1
|
Chen X, Han R, Liu X, Xu J. Association between composite dietary antioxidant index and the prevalence of periodontitis: results from NHANES 2009-2014. BMC Oral Health 2025; 25:779. [PMID: 40413422 DOI: 10.1186/s12903-025-06151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 05/09/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND The antioxidant system of periodontal tissue is unbalanced in periodontitis, and appropriate supplementation of antioxidants can effectively prevent or alleviate periodontal tissue damage. However, a dearth of research exists on the association between dietary antioxidant intake and the prevalence of periodontitis. METHODS Six dietary antioxidants (vitamins A, C, and E, zinc, selenium, and carotenoids) were extracted from two 24-h recall interviews utilizing data from the National Health and Nutrition Examination Survey (NHANES) conducted between 2009 and 2014. The composite dietary antioxidant index (CDAI) made calculations using data on the intake of these six dietary antioxidants. Periodontitis severity was categorized into mild, moderate, and severe classifications based on established consensus criteria. Additionally, a restricted cubic spline (RCS) regression model was applied to evaluate the potential non-linear dose-response relationship between CDAI and periodontitis prevalence. RESULTS A total of 9,378 adults were included in this analysis, of which 4,755 had periodontitis. Individuals within the highest CDAI quartile demonstrated a diminished prevalence of total periodontitis compared to those in the lowest quartile (OR = 0.70 [0.53-0.93], Ptrend = 0.012). When moderate/severe periodontitis served as the outcome variable, those within the fourth CDAI quartile exhibited a 32% reduced prevalence compared to those in the first quartile (OR = 0.68 [0.52-0.88], Ptrend = 0.006). RCS regression showed that CDAI was linearly and negatively related to the prevalence of periodontitis (both total and moderate/severe periodontitis). In subgroup analysis by gender, a significant association between CDAI and total periodontitis was discerned solely among females (OR = 0.60 [0.42-0.85], Pinteraction = 0.015). CONCLUSION Elevated dietary antioxidant intake is associated with a diminished prevalence of periodontitis. These findings underscore the potential role of antioxidants in periodontal health.
Collapse
Affiliation(s)
- Xinru Chen
- Department of Stomatology, Nanjing Qixia District Hospital, Nanjing, 210033, China
| | - Rui Han
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Xinwei Liu
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Jincheng Xu
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China.
| |
Collapse
|
2
|
Malmqvist S, Clark R, Johannsen G, Johannsen A, Boström EA, Lira-Junior R. Immune cell composition and inflammatory profile of human peri-implantitis and periodontitis lesions. Clin Exp Immunol 2024; 217:173-182. [PMID: 38616555 PMCID: PMC11239561 DOI: 10.1093/cei/uxae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024] Open
Abstract
Peri-implantitis (PI) and periodontitis (PD) are common oral inflammatory diseases, which seem to exhibit critical differences in some of their molecular features. Thus, we assessed the immune cell composition of PI and PD lesions and the corresponding inflammatory profile in soft tissues and crevicular fluid. PI, PD, and control patients were recruited (n = 62), and soft tissue biopsies were collected during surgery. Crevicular fluid around implant or tooth was collected. The proportions of major immune cell populations in tissues were analyzed by flow cytometry, and the inflammatory profile in tissue and crevicular fluid by a multiplex immunoassay. No significant difference was seen between PI and PD lesions in the proportions of immune cells. PI tissues showed an increased frequency of B cells in comparison with control tissues, along with higher levels of IL-1β, TNF-α, IL-4, and BAFF in tissue and crevicular fluid. Moreover, TNF-α, IL-17A, and BAFF were higher in PI tissues, but not in PD, than in control tissues. The immune cell composition did not differ significantly between PI and PD, but an enhanced inflammatory profile was seen in PI tissue. PI lesions were enriched in B cells, and displayed increased levels of IL-1β, TNF-α, IL-4, and BAFF in both tissue and crevicular fluid.
