1
|
Fiddes KR, Magnotti J, Armien AG, LaDouceur EEB. Polyglucosan storage disease in a black-capped parrot (Pionitesmelanocephalus). J Comp Pathol 2025; 216:20-24. [PMID: 39657409 DOI: 10.1016/j.jcpa.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Following an episode of sudden lethargy, an 18-month-old female black-capped parrot (Pionites melanocephalus) died while being examined. On gross examination, there was fluid within the coelom, hepatomegaly with yellow colouration and the heart appeared enlarged with pallor throughout the myocardium. On histological examination, cardiomyocytes were swollen with loss of cross striations and contained 6-12-μm diameter intrasarcoplasmic pale grey inclusions of storage material. Cardiomyocytes were occasionally karyomegalic with mitotic figures, lost or replaced by fibrosis and inflammation. Within the liver, there was periportal and centrilobular fibrosis and mild lipid-type vacuolar change with extramedullary haematopoiesis. In the lung, the bronchi and parabronchi had luminal haemorrhage and oedema with hypertrophy of epithelium lining the parabronchi. On transmission electron microscopy, the storage material was non-membrane bound, fibrillar and intrasarcoplasmic and had an occasional homogeneous, electron-dense, central core. The morphological features of this material, combined with the histological findings, are consistent with a diagnosis of polyglucosan storage disease and subsequent heart failure.
Collapse
Affiliation(s)
- Kelsey R Fiddes
- Joint Pathology Center, 606 Stephen Sitter Ave, Silver Spring, Maryland 20910, USA.
| | - Jess Magnotti
- Stahl Exotic Animal Veterinary Services, 4105 Rust Rd., Fairfax, Virginia 22030, USA; Gulf Coast Veterinary Specialists, 8042 Katy Fwy, Houston, Texas 77024, USA
| | - Anibal G Armien
- California Animal Health & Food Safety Laboratory System, 620 W Health Science Dr, Davis, California 95616, USA
| | - Elise E B LaDouceur
- Joint Pathology Center, 606 Stephen Sitter Ave, Silver Spring, Maryland 20910, USA
| |
Collapse
|
2
|
Orciani C, Ballesteros C, Troncy E, Berthome C, Bujold K, Bennamoune N, Sparapani S, Pugsley MK, Paquette D, Boulay E, Authier S. The Spontaneous Incidence of Neurological Clinical Signs in Preclinical Species Using Cage-side Observations or High-definition Video Monitoring: A Retrospective Analysis. Int J Toxicol 2024; 43:123-133. [PMID: 38063479 DOI: 10.1177/10915818231218984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
When conducting toxicology studies, the interpretation of drug-related neurological clinical signs such as convulsions, myoclonus/myoclonic jerks, tremors, ataxia, and salivation requires an understanding of the spontaneous incidence of those observations in commonly used laboratory animal species. The spontaneous incidence of central nervous system clinical signs in control animals from a single facility using cage-side observations or high definition video monitoring was retrospectively analyzed. Spontaneous convulsions were observed at low incidence in Beagle dogs and Sprague-Dawley rats but were not identified in cynomolgus monkeys and Göttingen minipigs. Spontaneous myoclonic jerks and muscle twitches were observed at low incidence in Beagle dogs, cynomolgus monkeys, and Sprague-Dawley rats but were not seen in Göttingen minipigs. Spontaneous ataxia/incoordination was identified in all species and generally with a higher incidence when using video monitoring. Salivation and tremors were the two most frequent spontaneous clinical signs and both were observed in all species. Data from the current study unveil potential limitations when using control data obtained from a single study for toxicology interpretation related to low incidence neurological clinical signs while providing historical control data from Beagle dogs, cynomolgus monkeys, Sprague-Dawley rats, and Göttingen minipigs.
