1
|
Aghili SS, Jahangirnia A, Alam M, Oskouei AB, Golkar M, Badkoobeh A, Abbasi K, Mohammadikhah M, Karami S, Soufdoost RS, Namanloo RA, Talebi S, Amookhteh S, Hemmat M, Sadeghi S. The effect of photodynamic therapy in controlling the oral biofilm: A comprehensive overview. J Basic Microbiol 2023; 63:1319-1347. [PMID: 37726220 DOI: 10.1002/jobm.202300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/26/2023] [Indexed: 09/21/2023]
Abstract
Several resistance mechanisms are involved in dental caries, including oral biofilms. An accumulation of bacteria on the surface of teeth is called plaque. Periodontitis and gingivitis are caused by dental plaque. In this review article, we aimed to review the studies associated with the application of photodynamic therapy (PDT) to prevent and treat various microbial biofilm-caused oral diseases in recent decades. There are several studies published in PubMed that have described antimicrobial photodynamic therapy (APDT) effects on microorganisms. Several in vitro and in vivo studies have demonstrated the potential of APDT for treating endodontic, periodontal, and mucosal infections caused by bacteria as biofilms. Reactive oxygen species (ROS) are activated in the presence of oxygen by integrating a nontoxic photosensitizer (PS) with appropriate wavelength visible light. By causing irreversible damage to microorganisms, ROS induces some biological and photochemical events. Testing several wavelengths has been conducted to identify potential PS for APDT. A standard protocol is not yet available, and the current review summarizes findings from dental studies on APDT.
Collapse
Affiliation(s)
- Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asal Bagherzadeh Oskouei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | | | - Sahar Talebi
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Amookhteh
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Hemmat
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Sadeghi
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Camacho-Alonso F, Tudela-Mulero MR, Navarro JA, Buendía AJ, Mercado-Díaz AM. Use of buccal fat pad-derived stem cells cultured on bioceramics for repair of critical-sized mandibular defects in healthy and osteoporotic rats. Clin Oral Investig 2022; 26:5389-5408. [PMID: 35524820 PMCID: PMC9381637 DOI: 10.1007/s00784-022-04506-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To compare new bone formation in mandibular symphysis critical-sized bone defects (CSBDs) in healthy and osteoporotic rats filled with bioceramics (BCs) with or without buccal fat pad mesenchymal stem cells (BFPSCs). MATERIALS AND METHODS Thirty-two adult female Sprague-Dawley rats were randomized to two groups (n = 16 per group): group 1 healthy and group 2 osteoporotic (with bilateral ovariectomy). The central portion of the rat mandibular symphysis was used as a physiological CSBD. In each group, eight defects were filled with BC (hydroxyapatite 60% and β-tricalcium phosphate 40%) alone and eight with BFPSCs cultured on BC. The animals were sacrificed at 4 and 8 weeks, and the mandibles were processed for micro-computed tomography to analyze radiological union and bone mineral density (BMD); histological analysis of the bone union; and immunohistochemical analysis, which included immunoreactivity of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2). RESULTS In both groups, CSBDs filled with BC + BFPSCs showed greater radiological bone union, BMD and histological bone union, and more VEGF and BMP-2 positivity, compared with CSBDs treated with BC alone at 4 and 8 weeks. CONCLUSIONS The application of BFPSCs cultured on BCs improves bone regeneration in CSBDs compared with BCs alone in healthy and osteoporotic rats. CLINICAL RELEVANCE Our results may aid bone regeneration of maxillofacial CSBDs of both healthy and osteoporotic patients, but further studies are necessary.
Collapse
Affiliation(s)
- Fabio Camacho-Alonso
- Department of Oral Surgery, University of Murcia, Murcia, Spain.