Collapse
Affiliation(s)
- Sebastian Malmqvist
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Reuben Clark
- Division of Oral Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Johannsen
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annsofi Johannsen
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elisabeth A Boström
- Division of Oral Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Orofacial Medicine, Folktandvården Stockholms Län AB, Stockholm, Sweden
| | - Ronaldo Lira-Junior
- Division of Oral Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Balu P, Balakrishna Pillai AK, Mariappan V, Ramalingam S. Cytokine levels in gingival tissues as an indicator to understand periodontal disease severity. CURRENT RESEARCH IN IMMUNOLOGY 2024; 5:100080. [PMID: 39026560 PMCID: PMC11254528 DOI: 10.1016/j.crimmu.2024.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Cytokines regulate periodontal pathogenesis and are relevant estimates of current disease activity. There is sparse information on status of cytokine protein levels in periodontal pocket (gingival) tissues. The current study analysed proteins and transcripts of selected cytokines in varying severity of periodontal disease and elucidated cytokine/cytokine ratios that best indicated periodontal disease severity, in gingival tissues. A total of 92 participants comprising of generalised moderate periodontitis (GMP, n = 18), generalised severe periodontitis (GSP, n = 46) and periodontally healthy controls (PHC, n = 25) were recruited for the study. Interproximal gingival tissue samples were utilised for cytokine protein estimation and mRNA quantification by qRT-PCR and ELISA respectively. Selected key pro and anti-inflammatory cytokines, also representative of various Th subsets were analysed. ROC curve analysis was performed and Youden index was calculated for individual cytokines and pro/anti-inflammatory cytokine ratio to estimate the best indicator of periodontal severity/progression in tissues. IL-1β, TGF-β and IFN-γ cytokine protein levels varied significantly (p ≤ 0.05) with severity of periodontal disease between groups. On comparison between deep and shallow sites within same participant, deep sites showed significant elevation of TGF-β (p ≤ 0.01) and IFN-γ (p ≤ 0.05) and IL-17 cytokines and shallow sites showed elevation of IL-4(p ≤ 0.01) and IL-1β (p ≤ 0.05) cytokines. Analysis of transcripts showed IFN-γ and IL-1β transcript predominance in GSP (p = 0.01) compared to PHC. ROC analysis illustrated 97% sensitivity, 93% specificity with Youden index of 90% for IL-1β cytokine and 81%sensitivity, 79% specificity with a Youden index of 60% for IL-1β/TGF-β ratio In periodontal pocket tissue, a lack of distinct predominance of specific cytokines between study groups or between shallow and deep sites affected by periodontal disease was observed. However, ROC analysis of cytokines revealed IL-1β cytokine and IL-1β/TGF-β ratio as promising indicators of periodontal disease severity in gingival tissues.
Collapse
Affiliation(s)
- Pratebha Balu
- Department of Periodontology, Indira Gandhi Institute of Dental Sciences (IGIDS), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Agiesh Kumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI)Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607402, India
| | - Vignesh Mariappan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI),Sri Balaji Vidyapeeth, (Deemed to be University), Puducherry, 607402, India
| | - Sudhakar Ramalingam
- Oral &Maxillofacial pathology and microbiology, Sri Venkateshwara dental college, Puducherry, 605102, India
| |
Collapse
|
4
|
Song X, Yue Z, Fan L, Zou H, Zhao P, Nie L, Zhu K, Jiang J, Lv Q, Wang Q. Relationship between circulating senescence-associated secretory phenotype levels and severity of type 2 diabetes-associated periodontitis: A cross-sectional study. J Periodontol 2023; 94:986-996. [PMID: 36688675 DOI: 10.1002/jper.22-0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/18/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Senescence-associated secretory phenotype (SASP) has recently been found to drive comorbid diabetes and periodontitis by inducing a chronic, low-degree inflammatory state. Here, we sought to explore the relationship between circulating SASP and the severity of type 2 diabetes-associated periodontitis (DP). METHODS Eighty patients (middle-aged periodontitis, M-P group; aged periodontitis, A-P group; M-DP group; and A-DP group; n = 20) provided gingival epithelium, serum, and periodontal clinical parameters. Circulating levels of 12 DP-related SASP factors were analyzed by immunoassay. Correlation between periodontal clinical parameters and circulating SASP levels was analyzed by Spearman's rank correlation coefficient and back propagation artificial neural network (BPNN). Senescence markers (p16, p21, and HMGB1) in gingiva were determined by immunofluorescence assay. RESULTS M-DP group had increased serum levels of twelve SASP factors compared with the M-P group (p < 0.5). Serum levels of IL-6, IL-4, and RAGE were higher in the A-DP group than the A-P group (p < 0.5). The circulating concentrations of certain SASP proteins, including IL-1β, IL-4, MMP-8, OPG, RANKL, and RAGE were correlated with the clinical parameters of DP. BPNN showed that serum SASP levels had considerable predictive value for CAL of DP. Additionally, the DP group had higher expressions of p16, p21, and cytoplasmic-HMGB1 in the gingiva than the P group (p < 0.5). CONCLUSIONS Significantly enhanced circulating SASP levels and aggravated periodontal destruction were observed in patients with DP. Importantly, a non-negligible association between serum SASP levels and the severity of DP was found.