Collapse
Affiliation(s)
| | | | - Eric Troncy
- GREPAQ, Faculté de Médecine Vétérinaire, Universite de Montreal, Saint Hyacinthe, QC, Canada
| | | | | | | | | | | | - Dominique Paquette
- GREPAQ, Faculté de Médecine Vétérinaire, Universite de Montreal, Saint Hyacinthe, QC, Canada
| | - Emmanuel Boulay
- Charles River, Laval, QC, Canada
- GREPAQ, Faculté de Médecine Vétérinaire, Universite de Montreal, Saint Hyacinthe, QC, Canada
| | - Simon Authier
- Charles River, Laval, QC, Canada
- GREPAQ, Faculté de Médecine Vétérinaire, Universite de Montreal, Saint Hyacinthe, QC, Canada
| |
Collapse
|
3
|
Flegel T, Dirauf C, Kehl A, Dietzel J, Holtdirk A, Langbein-Detsch I, Müller E. Clinical Signs in 166 Beagles with Different Genotypes of Lafora. Genes (Basel) 2024; 15:122. [PMID: 38275603 PMCID: PMC10815021 DOI: 10.3390/genes15010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Lafora disease (LD) is a genetic disease affecting beagles, resulting in seizures in combination with other signs. The aim of this study was to describe the clinical signs of LD in beagles with different NHLRC1 genotypes. One hundred and sixty-six beagles were tested for an NHLRC1 gene defect: L/L (n = 67), N/L (n = 32), N/N (n = 67). Owners were asked to participate in a survey about the clinical signs of LD in their dogs. These were recorded for the three possible genotypes in the two age groups, <6 years and ≥6 years. In all genotypes, nearly all the signs of LD were described. In the age group ≥ 6 years, however, they were significantly more frequent in beagles with the L/L genotype. If the following three clinical signs occur together in a beagle ≥ 6 years-jerking of the head, photosensitivity and forgetting things he/she used to be able to do-98.2% of these dogs are correctly assigned to the L/L genotype. If one or two of these signs are missing, the correct classification decreases to 92.1% and 13.2%, respectively. Only the combination of certain signs truly indicates the L/L genotype. Yet, for many dogs, only genetic testing will provide confirmation of the disease.
Collapse
Affiliation(s)
- Thomas Flegel
- Department for Small Animals, Veterinary Faculty, Leipzig University, 04103 Leipzig, Germany;
| | - Christine Dirauf
- Department of Molecular Biology, Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (C.D.); (A.K.); (I.L.-D.); (E.M.)
| | - Alexandra Kehl
- Department of Molecular Biology, Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (C.D.); (A.K.); (I.L.-D.); (E.M.)
| | - Josephine Dietzel
- Department for Small Animals, Veterinary Faculty, Leipzig University, 04103 Leipzig, Germany;
| | | | - Ines Langbein-Detsch
- Department of Molecular Biology, Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (C.D.); (A.K.); (I.L.-D.); (E.M.)
| | - Elisabeth Müller
- Department of Molecular Biology, Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (C.D.); (A.K.); (I.L.-D.); (E.M.)
| |
Collapse
|
4
|
Vincent A, Ahmed K, Hussein R, Berberovic Z, Tumber A, Zhao X, Minassian BA. Retinal Phenotyping of a Murine Model of Lafora Disease. Genes (Basel) 2023; 14:genes14040854. [PMID: 37107612 PMCID: PMC10137594 DOI: 10.3390/genes14040854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Lafora disease (LD) is a progressive neurologic disorder caused by biallelic pathogenic variants in EPM2A or EPM2B, leading to tissue accumulation of polyglucosan aggregates termed Lafora bodies (LBs). This study aimed to characterize the retinal phenotype in Epm2a−/− mice by examining knockout (KO; Epm2a−/−) and control (WT) littermates at two time points (10 and 14 months, respectively). In vivo exams included electroretinogram (ERG) testing, optical coherence tomography (OCT) and retinal photography. Ex vivo retinal testing included Periodic acid Schiff Diastase (PASD) staining, followed by imaging to assess and quantify LB deposition. There was no significant difference in any dark-adapted or light-adapted ERG parameters between KO and WT mice. The total retinal thickness was cFigure mparable between the groups and the retinal appearance was normal in both groups. On PASD staining, LBs were observed in KO mice within the inner and outer plexiform layers and in the inner nuclear layer. The average number of LBs within the inner plexiform layer in KO mice were 1743 ± 533 and 2615 ± 915 per mm2, at 10 and 14 months, respectively. This is the first study to characterize the retinal phenotype in an Epm2a−/− mouse model, demonstrating significant LB deposition in the bipolar cell nuclear layer and its synapses. This finding may be used to monitor the efficacy of experimental treatments in mouse models.