- Oral Surgery Teaching Unit, University Dental Clinic, Morales Meseguer Hospital (2Nd Floor), Marqués de los Vélez s/n, 30008, Murcia, Spain.
| | | | - J A Navarro
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | - A J Buendía
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | | |
Collapse
|
3
|
Camacho-Alonso F, Tudela-Mulero MR, Buendía AJ, Navarro JA, Pérez-Sayáns M, Mercado-Díaz AM. Bone regeneration in critical-sized mandibular symphysis defects using bioceramics with or without bone marrow mesenchymal stem cells in healthy, diabetic, osteoporotic, and diabetic-osteoporotic rats. Dent Mater 2022; 38:1283-1300. [PMID: 35717229 DOI: 10.1016/j.dental.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/14/2022] [Accepted: 06/05/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To compare new bone formation in mandibular critical-sized bone defects (CSBDs) in healthy, diabetic, osteoporotic, and diabetic-osteoporotic rats filled with bioceramics (BCs) with or without bone marrow mesenchymal stem cells (BMSCs). METHODS A total of 64 adult female Sprague-Dawley rats were randomized into four groups (n = 16 per group): Group 1 healthy, Group 2 diabetic, Group 3 osteoporotic, and Group 4 diabetic-osteoporotic rats. Streptozotocin was used to induce type 1 diabetes in Group 2 and 4, while bilateral ovariectomy was used to induce osteoporosis in Group 3 and 4. The central portion of the rat mandibular symphysis was used as a physiological CSBD. In each group, eight defects were filled with BC (hydroxypatatite 60% and β-tricalcium phosphate 40%) alone and eight with BMSCs cultured on BC. The animals were sacrificed at 4 and 8 weeks, and the mandibles were processed for micro-computed tomography to analyze radiological union and bone mineral density (BMD); histological analysis of the bone union; and immunohistochemical analysis, which included immunoreactivity of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2). RESULTS In all groups (healthy, diabetics, osteoporotics, and diabetics-osteoporotics), the CSBDs filled with BC + BMSCs showed greater radiological bone union, BMD, histological bone union, and more VEGF and BMP-2 positivity, in comparison with CSBDs treated with BC alone (at 4 and 8 weeks). CONCLUSIONS Application of BMSCs cultured on BCs improves bone regeneration in CSBDs compared with application of BCs alone in healthy, diabetic, osteoporotic, and diabetic-osteoporotic rats.
Collapse
Affiliation(s)
- F Camacho-Alonso
- Department of Oral Surgery, University of Murcia, Murcia, Spain.
| | | | - A J Buendía
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | - J A Navarro
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | - M Pérez-Sayáns
- Department of Oral Medicine, Oral Surgery and Implantology, University of Santiago de Compostela, Spain. MedOralRes Group, Health Research Institute of Santiago de Compostela (IDIS). Santiago de Compostela, Spain
| | | |
Collapse
|
4
|
Liu Q, Sun Y, Chen D, Chen K, Huang B, Chen Z. Inhibitory effect of roflumilast on experimental periodontitis. J Periodontol 2022; 93:423-434. [PMID: 34124777 DOI: 10.1002/jper.20-0858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/05/2021] [Accepted: 05/23/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND Phosphodiesterase-4 (PDE4) has been identified as a valid therapeutic target in several inflammatory diseases. In this study, we assessed PDE4 in gingival tissue from patients with chronic periodontitis and evaluated the therapeutic effects of the PDE4 inhibitor, roflumilast, in an experimental rat model of periodontitis. METHODS Gingival tissue specimens from 20 healthy subjects and 20 patients with periodontitis were collected, and the mRNA expression levels of PDE4, interleukin (IL)-1β, and IL-6 were assessed. Ninety rats were divided randomly into three groups (30 per group): non-ligature group, ligature-induced periodontitis group (L), and ligature-induced periodontitis with roflumilast administered group (5 mg/kg/d) (L+R). Rats were euthanized on days 3, 8, and 14. Alveolar bone resorption was analyzed using microcomputed tomography. Inflammation and osteoclast number were analyzed histologically. Finally, the mRNA expression levels of PDE-4, IL-1β, IL-6, tumor necrosis factor (TNF)-α, and nuclear factor kappa B (NF-κB) were assessed in the rat gingival tissue. RESULTS The mRNA expression levels of PDE4, IL-1β, and IL-6 in the gingiva were significantly higher in patients with periodontitis compared with healthy individuals (P <0.05). Alveolar bone loss, degree of inflammation, number of TRAP-positive multinucleated osteoclasts, and mRNA expression levels of IL-1β, IL-6, TNF-α, NF-κB, and PDE4 in the L+R group were significantly lower than those in the L group (P <0.05). CONCLUSIONS PDE4 expression was increased in the gingiva of patients with periodontitis. Roflumilast may decrease alveolar bone loss and the expression of inflammatory cytokines in rats with ligature-induced periodontitis.
