protein 3B, Protein S100-A8, Matrix metalloproteinase-9, Heat shock 70 kDa protein 2 and 6, Putative Heat shock 70 kDa protein 7, Heat shock 71 kDa protein, Haptoglobin and Plastin-1 were significant in the combination of obesity and periodontitis. Obesity and periodontitis remarkably altered the proteome of the saliva during pregnancy with substantial alterations after delivery.
Collapse
Affiliation(s)
- Gerson Aparecido Foratori-Junior
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | | | - Larissa Tercilia Grizzo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - Guy Howard Carpenter
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | | | | |
Collapse
|
6
|
Multi-omics of human plasma reveals molecular features of dysregulated inflammation and accelerated aging in schizophrenia. Mol Psychiatry 2022; 27:1217-1225. [PMID: 34741130 PMCID: PMC9054664 DOI: 10.1038/s41380-021-01339-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022]
Abstract
Schizophrenia is a devastating psychiatric illness that detrimentally affects a significant portion of the worldwide population. Aging of schizophrenia patients is associated with reduced longevity, but the potential biological factors associated with aging in this population have not yet been investigated in a global manner. To address this gap in knowledge, the present study assesses proteomics and metabolomics profiles in the plasma of subjects afflicted with schizophrenia compared to non-psychiatric control patients over six decades of life. Global, unbiased analyses of circulating blood plasma can provide knowledge of prominently dysregulated molecular pathways and their association with schizophrenia, as well as features of aging and gender in this disease. The resulting data compiled in this study represent a compendium of molecular changes associated with schizophrenia over the human lifetime. Supporting the clinical finding of schizophrenia's association with more rapid aging, both schizophrenia diagnosis and age significantly influenced the plasma proteome in subjects assayed. Schizophrenia was broadly associated with prominent dysregulation of inflammatory and metabolic system components. Proteome changes demonstrated increased abundance of biomarkers for risk of physiologic comorbidities of schizophrenia, especially in younger individuals. These findings advance our understanding of the molecular etiology of schizophrenia and its associated comorbidities throughout the aging process.
Collapse
|
7
|
Zhang F, Liu E, Radaic A, Yu X, Yang S, Yu C, Xiao S, Ye C. Diagnostic potential and future directions of matrix metalloproteinases as biomarkers in gingival crevicular fluid of oral and systemic diseases. Int J Biol Macromol 2021; 188:180-196. [PMID: 34339782 DOI: 10.1016/j.ijbiomac.2021.07.165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
Gingival crevicular fluid (GCF) is a physiological fluid and an inflammatory serum exudate derived from the gingival plexus of blood vessels and mixed with host tissues and subgingival plaque flows. In addition to proteins, GCF contains a diverse population of cells, including desquamated epithelial cells, cytokines, electrolytes, and bacteria from adjacent plaques. Recently, matrix metalloproteinases(MMPs), which are endopeptidases that are active against extracellular macromolecules, in GCF have been revealed as potential utility biomarkers for the diagnosis and follow-up of oral and systemic diseases, thereby facilitating the early evaluation of malignancy risk and the monitoring of disease progression and treatment response. Tissue inhibitors of metalloproteinases (TIMPs) are specific inhibitors of matrixins that participate in the regulation of local activities of MMPs in tissues. This review provides an overview of the latest findings on the diagnostic and prognostic values of MMPs and TIMPs in GCF of oral and systemic diseases, including periodontal disease, pulpitis, peri-implantitis and cardiovascular disease as well as the extraction, detection and analytical methods for GCF.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Oral Diseases, Department of Periodontology, National Clinical Research Center for Oral Diseases, West China, Hospital of Stomatology, Sichuan University, Chengdu, China; Physical Examination Center, West China Hospital, Sichuan University, Chengdu, China
| | - Enyan Liu
- State Key Laboratory of Oral Diseases, Department of Periodontology, National Clinical Research Center for Oral Diseases, West China, Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Allan Radaic
- School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Xiaotong Yu
- State Key Laboratory of Oral Diseases, Department of Periodontology, National Clinical Research Center for Oral Diseases, West China, Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuting Yang