Collapse
Affiliation(s)
- Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Kashif Ahmed
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Rowaida Hussein
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Xiaochu Zhao
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Berge A. Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Charalambous M, Fischer A, Potschka H, Walker MC, Raedt R, Vonck K, Boon P, Lohi H, Löscher W, Worrell G, Leeb T, McEvoy A, Striano P, Kluger G, Galanopoulou AS, Volk HA, Bhatti SFM. Translational veterinary epilepsy: A win-win situation for human and veterinary neurology. Vet J 2023; 293:105956. [PMID: 36791876 DOI: 10.1016/j.tvjl.2023.105956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Epilepsy is a challenging multifactorial disorder with a complex genetic background. Our current understanding of the pathophysiology and treatment of epilepsy has substantially increased due to animal model studies, including canine studies, but additional basic and clinical research is required. Drug-resistant epilepsy is an important problem in both dogs and humans, since seizure freedom is not achieved with the available antiseizure medications. The evaluation and exploration of pharmacological and particularly non-pharmacological therapeutic options need to remain a priority in epilepsy research. Combined efforts and sharing knowledge and expertise between human medical and veterinary neurologists are important for improving the treatment outcomes or even curing epilepsy in dogs. Such interactions could offer an exciting approach to translate the knowledge gained from people and rodents to dogs and vice versa. In this article, a panel of experts discusses the similarities and knowledge gaps in human and animal epileptology, with the aim of establishing a common framework and the basis for future translational epilepsy research.
Collapse
Affiliation(s)
- Marios Charalambous
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover 30559, Germany.
| | - Andrea Fischer
- Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich 80539, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich 80539, Germany
| | - Matthew C Walker
- Institute of Neurology, University College London, London WC1N 3JD, UK
| | - Robrecht Raedt
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Kristl Vonck
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Paul Boon
- Department of Neurology, 4brain, Ghent University, Ghent 9000, Belgium
| | - Hannes Lohi
- Department of Veterinary Biosciences, Department of Medical and Clinical Genetics, and Folkhälsan Research Center, University of Helsinki, Helsinki 00014, Finland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | | | - Tosso Leeb
- Institute of Genetics, University of Bern, Bern 3001, Switzerland
| | - Andrew McEvoy
- Institute of Neurology, University College London, London WC1N 3JD, UK
| | - Pasquale Striano
- IRCCS 'G. Gaslini', Genova 16147, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Gerhard Kluger
- Research Institute, Rehabilitation, Transition-Palliation', PMU Salzburg, Salzburg 5020, Austria; Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schoen Clinic Vogtareuth, Vogtareuth 83569, Germany
| | - Aristea S Galanopoulou
- Saul R Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover 30559, Germany
| | - Sofie F M Bhatti
- Faculty of Veterinary Medicine, Small Animal Department, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
6
|
Moura E, Tasqueti UI, Mangrich-Rocha RMV, Filho JRE, de Farias MR, Pimpão CT. Inborn Errors of Metabolism in Dogs: Historical, Metabolic, Genetic, and Clinical Aspects. Top Companion Anim Med 2022; 51:100731. [DOI: 10.1016/j.tcam.2022.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
7
|
Lafora Disease and Alpha-Synucleinopathy in Two Adult Free-Ranging Moose (Alces alces) Presenting with Signs of Blindness and Circling. Animals (Basel) 2022; 12:ani12131633. [PMID: 35804532 PMCID: PMC9264765 DOI: 10.3390/ani12131633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Reports of behavioral signs, such as blindness and circling in free-ranging moose from different parts of the world, have spurred comprehensive pathological investigation to find the causes of the disease that have clinical relevance. In this case study, brains collected from two adult free-ranging moose (Alces alces) cows that were seemingly blind and found walking in circles were examined by light and electron microscopy with further ancillary testing. Here, we report for the first time Lafora disease and alpha-synucleinopathy in two wild free-ranging moose cows who presented with abnormal behavior and blindness, with similar neuronal polyglucosan body (PGB) accumulations identified in humans and other animals. Microscopic analysis of the hippocampus of brain revealed inclusion bodies resembling PGBs (Lafora disease) in the neurons with ultrastructural findings of aggregates of branching filaments, consistent with polyglucosan bodies. Furthermore, α-synuclein immunopositivity was noted in the hippocampus, with accumulations of small granules ultrastructurally distinct from PGBs and morphologically compatible with alpha-synucleinopathy (Lewy body). The apparent blindness found in these moose could be related to an injury associated