Collapse
Affiliation(s)
- Qifan Liu
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yue Sun
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Danying Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Kaidi Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Baoxin Huang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Lopez-Lopez V, Garcia-Carrillo N, de Gea D, Oltra L, González-Bermúdez CA, Carbonell G, Brusadin R, Lopez-Conesa A, Robles-Campos R. Assessment of hepatic function, perfusion and parenchyma attenuation with indocyanine green, ultrasound and computed tomography in a healthy rat model: Preliminary determination of baseline parameters in a healthy liver. PLoS One 2021; 16:e0261447. [PMID: 34919595 PMCID: PMC8682902 DOI: 10.1371/journal.pone.0261447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/02/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Defining reference intervals in experimental animal models plays a crucial role in pre-clinical studies. The hepatic parameters in healthy animals provide useful information about type and extension of hepatic damage. However, in the majority of the cases, to obtain them require an invasive techniques. Our study combines these determinations with dynamic functional test and imaging techniques to implement a non-invasive protocol for liver evaluation. The aim of the study was to determine reference intervals for hepatic function, perfusion and parenchyma attenuation with analytical and biochemical blood parameters, indocyanine green, ultrasound and computed tomography in six healthy SD rats. METHODS Six males healthy SD rats were followed for 4 weeks. To determine hepatic function, perfusion and parenchyma attenuation analytical and biochemical blood parameters, indocyanine green, ultrasound and computed tomography were studied. Results were expressed as Means ± standard error of mean (SEM). The significance of differences was calculated by using student t-test, p < 0.05 was considered statistically significant. RESULTS Indocyanine green clearance 5 and 10 minutes after its injection was 80.12% and 96.59%, respectively. Approximate rate of decay during the first 5 minutes after injection was 38% per minute. Hepatic perfusion evaluation with the high-frequency ultrasound was related to cardiovascular hemodynamic and renal perfusion. Portal area, hepatic artery resistance index, hepatic artery and portal peak systolic velocity and average between hepatic artery and porta was 3.41 ± 0.62 mm2, 0.57 ± 0.04 mm2/s, 693.24±102.53 mm2/s, 150.72 ± 17.80 mm2/s and 4.82 ± 0.96 mm2/s, respectively. Heart rate, cardiac output, left renal artery diammetre and renal blood flow were 331.01 ± 22.22 bpm, 75.58 ± 8.72 mL/min, 0.88 ± 0.04 mm2 and 13.65 ± 1.95 mm2/s. CT-scan hepatic average volume for each rat were 21.08±3.32, 17.57±2.76, 14.87±2.83 and 13.67±2.45 cm3 with an average attenuation coefficient of 113.51±18.08, 129,19±7.18, 141,47±1.95 y 151,67±1.2 HU. CONCLUSION Indocyanine green and high-frequency ultrasound could be used in rats as a suitable marker of liver function. Computed tomography, through the study of raw data, help to characterize liver parenchyma, and could be a potential tool for early detection of liver parenchymal alterations and linear follow-up of patients. Further studies in rats with liver disease are necessary to verify the usefulness of these parameters.