Collapse
Affiliation(s)
- Xiuxiu Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ziqi Yue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linli Fan
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haonan Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kangjian Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingjing Jiang
- Department of Clinical Laboratory, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingguo Lv
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Ge W, Luo S, Zhang K, Liu L, Zhou Z, Liu Y. Role of histone deacetylase 9 in human periodontal ligament stem cells autophagy in a tumour necrosis factor α-induced inflammatory environment. Tissue Cell 2023; 82:102113. [PMID: 37262978 DOI: 10.1016/j.tice.2023.102113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/08/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Histone deacetylases (HDACs) play important roles in the post-translational modification of histones, which can affect the biological properties of cells, thereby altering disease progression and outcomes. However, it remains unclear how HDAC9, a class II HDAC, affects the autophagy of human periodontal ligament stem cells (hPDLSCs). We aimed to identify its role in autophagy in hPDLSCs in an inflammatory environment and to explore the potential regulatory mechanisms. A rat periodontitis model was induced by ligating the molars with silk thread. Expression of autophagy-related genes and TNF-α was elevated in this model. TNF-α was used to stimulate hPDLSCs to establish an inflammatory environment. In the TNF-α-stimulated hPDLSCs, the expression of ATG7, ATG12, Beclin-1, LC3 and HDAC9 was upregulated, and that of p62 was downregulated. When HDAC9 expression was inhibited, autophagy-related genes expression was downregulated, and p62 expression was upregulated in TNF-α-treated hPDLSCs, indicating that autophagy was inhibited under these conditions. ERK pathway inhibition significantly reduced HDAC9-mediated autophagy in TNF-α-treated hPDLSCs. These findings reveal that autophagy occurred in our rat periodontitis model and that HDAC9 regulated autophagy via ERK pathways in hPDLSCs in the inflammatory environment. HDAC9 is therefore a potential target for the treatment of periodontitis.
Collapse
Affiliation(s)
- Wenbin Ge
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan Province 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Shitong Luo
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan Province 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Kun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan Province 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Lizhiyi Liu
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan Province 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Zhi Zhou
- Department of Orthodontics, the Affiliated Hospital of Yunnan University, Kunming, Yunnan Province 650021, China.
| | - Yali Liu
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan Province 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China.
| |
Collapse
|
6
|
Chen WA, Dou Y, Fletcher HM, Boskovic DS. Local and Systemic Effects of Porphyromonas gingivalis Infection. Microorganisms 2023; 11:470. [PMID: 36838435 PMCID: PMC9963840 DOI: 10.3390/microorganisms11020470] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Porphyromonas gingivalis, a gram-negative anaerobe, is a leading etiological agent in periodontitis. This infectious pathogen can induce a dysbiotic, proinflammatory state within the oral cavity by disrupting commensal interactions between the host and oral microbiota. It is advantageous for P. gingivalis to avoid complete host immunosuppression, as inflammation-induced tissue damage provides essential nutrients necessary for robust bacterial proliferation. In this context, P. gingivalis can gain access to the systemic circulation, where it can promote a prothrombotic state. P. gingivalis expresses a number of virulence factors, which aid this pathogen toward infection of a variety of host cells, evasion of detection by the host immune system, subversion of the host immune responses, and activation of several humoral and cellular hemostatic factors.