with secondary bacterial invasion; however, an accumulation of neurotoxicants (PGBs and α-synucleins) in retinal ganglion cells could also be the cause. Lafora disease and alpha-synucleinopathy were considered in the differential diagnosis of the young adult moose who presented with signs of blindness and behavioral signs such as circling. Abstract Lafora disease is an autosomal recessive glycogen-storage disorder resulting from an accumulation of toxic polyglucosan bodies (PGBs) in the central nervous system, which causes behavioral and neurologic symptoms in humans and other animals. In this case study, brains collected from two young adult free-ranging moose (Alces alces) cows that were seemingly blind and found walking in circles were examined by light and electron microscopy. Microscopic analysis of the hippocampus of the brain revealed inclusion bodies resembling PGBs in the neuronal perikaryon, neuronal processes, and neuropil. These round inclusions measuring up to 30 microns in diameter were predominantly confined to the hippocampus region of the brain in both animals. The inclusions tested α-synuclein-negative by immunohistochemistry, α-synuclein-positive with PAS, GMS, and Bielschowsky’s staining; and diastase-resistant with central basophilic cores and faintly radiating peripheral lines. Ultrastructural examination of the affected areas of the hippocampus showed non-membrane-bound aggregates of asymmetrically branching filaments that bifurcated regularly, consistent with PGBs in both animals. Additionally, α-synuclein immunopositivity was noted in the different regions of the hippocampus with accumulations of small granules ultrastructurally distinct from PGBs and morphologically compatible with alpha-synucleinopathy (Lewy body). The apparent blindness found in these moose could be related to an injury associated with secondary bacterial invasion; however, an accumulation of neurotoxicants (PGBs and α-synuclein) in retinal ganglions cells could also be the cause. This is the first report demonstrating Lafora disease with concurrent alpha-synucleinopathy (Lewy body neuropathy) in a non-domesticated animal.
Collapse
|
8
|
Menchetti M, Antinori L, Serra GD, Bertolini G, Rosati M. Clinical features, imaging characteristics, genetic investigation and histopathologic findings in a Chihuahua dog with Lafora disease. VETERINARY RECORD CASE REPORTS 2021. [DOI: 10.1002/vrc2.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marika Menchetti
- Neurology and Neurosurgery Division San Marco Private Veterinary Clinic Veggiano Italy
| | - Lucia Antinori
- Neurology and Neurosurgery Division San Marco Private Veterinary Clinic Veggiano Italy
| | - Giulia Dalla Serra
- Dagnostic and Interventional Radiology Division San Marco Private Veterinary Clinic Veggiano Italy
| | - Giovanna Bertolini
- Dagnostic and Interventional Radiology Division San Marco Private Veterinary Clinic Veggiano Italy
| | - Marco Rosati
- Section of Clinical & Comparative Neuropathology Ludwig‐Maximilians‐Universität Munchen Germany
| |
Collapse
|
9
|
Flegel T, Kornberg M, Mühlhause F, Neumann S, Fischer A, Wielaender F, König F, Pakozdy A, Quitt PR, Trapp AM, Jurina K, Steffen F, Rentmeister KW, Flieshardt C, Dietzel J. A retrospective case series of clinical signs in 28 Beagles with Lafora disease. J Vet Intern Med 2021; 35:2359-2365. [PMID: 34486182 PMCID: PMC8478043 DOI: 10.1111/jvim.16255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Clinical signs and their progression in Beagles with Lafora disease are poorly described. OBJECTIVES To describe clinical signs in Beagles with Lafora disease. ANIMALS Twenty-eight Beagles with Lafora disease confirmed by genetic testing or histopathology. METHODS Retrospective multicenter case series. Data regarding signalment, clinical signs, diagnostic tests and treatment were retrieved from hospital data files. A questionnaire was sent to owners asking about neurological deficits, changes in cognitive functions, behavioral changes, response to treatment and survival time. RESULTS Onset of clinical signs was 8.3 years (mean; range, 6.3-13.3). All dogs had myoclonic episodes as an initial clinical sign with tonic-clonic seizures in n = 11/28 (39%) and n = 12/28 (43%) later developing tonic-clonic seizures. Deficits of coordination (n = 21/25; 84%), impaired vision (n = 15/26; 58%), and impaired hearing (n = 13/26; 50%) developed later. Mental decline was observed as loss of house training (urination; n = 8/25; 32%), difficulties performing learned tasks (n = 9/25; 36%), and difficulties learning new tasks (n = 7/23; 30%). Common behavioral changes were: increased photosensitivity (n = 20/26; 77%), staring into space (n = 16/25; 64%), reduced stress resistance (n = 15/26; 58%), increased noise sensitivity (n = 14/26; 54%), and separation anxiety (n = 11/25; 44%). Twenty-one dogs were alive (median age 11.9 years; range, 9.8-18.6), and 7 dogs were dead (mean age 12.1 years; SD: 1.3; range, 10.5-12.6) at time of writing. CONCLUSIONS AND CLINICAL IMPORTANCE Lafora disease in Beagles causes significant behavioral changes, and mental decline as well as neurological deficits in addition to myoclonic episodes and generalized tonic-clonic seizures. Nevertheless, a relatively normal life span can be expected.