Collapse
Affiliation(s)
- Victor Lopez-Lopez
- Department of Surgery, HBP Unit, Virgen de la Arrixaca University Clinical Hospital, University of Murcia, (IMIB-Arrixaca), Murcia, Spain
| | | | - Diego de Gea
- Faculty of Medicine, University of Murcia, (IMIB-Arrixaca), Murcia, Spain
| | - Lidia Oltra
- Department of Physiology, Faculty of Medicine, University of Murcia, (IMIB-Arrixaca), Murcia, Spain
| | | | - Guillermo Carbonell
- Department of Radiology, Virgen de la Arrixaca University Clinical Hospital, University of Murcia, (IMIB-Arrixaca), Murcia, Spain
| | - Roberto Brusadin
- Department of Surgery, HBP Unit, Virgen de la Arrixaca University Clinical Hospital, University of Murcia, (IMIB-Arrixaca), Murcia, Spain
| | - Asunción Lopez-Conesa
- Department of Surgery, HBP Unit, Virgen de la Arrixaca University Clinical Hospital, University of Murcia, (IMIB-Arrixaca), Murcia, Spain
| | - Ricardo Robles-Campos
- Department of Surgery, HBP Unit, Virgen de la Arrixaca University Clinical Hospital, University of Murcia, (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
6
|
Bisphosphonates in Dentistry – State of the Art. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2020-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Bisphosphonates remain the most used and most effective drugs for the treatment of systemic bone diseases followed by bone resorption. Although their side effects in a form of alveolar bone osteonecrosis have been reported, bisphosphonates have a potential of being used in the treatment of the most common oral diseases followed by alveolar bone resorption such as peri-implantitis, periapical lesions, and periodontitis. The aim of this article was to review the most recent research regarding the use of bisphosphonates in the field of dentistry. The results of studies indicate that bisphosphonate use in the treatment of peri-implantitis, periapical lesions, and periodontitis can reduce alveolar bone resorption and contribute to bone preservation. However, the most beneficial way of their application in the treatment of these oral diseases remain to be determined.
Collapse
|
7
|
Choe R, Balhaddad AA, Fisher JP, Melo MAS, Huang HC. Photodynamic Therapy for Biomodulation and Disinfection in Implant Dentistry: Is It Feasible and Effective? Photochem Photobiol 2021; 97:916-929. [PMID: 33876438 DOI: 10.1111/php.13434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/11/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022]
Abstract
Dental implants are the most common rehabilitation and restorative treatment used to replace missing teeth. Biofilms adhere to implant surfaces to trigger implant-associated infection and inflammatory response. Clinically, the biofilm induces a local host response with the infiltration of phagocytic immune cells. The pro-inflammatory surroundings set off osteoclastogenesis, which leads to the septic loosening of the implant. The standard of dental care for implant-associated infection relies on a combination of surgery and antimicrobial therapy. Antimicrobial photodynamic therapy is a noninvasive and photochemistry-based approach capable of reducing bacterial load and modulating inflammatory responses. In this review, we explore the photobiomodulation and disinfection outcomes promoted by photodynamic therapy for implant infections, highlighting the quality of evidence on the most up-to-date studies, and discuss the major challenges on the advance of these therapeutic strategies.
Collapse
Affiliation(s)
- Robert Choe
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, USA
| | - Abdulrahman A Balhaddad
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, MD, USA.,Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, USA
| | - Mary Anne S Melo
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, MD, USA.,Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Ceballos-Francisco D, Carrillo NG, Pardo-Fernández FJ, Cuesta A, Esteban MÁ. Radiological characterization of gilthead seabream (Sparus aurata) by X-ray computed tomography. JOURNAL OF FISH BIOLOGY 2020; 97:1440-1447. [PMID: 32840010 DOI: 10.1111/jfb.14510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
In recent years, the increasing use of fish as new animal models in scientific research and the growth of fish farming (mainly for human consumption) have highlighted the need for advanced technology to deepen our knowledge of fish biology. Hence, the present study was carried out to radiologically analyse the whole body of gilthead seabream (Sparus aurata) specimens using X-ray computed tomography (CT). Images were acquired in an Albira SPECT/PET/CT tri-modal preclinical-scanner. Segmentation, measurements and three-dimensional reconstruction were made using the Carestream Molecular imaging Albira CT system in conjunction with Pmod, AMIDE and Amira software packages. The results showed that the density values of gilthead seabream are in the range -700 to +2500 HU for the whole body. We also determined the density ranges that topographically coincide with the swim bladder, soft tissues, fat, skin and skeleton. This work describes, validates and demonstrates the application of a fully automated image analysis technique to study and quantify fish body composition, whether segmented or as a whole. In addition, the basis for applying this image technique in other in vivo studies is established.