Collapse
Affiliation(s)
- William A. Chen
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuetan Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hansel M. Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Danilo S. Boskovic
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
7
|
Liu W, Qiu W, Huang Z, Zhang K, Wu K, Deng K, Chen Y, Guo R, Wu B, Chen T, Fang F. Identification of nine signature proteins involved in periodontitis by integrated analysis of TMT proteomics and transcriptomics. Front Immunol 2022; 13:963123. [PMID: 36016933 PMCID: PMC9397367 DOI: 10.3389/fimmu.2022.963123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
Recently, there are many researches on signature molecules of periodontitis derived from different periodontal tissues to determine the disease occurrence and development, and deepen the understanding of this complex disease. Among them, a variety of omics techniques have been utilized to analyze periodontitis pathology and progression. However, few accurate signature molecules are known and available. Herein, we aimed to screened and identified signature molecules suitable for distinguishing periodontitis patients using machine learning models by integrated analysis of TMT proteomics and transcriptomics with the purpose of finding novel prediction or diagnosis targets. Differential protein profiles, functional enrichment analysis, and protein-protein interaction network analysis were conducted based on TMT proteomics of 15 gingival tissues from healthy and periodontitis patients. DEPs correlating with periodontitis were screened using LASSO regression. We constructed a new diagnostic model using an artificial neural network (ANN) and verified its efficacy based on periodontitis transcriptomics datasets (GSE10334 and GSE16134). Western blotting validated expression levels of hub DEPs. TMT proteomics revealed 5658 proteins and 115 DEPs, and the 115 DEPs are closely related to inflammation and immune activity. Nine hub DEPs were screened by LASSO, and the ANN model distinguished healthy from periodontitis patients. The model showed satisfactory classification ability for both training (AUC=0.972) and validation (AUC=0.881) cohorts by ROC analysis. Expression levels of the 9 hub DEPs were validated and consistent with TMT proteomics quantitation. Our work reveals that nine hub DEPs in gingival tissues are closely related to the occurrence and progression of periodontitis and are potential signature molecules involved in periodontitis.
Collapse
Affiliation(s)
- Wei Liu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhendong Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaiying Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Keke Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ke Deng
- Shanghai Key Laboratory of Stomatology, Department of Oral Implantology, Shanghai Ninth People Hospital, National Center of Stomatology, National Clinical Research Center of Oral Diseases, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanting Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiming Guo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Yuan S, Wang C, Jiang W, Wei Y, Li Q, Song Z, Li S, Sun F, Liu Z, Wang Y, Hu W. Comparative Transcriptome Analysis of Gingival Immune-Mediated Inflammation in Peri-Implantitis and Periodontitis Within the Same Host Environment. J Inflamm Res 2022; 15:3119-3133. [PMID: 35642216 PMCID: PMC9148613 DOI: 10.2147/jir.s363538] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/13/2022] [Indexed: 01/10/2023] Open
Affiliation(s)
- Shasha Yuan
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China
| | - Cui Wang
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China
| | - Wenting Jiang
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China
| | - Yiping Wei
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China
| | - Qingqing Li
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, People’s Republic of China
- Center for Human Disease Genomics, Peking University, Beijing, People’s Republic of China
| | - Zhanming Song
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, People’s Republic of China
- Center for Human Disease Genomics, Peking University, Beijing, People’s Republic of China
| | - Siqi Li
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China
| | - Fei Sun
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China
| | - Zhongtian Liu
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, People’s Republic of China
- Center for Human Disease Genomics, Peking University, Beijing, People’s Republic of China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, People’s Republic of China
- Center for Human Disease Genomics, Peking University, Beijing, People’s Republic of China