Collapse
Affiliation(s)
- Thomas Flegel
- Small Animal Department, Faculty of Veterinary MedicineLeipzig UniversityLeipzigGermany
| | | | | | | | - Andrea Fischer
- Centre for Clinical Veterinary MedicineLMU MunichMunichGermany
| | | | | | - Akos Pakozdy
- University Clinic for Small AnimalsUniversity of Veterinary MedicineViennaAustria
| | | | | | | | - Frank Steffen
- Neurology Service, Department of Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Kai W. Rentmeister
- Specialty Practice for Veterinary Neurology and NeurosurgeryDettelbachGermany
| | | | - Josephine Dietzel
- Small Animal Department, Faculty of Veterinary MedicineLeipzig UniversityLeipzigGermany
| |
Collapse
|
10
|
Mari L, Comero G, Mueller E, Kuehnlein P, Kehl A. NHLRC1 homozygous dodecamer expansion in a Newfoundland dog with Lafora disease. J Small Anim Pract 2021; 62:1030-1032. [PMID: 34263924 DOI: 10.1111/jsap.13396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/09/2021] [Accepted: 06/10/2021] [Indexed: 10/20/2022]
Abstract
Lafora disease is a genetic disease caused, in humans, by mutations in EPM2A and NHLRC1 genes, resulting in accumulation of polyglucosan bodies within neurons. Affected subjects present progressive neurological signs characterised primarily by myoclonic epilepsy. In dogs, Lafora disease has been described mainly in miniature wire-haired Dachshunds, where a dodecamer expansion in NHLRC1 gene has been identified. The same mutation has then been detected in the Basset Hound, Beagle, Chihuahua and Pembroke Welsh Corgi breeds. This is the first case of a Newfoundland dog with myoclonic epilepsy diagnosed with Lafora disease based on confirmed dodecamer expansion in the NHLRC1 gene. Lafora disease is being progressively recognised in different unrelated breeds suggesting a wider distribution in the canine population than previously thought.