Collapse
Affiliation(s)
- Diana Ceballos-Francisco
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Nuria G Carrillo
- Preclinical Imaging Unit, Laboratory Animal Service, Core Facilities University of Murcia, Murcia, Spain
| | | | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - María Á Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
9
|
Santinoni CS, Silveira FM, Caldeira ML, Genaro V, Martins TM, do Amaral CCF, Maia LP, Mori GG, Ervolino E, Pola NM. Topical sodium alendronate combined or not with photodynamic therapy as an adjunct to scaling and root planing: Histochemical and immunohistochemical study in rats. J Periodontal Res 2020; 55:850-858. [PMID: 32648296 DOI: 10.1111/jre.12777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate influence of topical sodium alendronate (ALN), photodynamic therapy (aPDT), or a combination thereof as adjuvant to scaling and root planing (SRP) in the treatment of experimental periodontitis in rats. BACKGROUND Therapeutic protocols to control periodontitis progression that aim to equalize bacterial action and load with tissue immune response are well addressed in current scientific research. METHODS Experimental periodontitis was induced in 96 rats with a ligature around the mandibular left first molar. After 7 days, ligature was removed and animals were treated according to the following experimental groups (n = 8): control-SRP plus saline solution; ALN-SRP plus ALN; aPDT-SRP plus methylene blue irrigation, followed by low-level laser therapy (LLLT); and ALN/aPDT-SRP plus ALN and methylene blue irrigation followed by LLLT. The animals were euthanized at 7, 15, and 30 days after treatments. Collagen maturation (picrosirius red staining) and immunohistochemical analyses (TRAP, RANKL and osteoprotegerin [OPG]) were performed. Data were submitted to statistical analysis (P < .05). RESULTS At 7 days, group ALN presented a significantly higher number of TRAP-positive cells and percentage of immature collagen fibers than group ALN/aPDT, while group ALN/aPDT presented a significantly higher percentage of mature collagen fibers than group ALN. At 30 days, group ALN presented significantly lower percentage of immature collagen fibers and higher percentage of mature collagen fibers than control. CONCLUSION It can be concluded that topical use of ALN coadjutant to SRP, alone or combined with aPDT, enhanced collagen maturation and reduced osteoclastogenesis during the healing of experimental periodontitis.