- Correspondence: Ying Wang, Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, No. 38, College Road, Haidian District, Beijing, People’s Republic of China, Tel +86 10 8280115, Email
| | - Wenjie Hu
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China
- NHC Research Center of Engineering and Technology for Computerized Dentistry, Beijing, People’s Republic of China
- Wenjie Hu, Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Street, Haidian District, Beijing, People’s Republic of China, Tel +86 10 82195374, Email
| |
Collapse
|
9
|
Ohnishi T, Nakamura T, Shima K, Noguchi K, Chiba N, Matsuguchi T. Periodontitis promotes the expression of gingival transmembrane serine protease 2 (TMPRSS2), a priming protease for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). J Oral Biosci 2022; 64:229-236. [PMID: 35472469 PMCID: PMC9035663 DOI: 10.1016/j.job.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
Abstract
Objectives The oral cavity is one of the main entry sites for SARS-CoV-2. Gingival keratinocytes express transmembrane serine protease 2 (TMPRSS2), responsible for priming the SARS-CoV-2 spike protein. We investigated whether periodontitis increased the expression of TMPRSS2. Methods To investigate gene expression in periodontitis, we analyzed the expression of specific genes from (1) the Gene Expression Omnibus (GEO) dataset of 247 human gingival tissues and (2) an experimentally-induced periodontitis mouse model. Human gingival tissues with or without periodontitis were immunohistochemically stained using an anti-TMPRSS2 antibody. Analysis of the TMPRSS2 promoter was performed using a ChIP-Atlas dataset. TMPRSS2 expression was detected in cultured human keratinocytes using quantitative reverse transcription (qRT)-PCR and Western blot analysis. Results GEO dataset analysis and an experimentally-induced periodontitis model revealed increased expression of TMPRSS2 in periodontitis gingiva. The keratinocyte cell membrane in periodontitis gingiva was strongly immunohistochemically stained for TMPRSS2. Using ChIP-Atlas and GEO datasets, we screened for transcription factors that bind to the TMPRSS2 promoter region. We found one candidate, estrogen receptor 1 (ESR1), highly expressed in periodontitis gingiva. Analysis of the GEO dataset revealed a correlation between ESR1 and TMPRSS2 expression in gingival tissues. An ESR1 ligand induced TMPRSS2 expression in cultured keratinocytes. Conclusions Periodontitis increases TMPRSS2 expression in the cell membrane of gingival keratinocytes.
Collapse
Affiliation(s)
- Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Toshiaki Nakamura
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Kaori Shima
- Department of Oral Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Japan.
| |
Collapse
|
10
|
Ng E, Tay JRH, Ong MMA. Minimally Invasive Periodontology: A Treatment Philosophy and Suggested Approach. Int J Dent 2021; 2021:2810264. [PMID: 34257659 PMCID: PMC8245214 DOI: 10.1155/2021/2810264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/20/2023] Open
Abstract
Severe periodontitis is a highly prevalent dental disease. With the advent of implant dentistry, teeth are often extracted and replaced. Periodontal surgery, where indicated, could also result in increased trauma to the patient. This literature review discusses different treatment modalities for periodontitis and proposes a treatment approach emphasizing maximum preservation of teeth while minimizing morbidity to the patient. Scientific articles were retrieved from the MEDLINE/PubMed database up to January 2021 to identify appropriate articles that addressed the objectives of this review. This was supplemented with hand searching using reference lists from relevant articles. As tooth prognostication does not have a high predictive value, a more conservative approach in extracting teeth should be abided by. This may involve repeated rounds of nonsurgical periodontal therapy, and adjuncts such as locally delivered statin gels and subantimicrobial-dose doxycycline appear to be effective. Periodontal surgery should not be carried out at an early phase in therapy as improvements in nonsurgical therapy may be observed up to 12 months from initial treatment. Periodontal surgery, where indicated, should also be minimally invasive, with periodontal regeneration being shown to be effective over 20 years of follow-up. Biomarkers provide an opportunity for early detection of disease activity and personalised treatment. Quality of life is proposed as an alternative end point to the traditional biomedical paradigm focused on the disease state and clinical outcomes. In summary, minimally invasive therapy aims to preserve health and function of the natural dentition, thus improving the quality of life for patients with periodontitis.