- State Key Laboratory of Oral Diseases, Department of Periodontology, National Clinical Research Center for Oral Diseases, West China, Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenhao Yu
- State Key Laboratory of Oral Diseases, Department of Periodontology, National Clinical Research Center for Oral Diseases, West China, Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shimeng Xiao
- State Key Laboratory of Oral Diseases, Department of Periodontology, National Clinical Research Center for Oral Diseases, West China, Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Changchang Ye
- State Key Laboratory of Oral Diseases, Department of Periodontology, National Clinical Research Center for Oral Diseases, West China, Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Bao K, Li X, Kajikawa T, Toshiharu A, Selevsek N, Grossmann J, Hajishengallis G, Bostanci N. Pressure Cycling Technology Assisted Mass Spectrometric Quantification of Gingival Tissue Reveals Proteome Dynamics during the Initiation and Progression of Inflammatory Periodontal Disease. Proteomics 2020; 20:e1900253. [PMID: 31881116 DOI: 10.1002/pmic.201900253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Understanding the progression of periodontal tissue destruction is at the forefront of periodontal research. The authors aimed to capture the dynamics of gingival tissue proteome during the initiation and progression of experimental (ligature-induced) periodontitis in mice. Pressure cycling technology (PCT), a recently developed platform that uses ultra-high pressure to disrupt tissues, is utilized to achieve efficient and reproducible protein extraction from ultra-small amounts of gingival tissues in combination with liquid chromatography-tandem mass spectrometry (MS). The MS data are processed using Progenesis QI and the regulated proteins are subjected to METACORE, STRING, and WebGestalt for functional enrichment analysis. A total of 1614 proteins with ≥2 peptides are quantified with an estimated protein false discovery rate of 0.06%. Unsupervised clustering analysis shows that the gingival tissue protein abundance is mainly dependent on the periodontitis progression stage. Gene ontology enrichment analysis reveals an overrepresentation in innate immune regulation (e.g., neutrophil-mediated immunity and antimicrobial peptides), signal transduction (e.g., integrin signaling), and homeostasis processes (e.g., platelet activation and aggregation). In conclusion, a PCT-assisted label-free quantitative proteomics workflow that allowed cataloging the deepest gingival tissue proteome on a rapid timescale and provided novel mechanistic insights into host perturbation during periodontitis progression is applied.
Collapse
Affiliation(s)
- Kai Bao
- Section of Peridontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Kartolinska Insitutet, Alfred Nobels alle 8, 14104, Huddinge, Sweden
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Tetsuhiro Kajikawa
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Abe Toshiharu
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Nathalie Selevsek
- Swiss Integrative Center for Human Health, Passage du Cardinal 13 B, CH-1700, Fribourg, Switzerland
| | - Jonas Grossmann
- Function Genomic Centre, ETH Zurich and University of Zurich, 8092, Zurich, Switzerland
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Nagihan Bostanci
- Section of Peridontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Kartolinska Insitutet, Alfred Nobels alle 8, 14104, Huddinge, Sweden
| |
Collapse
|
9
|
Khassan O, Jensen KV, Woodman AG, Vogel HJ, Ishida H. Characterization of the EF-Hand Calcium-Binding Domains of Human Plastins. Methods Mol Biol 2019; 1929:245-260. [PMID: 30710278 DOI: 10.1007/978-1-4939-9030-6_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The three human plastins (L-plastin, T-plastin, and I-plastin) are important regulatory Ca2+-binding proteins that belong to the family of actin-binding proteins. Plastins are involved in the regulation of the actin cytoskeleton as well as the cross-linking of actin filaments. In addition to four calponin-homology (CH) domains, all three plastins contain two N-terminal EF-hand Ca2+-binding motifs which together are homologous to a single lobe of the well-known calcium-regulatory protein calmodulin. This part of the protein allows for the regulation of the actin bundling activity in response to elevated calcium levels. In this protocol, we describe the purification of the EF-hand headpiece domains of all three plastins, as well as SPR studies, ITC studies, and NMR interaction studies with different peptides and calcium. In combination, these three experimental techniques provide detailed insights into a novel regulatory mechanism, involving the linker region between the EF-hand domain and the first CH domain of the plastins.