Collapse
Affiliation(s)
- Carolina S Santinoni
- Dental School of Presidente Prudente, Graduate Program in Dentistry (GPD-Master's Degree), University of Western Sao Paulo, Presidente Prudente, Brazil
| | - Felipe M Silveira
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Marcela L Caldeira
- Dental School of Presidente Prudente, Graduate Program in Dentistry (GPD-Master's Degree), University of Western Sao Paulo, Presidente Prudente, Brazil
| | - Vítor Genaro
- Dental School of Presidente Prudente, Graduate Program in Dentistry (GPD-Master's Degree), University of Western Sao Paulo, Presidente Prudente, Brazil
| | - Thiago M Martins
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Caril C F do Amaral
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - Luciana P Maia
- Dental School of Presidente Prudente, Graduate Program in Dentistry (GPD-Master's Degree), University of Western Sao Paulo, Presidente Prudente, Brazil
| | - Graziela G Mori
- Dental School of Presidente Prudente, Graduate Program in Dentistry (GPD-Master's Degree), University of Western Sao Paulo, Presidente Prudente, Brazil
| | - Edilson Ervolino
- Dental School of Araçatuba, Department of Basic Sciences, University Estadual Paulista, Araçatuba, Brazil
| | - Natália M Pola
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
10
|
Camacho-Alonso F, Martínez-Ortiz C, Plazas-Buendía L, Mercado-Díaz AM, Vilaplana-Vivo C, Navarro JA, Buendía AJ, Merino JJ, Martínez-Beneyto Y. Bone union formation in the rat mandibular symphysis using hydroxyapatite with or without simvastatin: effects on healthy, diabetic, and osteoporotic rats. Clin Oral Investig 2020; 24:1479-1491. [PMID: 31925587 DOI: 10.1007/s00784-019-03180-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The objective is to compare new bone formation in critical defects in healthy, diabetic, and osteoporotic rats filled with hydroxyapatite (HA) alone and HA combined with simvastatin (SV). MATERIALS AND METHODS A total of 48 adult female Sprague-Dawley rats were randomized into three groups (n = 16 per group): Group, 1 healthy; Group 2, diabetics; and Group 3, osteoporotics. Streptozotocin was used to induce type 1 diabetes in Group 2, while bilateral ovariectomy was used to induce osteoporosis in Group 3. The central portion of the rat mandibular symphysis was used as a physiological critical bone defect. In each group, eight defects were filled with HA alone and eight with HA combined with SV. The animals were sacrificed at 4 and 8 weeks, and the mandibles were processed for micro-computed tomography to analyze radiological union and bone mineral density (BMD); histological analysis of the bone union; and immunohistochemical analysis, which included immunoreactivity of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2). RESULTS In all groups (healthy, diabetics, and osteoporotics), the defects filled with HA + SV presented greater radiological bone union, BMD, histological bone union, and more VEGF and BMP-2 positivity, in comparison with bone defects treated with HA alone. CONCLUSIONS Combined application of HA and SV improves bone regeneration in mandibular critical bone defects compared with application of HA alone in healthy, diabetic, and osteoporotic rats. CLINICAL RELEVANCE This study might help to patients with osteoporosis or uncontrolled diabetes type 1, but future studies should be done.
Collapse
Affiliation(s)
- F Camacho-Alonso
- Department of Oral Surgery, University of Murcia, Murcia, Spain.
| | | | | | | | | | - J A Navarro
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | - A J Buendía
- Department of Histology and Pathological Anatomy, University of Murcia, Murcia, Spain
| | - J J Merino
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Y Martínez-Beneyto
- Department of Preventive and Community Dentistry, University of Murcia, Murcia, Spain
| |
Collapse
|
11
|
Qi M, Li X, Sun X, Li C, Tay FR, Weir MD, Dong B, Zhou Y, Wang L, Xu HHK. Novel nanotechnology and near-infrared photodynamic therapy to kill periodontitis-related biofilm pathogens and protect the periodontium. Dent Mater 2019; 35:1665-1681. [PMID: 31551152 DOI: 10.1016/j.dental.2019.08.