Collapse
Affiliation(s)
- Ethan Ng
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore 168938, Singapore
| | - John Rong Hao Tay
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore 168938, Singapore
| | - Marianne Meng Ann Ong
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore 168938, Singapore
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
11
|
Zhang P, Lu B, Zhu R, Yang D, Liu W, Wang Q, Ji N, Chen Q, Ding Y, Liang X, Wang Q. Hyperglycemia accelerates inflammaging in the gingival epithelium through inflammasomes activation. J Periodontal Res 2021; 56:667-678. [PMID: 33650689 DOI: 10.1111/jre.12863] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Diabetes accelerates inflammaging in various tissue with an increase in senescent cell burden and senescence-associated secretory phenotype (SASP) secretion, which is a significant cause of tissue dysfunction and contributes to the diabetic complications. Recently, inflammasomes are thought to contribute to inflammaging. Here, utilizing diabetic models in vivo and in vitro, we investigated the potential association between hyperglycemia-induced inflammaging and gingival tissue dysfunction and the mechanism underlying inflammasome-associated inflammaging. MATERIALS AND METHODS Gingival epithelium and serum were collected from control and diabetic patients and mice. The expression of p16, p21, and inflammasomes in the gingival epithelium, SASP factors in serum, and the molecular factors associated with gingival epithelial barrier function were assessed. Human oral keratinocyte (HOK) was stimulated with normal and high glucose, and pre-treated with Z-YVAD-FMK (Caspase-1 inhibitor) prior to evaluating cellular senescence, SASP secretion, and inflammasome activation. RESULTS In vivo, hyperglycemia significantly elevated the local burden of senescent cells in the gingival epithelium and SASP factors in the serum and simultaneously reduced the expression levels of Claudin-1, E-cadherin, and Connexin 43 in the gingival epithelium. Interestingly, the inflammasomes were activated in the gingival epithelium. In vitro, high glucose-induced the inflammaging in HOK, and blocking inflammasome activation through inhibiting Caspase-1 and glucose-induced inflammaging. CONCLUSIONS Hyperglycemia accelerated inflammaging in the gingival epithelium through inflammasomes activation, which is potentially affiliated with a decline in the gingival epithelial barrier function in diabetes. Inflammasomes-related inflammaging may be the crucial mechanism underlying diabetic periodontitis and represents significant opportunities for advancing prevention and treatment options.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boyao Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dawei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weiqing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
CXCL5, CXCL8, and CXCL10 regulation by bacteria and mechanical forces in periodontium. Ann Anat 2020; 234:151648. [PMID: 33221386 DOI: 10.1016/j.aanat.2020.151648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/21/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate the expressions of CXCL5, CXCL8, and CXCL10 in periodontal cells and tissues in response to microbial signals and/or biomechanical forces. METHODS Human gingival biopsies from inflamed and healthy sites were used to examine the chemokine expressions and protein levels by real-time PCR and immunohistochemistry. The chemokines were also investigated in gingival biopsies from rats submitted to experimental periodontitis and/or tooth movement. Furthermore, chemokine levels were determined in human periodontal fibroblasts stimulated by the periodontopathogen Fusobacterium nucleatum and/or constant tensile forces (CTS) by real-time PCR and ELISA. Additionally, gene expressions were evaluated in periodontal fibroblasts exposed to F. nucleatum and/or CTS in the presence and absence of a MAPK inhibitor by real-time PCR. RESULTS Increased CXCL5, CXCL8, and CXCL10 levels were observed in human and rat gingiva from sites of inflammation as compared with periodontal health. The rat experimental periodontitis caused a significant (p<0.05) increase in alveolar bone resorption, which was further enhanced when combined with tooth movement. In vitro, F. nucleatum caused a significant upregulation of CXCL5, CXCL8, and CXCL10 at 1 day. Once the cells were exposed simultaneously to F. nucleatum and CTS, the chemokines regulation was significantly enhanced. The transcriptional findings were also observed at protein level. Pre-incubation with the MEK1/2 inhibitor significantly (p<0.05) inhibited the stimulatory actions of F. nucleatum either alone or in combination with CTS on the expression levels of CXCL5, CXCL8, and CXCL10 at 1d. CONCLUSIONS Our data provide original evidence that biomechanical strain further increases the stimulatory actions of periodontal bacteria on the expressions of these chemokines. Therefore, biomechanical loading in combination with periodontal infection may lead to stronger recruitment of immunoinflammatory cells to the periodontium, which might result in an aggravation of periodontal inflammation and destruction.