Collapse
Affiliation(s)
- Oleg Khassan
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Katharine V Jensen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Andrew G Woodman
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| | - Hiroaki Ishida
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Bostanci N, Selevsek N, Wolski W, Grossmann J, Bao K, Wahlander A, Trachsel C, Schlapbach R, Öztürk VÖ, Afacan B, Emingil G, Belibasakis GN. Targeted Proteomics Guided by Label-free Quantitative Proteome Analysis in Saliva Reveal Transition Signatures from Health to Periodontal Disease. Mol Cell Proteomics 2018; 17:1392-1409. [PMID: 29610270 DOI: 10.1074/mcp.ra118.000718] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
Periodontal diseases are among the most prevalent worldwide, but largely silent, chronic diseases. They affect the tooth-supporting tissues with multiple ramifications on life quality. Their early diagnosis is still challenging, due to lack of appropriate molecular diagnostic methods. Saliva offers a non-invasively collectable reservoir of clinically relevant biomarkers, which, if utilized efficiently, could facilitate early diagnosis and monitoring of ongoing disease. Despite several novel protein markers being recently enlisted by discovery proteomics, their routine diagnostic application is hampered by the lack of validation platforms that allow for rapid, accurate and simultaneous quantification of multiple proteins in large cohorts. Here we carried out a pipeline of two proteomic platforms; firstly, we applied open ended label-free quantitative (LFQ) proteomics for discovery in saliva (n = 67, including individuals with health, gingivitis, and periodontitis), followed by selected-reaction monitoring (SRM)-targeted proteomics for validation in an independent cohort (n = 82). The LFQ platform led to the discovery of 119 proteins with at least 2-fold significant difference between health and disease. The 65 proteins chosen for the subsequent SRM platform included 50 functionally related proteins derived from the significantly enriched processes of the LFQ data, 11 from literature-mining, and four house-keeping ones. Among those, 60 were reproducibly quantifiable proteins (92% success rate), represented by a total of 143 peptides. Machine-learning modeling led to a narrowed-down panel of five proteins of high predictive value for periodontal diseases with maximum area under the receiver operating curve >0.97 (higher in disease: Matrix metalloproteinase-9, Ras-related protein-1, Actin-related protein 2/3 complex subunit 5; lower in disease: Clusterin, Deleted in Malignant Brain Tumors 1). This panel enriches the pool of credible clinical biomarker candidates for diagnostic assay development. Yet, the quantum leap brought into the field of periodontal diagnostics by this study is the application of the biomarker discovery-through-verification pipeline, which can be used for validation in further cohorts.
Collapse
Affiliation(s)
- Nagihan Bostanci
- From the ‡Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden;
| | - Nathalie Selevsek
- §Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Witold Wolski
- §Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Jonas Grossmann
- §Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Kai Bao
- From the ‡Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Asa Wahlander
- ¶AstraZeneca Translational Biomarkers and Bioanalysis, Drug Safety and Metabolism, Innovative Medicines, Mölndal, Sweden
| | - Christian Trachsel
- §Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Ralph Schlapbach
- §Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Veli Özgen Öztürk
- ‖Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydin, Turkey
| | - Beral Afacan
- ‖Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydin, Turkey
| | - Gulnur Emingil
- **Department of Periodontology, School of Dentistry, Ege University, Izmir, Turkey
| | - Georgios N Belibasakis
- From the ‡Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Bostanci N, Belibasakis GN. Gingival crevicular fluid and its immune mediators in the proteomic era. Periodontol 2000 2017; 76:68-84. [DOI: 10.1111/prd.12154] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 12/11/2022]
|
12
|
Barros SP, Williams R, Offenbacher S, Morelli T. Gingival crevicular fluid as a source of biomarkers for periodontitis. Periodontol 2000 2017; 70:53-64. [PMID: 26662482 DOI: 10.1111/prd.12107] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2015] [Indexed: 12/12/2022]
Abstract