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/30/2019] [Accepted: 08/31/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Periodontal tissue destruction and tooth loss are increasingly a worldwide problem as the population ages. Periodontitis is caused by bacterial infection and biofilm plaque buildup. Therefore, the objectives of this study were to: (1) develop a near-infrared light (NIR)-triggered core-shell nanostructure of upconversion nanoparticles and TiO2 (UCNPs@TiO2), and (2) investigate its inhibitory effects via antibacterial photodynamic therapy (aPDT) against periodontitis-related pathogens. METHODS The core β-NaYF4:Yb3+,Tm3+ were synthesized via thermal decomposition and further modified with the TiO2 shell via a hydrothermal method. The core-shell structure and the upconversion fluorescence-induced aPDT treatment via 980nm laser were studied. Three periodontitis-related pathogens Streptococcus sanguinis (S. sanguinis), Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum) were investigated. The killing activity against planktonic bacteria was detected by a time-kill assay. Single species 4-day biofilms on dentin were tested by live/dead staining, colony-forming units (CFU), and metabolic activity. RESULTS The hexagonal shaped UCNPs@TiO2 had an average diameter of 39.7nm. UCNPs@TiO2 nanoparticles had positively charged (+12.4mV) surface and were biocompatible and non-cytotoxic. Under the excitation of NIR light (980nm), the core NaYF4:Yb3+,Tm3+ UCNPs could emit intense ultraviolet (UV) light, which further triggered the aPDT function of the shell TiO2 via energy transfer, thereby realizing the remarkable antibacterial effects against planktons and biofilms of periodontitis-associated pathogens. NIR-triggered UCNPs@TiO2 achieved much greater reduction in biofilms than control (p<0.05). Biofilm CFU was reduced by 3-4 orders of magnitude via NIR-triggered aPDT, which is significantly greater than that of negative control and commercial aPDT control groups. The killing efficacy of UCNPs@TiO2-based aPDT against the three species was ranked to be: S. sanguinis<F. nucleatum=P. gingivalis. Metabolic activities of biofilms were also greatly reduced via NIR-triggered aPDT (p<0.05). SIGNIFICANCE Upconversion fluorescence-based aPDT achieved strong inhibiting effects against all three species of periodontitis-related pathogens. This novel nanotechnology demonstrated a high promise to inhibit periodontitis, with exciting potential to combat other oral infectious diseases such as deep endodontic infections.
Collapse
Affiliation(s)
- Manlin Qi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xiaolin Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chunyan Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Yanmin Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Wang X, Jia Z, Almoshari Y, Lele SM, Reinhardt RA, Wang D. Local Application of Pyrophosphorylated Simvastatin Prevents Experimental Periodontitis. Pharm Res 2018; 35:164. [PMID: 29943090 PMCID: PMC7424626 DOI: 10.1007/s11095-018-2444-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/08/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE Simvastatin (SIM), a HMG-CoA reductase inhibitor widely prescribed for hypercholesterolemia, has been reported to ameliorate inflammation and promote osteogenesis. Its clinical applications on these potential secondary indications, however, have been hampered by its lack of osteotropicity and poor water solubility. To address this challenge, we propose to design and evaluate the therapeutic efficacy of a novel simvastatin prodrug with better water solubility and bone affinity. METHOD The prodrug (SIM-PPi) was synthesized by directly conjugating a SIM trimer to a pyrophosphate (PPi). It was characterized and evaluated in vitro for its water solubility, osteotropicity, toxicity, anti-inflammatory and osteoinductive properties. It was then tested for anti-inflammatory and osteoinductive properties in vivo by three weekly injections into gingiva of a ligature-induced experimental periodontitis rat model. RESULTS In vitro studies showed that SIM-PPi has greatly improved water-solubility of SIM and shows strong binding to hydroxyapatite (HA). In macrophage culture, SIM-PPi inhibited LPS-induced pro-inflammatory cytokines (IL-1β, IL-6). In osteoblast culture, it was found to significantly increase alkaline phosphatase (ALP) activity with accelerated mineral deposition, confirming the osteogenic potential of SIM-PPi. When tested in vivo on an experimental periodontal bone-loss model, SIM-PPi exhibited a superior prophylactic effect compared to dose equivalent SIM in reducing inflammatory cells and in preserving alveolar bone structure, as shown in the histological and micro-CT data. CONCLUSION SIM-PPi may have the potential to be further developed for better clinical management of bone loss associated with periodontitis.
Collapse
Affiliation(s)
- Xiaobei Wang
- The Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, 68198-6125, USA
| | - Zhenshan Jia
- The Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, 68198-6125, USA
| | - Yosif Almoshari
- The Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, 68198-6125, USA
- The Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Subodh M Lele
- The Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, 6819-3135, USA
| | - Richard A Reinhardt
- The Department of Surgical Specialties, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska, 68583-0740, USA
| | - Dong Wang
- The Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, 68198-6125, USA.
| |
Collapse
|