Collapse
|
13
|
Isola G. The Impact of Diet, Nutrition and Nutraceuticals on Oral and Periodontal Health. Nutrients 2020; 12:2724. [PMID: 32899964 PMCID: PMC7551041 DOI: 10.3390/nu12092724] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Oral and periodontal diseases can determine severe functional, phonatory and aesthetic impairments and are the main cause of adult tooth loss. They are caused by some specific bacteria that provoke an intense local inflammatory response and affect-with particular gravity-susceptible subjects, because of reasons related to genetics and lifestyles (e.g., smoking and home oral hygiene habits). They are more frequent in the disadvantaged segments of society and, in particular, in subjects who have difficulty accessing preventive services and dental care. Some systemic diseases, such as uncontrolled diabetes, can increase their risk of development and progression. Recently, in addition to the obvious considerations of severe alterations and impairments for oral health and well-being, it has been noted that periodontitis can cause changes in the whole organism. Numerous clinical and experimental studies have highlighted the presence of a strong association between periodontitis and some systemic diseases, in particular, cardiovascular diseases, diabetes, lung diseases and complications of pregnancy. The purpose of this editorial is to provide a current and thoughtful perspective on the relationship of diet and natural agents on oral, periodontal diseases, and chewing disorder preventions which may reflect good systemic conditions and related quality of life or to analyze indirect effects through the contribution of diet and nutrition to systemic health in order to obtain a modern diagnostic-therapeutic approach.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 78, 95124 Catania, Italy
| |
Collapse
|
14
|
Zhou H, Chen D, Xie G, Li J, Tang J, Tang L. LncRNA-mediated ceRNA network was identified as a crucial determinant of differential effects in periodontitis and periimplantitis by high-throughput sequencing. Clin Implant Dent Relat Res 2020; 22:424-450. [PMID: 32319195 DOI: 10.1111/cid.12911] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/28/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Although periimplantitis and periodontitis share similar features, particularly clinical features, they are two different diseases and should be analyzed separately. Thus far, few omics-level differences in periimplantitis and periodontitis have been reported. This study was aimed at exploring the differential effects of expression mRNAs, lncRNAs, and miRNAs in periodontitis and periimplantitis by high-throughput sequencing and competitive endogenous RNA (ceRNA) analysis. METHODS Gingival tissues of healthy individuals (HI) and periimplantitis (PI) and periodontitis (P) patients were collected and used for genome-wide sequencing. The differentially expressed genes (DEGs) were screened and visualized by R software. The functions and pathways of DEGs were analyzed using Metascape, and the ceRNA network was constructed using the Cytoscape software. Finally, gene set enrichment analysis (GSEA) was used to predict the function of key nodes in ceRNA. RESULTS AND CONCLUSION By constructing the regulated ceRNA network, six genes (FAM126B, SORL1, PRLR, CPEB2, RAP2C, and YOD1) and 16 miRNAs (hsa-miR-338-5p, hsa-miR-650, hsa-miR-9-5p, hsa-miR-1290, hsa-miR-544a, hsa-miR-3179, hsa-miR-1269a, hsa-miR-3679-5p, hsa-miR-149-5p, hsa-miR-615-3p, hsa-miR-33b-5p, hsa-miR-31-5p, hsa-miR-4639-5p, hsa-miR-204-5p, hsa-miR-5588-5p, and hsa-mir-196a-5p) were detected. Five long non-coding RNAs (lnc-CORO2B-1, lnc-MBL2-7, lnc-TRIM45-1, lnc-CHST10-2, and lnc-TNP1-6) were found to target these miRNAs in this ceRNA network. The ceRNA network based on transcriptome data revealed that FAM126B, SORL1, PRLR, CPEB2, RAP2C, and YOD1 were crucial proteins of differential effects in periodontitis and periimplantitis. The lncRNA-miRNA-mRNA interaction involved the regulation of the Hippo signaling pathway, Wnt signaling pathway, Toll-like receptor signaling pathway, NOD signaling pathway, oxidative stress, and innate immune process. These regulated pathways and biological processes may be factors contributing to the pathogenesis of periimplantitis being distinct from that of periodontitis.