In evaluating the pathogenesis of periodontal diseases, the diagnostic potential of gingival crevicular fluid has been extensively explored during the last twenty years, from initially just confirming health and disease states to more recently investigating it as a potential prognostic tool. As host susceptibility is a critical determinant in periodontal disease pathogenesis, the inflammatory mediator levels present in gingival crevicular fluid represent relevant risk indicators for disease activity. Considerable work has been carried out to identify the many different cytokine inflammatory pathways and microbial stimuli that are associated with periodontal disease pathogenesis. Now, 'omics' approaches aim to summarize how these pathways interact and probably converge to create critical inflammatory networks. More recently, gingival crevicular fluid metabolomics appears promising as an additional diagnostic method. Biofilm structure and the host inflammatory response to the microbial challenge may induce specific inflammatory signatures. Host genetics and epigenetics may also modulate microbial colonization, adding to the multiplicity of potential causal pathways. Omics analyses of gingival crevicular fluid, measuring microbial and host interactions in association with the onset and progression of periodontal diseases, still show the potential to expand the landscape for the discovery of diagnostic, prognostic and therapeutic markers.
Collapse
|
13
|
Bostanci N, Bao K. Contribution of proteomics to our understanding of periodontal inflammation. Proteomics 2017; 17. [DOI: 10.1002/pmic.201500518] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/15/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Nagihan Bostanci
- Department of Dental Medicine; Karolinska Institute; Huddinge Sweden
| | - Kai Bao
- Division of Oral Microbiology and Immunology; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich Switzerland
| |
Collapse
|
14
|
Davis IJ, Jones AW, Creese AJ, Staunton R, Atwal J, Chapple ILC, Harris S, Grant MM. Longitudinal quantification of the gingival crevicular fluid proteome during progression from gingivitis to periodontitis in a canine model. J Clin Periodontol 2016; 43:584-94. [PMID: 26990150 PMCID: PMC5089638 DOI: 10.1111/jcpe.12548] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2016] [Indexed: 01/10/2023]
Abstract
Aim Inflammatory periodontal disease is widespread in dogs. This study evaluated site‐specific changes in the canine gingival crevicular fluid (GCF) proteome during longitudinal progression from very mild gingivitis to mild periodontitis. Periodontitis diagnosis in dogs requires general anaesthesia with associated risks and costs; our ultimate aim was to develop a periodontitis diagnostic for application in conscious dogs. The objective of this work was to identify potential biomarkers of periodontal disease progression in dogs. Material and Methods Gingival crevicular fluid was sampled from a total of 10 teeth in eight dogs at three different stages of health/disease and samples prepared for quantitative mass spectrometry (data available via ProteomeXchange; identifier PXD003337). A univariate mixed model analysis determined significantly altered proteins between health states and six were evaluated by ELISA. Results Four hundred and six proteins were identified with 84 present in all samples. The prevalence of 40 proteins was found to be significantly changed in periodontitis relative to gingivitis. ELISA measurements confirmed that haptoglobin was significantly increased. Conclusions This study demonstrates for the first time that proteins detected by mass spectrometry have potential to identify novel biomarkers for canine periodontal disease. Further work is required to validate additional biomarkers for a periodontitis diagnostic.
Collapse
Affiliation(s)
- Ian J Davis
- The WALTHAM Centre for Pet Nutrition, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, UK
| | - Andrew W Jones
- Periodontal Research Group, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew J Creese
- Periodontal Research Group, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ruth Staunton
- The WALTHAM Centre for Pet Nutrition, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, UK
| | - Jujhar Atwal
- The WALTHAM Centre for Pet Nutrition, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, UK
| | - Iain L C Chapple
- Periodontal Research Group, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stephen Harris
- The WALTHAM Centre for Pet Nutrition, Waltham-on-the-Wolds, Melton Mowbray, Leicestershire, UK
| | - Melissa M Grant
- Periodontal Research Group, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|