Collapse
Affiliation(s)
- Hailun Zhou
- Department of Implant Dentistry, Stomatology Hospital, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Donghui Chen
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China.,Department of Periodontology, Stomatology Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Guifang Xie
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guilin Medical College, Guilin, China
| | - Jiaojie Li
- Department of Implant Dentistry, Stomatology Hospital, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Jianjia Tang
- Department of Implant Dentistry, Stomatology Hospital, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| | - Li Tang
- Department of Implant Dentistry, Stomatology Hospital, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, Nanning, China.,Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, China
| |
Collapse
|
15
|
Leblebicioglu B, Alssum L, Eubank TD, Yildiz VO, Tatakis DN. Wound Fluid Cytokine Profile Following Bone Regeneration Procedures. J ORAL IMPLANTOL 2020; 46:107-113. [PMID: 31909694 DOI: 10.1563/aaid-joi-d-19-00061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clinical parameters available to evaluate early healing phases of bone regeneration procedures are limited. This study explores wound fluid (WF) content for molecular markers to differentiate wound healing responses in the early postoperative period after bone graft placement. Fifteen patients (50 ± 5 years old; 8 men) scheduled to receive tooth extraction and bone graft placement at maxillary nonmolar single-tooth sites were recruited. Primary wound closure was not intended at time of surgery. Gingival crevicular fluid from adjacent teeth or WF from surgical wound edges were collected (30 seconds) at baseline, at 3, 6, and 9 days, and at 1 and 4 months. Multiplex protein assay was used to determine concentration of various wound healing mediators. Immediately after surgery, 87% of surgical sites exhibited open wound. At day 9, mean wound exposure was 4.8 ± 0.4 mm. At 1 month, all wounds were clinically closed. The WF tripled in volume at day 3 and day 6 (P ≤ .05), compared with baseline gingival crevicular fluid, and gradually decreased as wounds closed. The WF concentrations of interleukin (IL)-6, placental growth factor, plasminogen activator inhibitor 1, insulin-like growth factor binding protein 1, and soluble cluster determinant 40 ligand were increased during early healing days, generally with peak concentration at day 6 (P ≤ .004). Conversely, WF concentrations of IL-18 and epidermal growth factor were decreased after surgery, generally not reaching baseline values until wound closure (P ≤ .008). In general, WF cytokine expression kinetics were concordant with wound closure dynamics (P ≤ .04). These results suggest that WF molecular markers such as IL-6, and to a lesser extent placental growth factor and IL-18, might help differentiate wound healing responses after bone regeneration procedures.
Collapse
Affiliation(s)
- Binnaz Leblebicioglu
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Lamees Alssum
- Department of Periodontics & Community Dentistry, College of Dentistry, King Saud University, Saudi Arabia; previously with The Ohio State University, Columbus, Ohio
| | - Timothy D Eubank
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Mogantown, WV
| | - Vedat O Yildiz
- Center for Biostatistics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Dimitris N Tatakis
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
16
|
Zhang P, Wang Q, Nie L, Zhu R, Zhou X, Zhao P, Ji N, Liang X, Ding Y, Yuan Q, Wang Q. Hyperglycemia-induced inflamm-aging accelerates gingival senescence via NLRC4 phosphorylation. J Biol Chem 2019; 294:18807-18819. [PMID: 31676687 DOI: 10.1074/jbc.ra119.010648] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/17/2019] [Indexed: 02/05/2023] Open
Abstract
Inflamm-aging was recently affiliated with the progression of diabetic complications. Local cellular senescence together with senescence-associated secretory phenotype (SASP) are the main contributors to inflamm-aging. However, little is known about their involvement in diabetic periodontitis. Gingiva is the first line of host defense in the periodontium, and macrophages are key SASP-carrying cells. Here, we explored the molecular mechanism by which hyperglycemia drives the inflamm-aging in the gingival tissue of diabetic mice and macrophages. We demonstrated that hyperglycemia increased the infiltrated macrophage senescence in gingival tissue of diabetic mice. Simultaneously, hyperglycemia elevated the local burden of senescent cells in gingival tissue and induced the serum secretion of SASP factors in vivo Moreover, in vitro, high glucose induced macrophage senescence and SASP factors secretion through phosphorylation of NLRC4, which further stimulated the NF-κB/Caspase-1 cascade via an IRF8-dependent pathway. Deletion of NLRC4 or IRF8 abolished hyperglycemia-induced cellular senescence and SASP in macrophages. In addition, we found that treatment with metformin inhibited NLRC4 phosphorylation and remarkably decreased cellular senescence and SASP in the context of hyperglycemia. Our data demonstrated that hyperglycemia induces the development of inflamm-aging in gingival tissue and suggested that NLRC4 is a potential target for treatment of diabetes-associated complications.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rui Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Pengfei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xing Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|