Collapse
Affiliation(s)
- L Mari
- Neurology and Neurosurgery Department, Istituto Veterinario di Novara, Granozzo con Monticello, 28060, Italy
| | - G Comero
- Neurology and Neurosurgery Department, Istituto Veterinario di Novara, Granozzo con Monticello, 28060, Italy
| | - E Mueller
- Laboklin GmbH&Co. KG, Bad Kissingen, 97688, Germany
| | - P Kuehnlein
- Laboklin GmbH&Co. KG, Bad Kissingen, 97688, Germany
| | - A Kehl
- Laboklin GmbH&Co. KG, Bad Kissingen, 97688, Germany
| |
Collapse
|
11
|
Canine Lafora Disease: An Unstable Repeat Expansion Disorder. Life (Basel) 2021; 11:life11070689. [PMID: 34357061 PMCID: PMC8304204 DOI: 10.3390/life11070689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Canine Lafora disease is a recessively inherited, rapidly progressing neurodegenerative disease caused by the accumulation of abnormally constructed insoluble glycogen Lafora bodies in the brain and other tissues due to the loss of NHL repeat containing E3 ubiquitin protein ligase 1 (NHLRC1). Dogs have a dodecamer repeat sequence within the NHLRC1 gene, which is prone to unstable (dynamic) expansion and loss of function. Progressive signs of Lafora disease include hypnic jerks, reflex and spontaneous myoclonus, seizures, vision loss, ataxia and decreased cognitive function. We studied five dogs (one Chihuahua, two French Bulldogs, one Griffon Bruxellois, one mixed breed) with clinical signs associated with canine Lafora disease. Identification of polyglucosan bodies (Lafora bodies) in myocytes supported diagnosis in the French Bulldogs; muscle areas close to the myotendinous junction and the myofascial union segment had the highest yield of inclusions. Postmortem examination of one of the French Bulldogs revealed brain Lafora bodies. Genetic testing for the known canine NHLRC1 mutation confirmed the presence of a homozygous mutation associated with canine Lafora disease. Our results show that Lafora disease extends beyond previous known breeds to the French Bulldog, Griffon Bruxellois and even mixed-breed dogs, emphasizing the likely species-wide nature of this genetic problem. It also establishes these breeds as animal models for the devastating human disease. Genetic testing should be used when designing breeding strategies to determine the frequency of the NHLRC1 mutation in affected breeds. Lafora diseases should be suspected in any older dog presenting with myoclonus, hypnic jerks or photoconvulsions.
Collapse
|
12
|
Kaplan Ö, Pekmez M, Akıncı Y, Ataklı HD, Eren F, Dirican AC, Gözübatık Çelik RG, Baştuğ Gül Z, Ur Özçelik E, Gül G, Sarı H, Özkara Ç. The relationship between DIRAS1 gene and idiopathic generalized epilepsy in the Turkish population. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Cerda-Gonzalez S, Packer RA, Garosi L, Lowrie M, Mandigers PJJ, O'Brien DP, Volk HA. International veterinary canine dyskinesia task force ECVN consensus statement: Terminology and classification. J Vet Intern Med 2021; 35:1218-1230. [PMID: 33769611 PMCID: PMC8162615 DOI: 10.1111/jvim.16108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Movement disorders are a heterogeneous group of clinical syndromes in humans and animals characterized by involuntary movements without changes in consciousness. Canine movement disorders broadly include tremors, peripheral nerve hyperexcitability disorders, paroxysmal dyskinesia, and dystonia. Of these, canine paroxysmal dyskinesias remain one of the more difficult to identify and characterize in dogs. Canine paroxysmal dyskinesias include an array of movement disorders in which there is a recurrent episode of abnormal, involuntary, movement. In this consensus statement, we recommend standard terminology for describing the various movement disorders with an emphasis on paroxysmal dyskinesia, as well as a preliminary classification and clinical approach to reporting cases. In the clinical approach to movement disorders, we recommend categorizing movements into hyperkinetic vs hypokinetic, paroxysmal vs persistent, exercise‐induced vs not related to exercise, using a detailed description of movements using the recommended terminology presented here, differentiating movement disorders vs other differential diagnoses, and then finally, determining whether the paroxysmal dyskinesia is due to either inherited or acquired etiologies. This consensus statement represents a starting point for consistent reporting of clinical descriptions and terminology associated with canine movement disorders, with additional focus on paroxysmal dyskinesia. With consistent reporting and identification of additional genetic mutations responsible for these disorders, our understanding of the phenotype, genotype, and pathophysiology will continue to develop and inform further modification of these recommendations.
Collapse
Affiliation(s)
| | - Rebecca A Packer
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | | | - Mark Lowrie
- Dovecote Veterinary Hospital, Derby, United Kingdom
| | - Paul J J Mandigers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Dennis P O'Brien
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
14
|
Demeny H, Florea B, Tabaran F, Danciu CG, Ognean L. EEG Patterns Orienting to Lafora Disease Diagnosis-A Case Report in Two Beagles. Front Vet Sci 2020; 7:589430. [PMID: 33251270 PMCID: PMC7674959 DOI: 10.3389/fvets.2020.589430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/08/2020] [Indexed: 11/21/2022] Open
Abstract
Lafora Disease (LD) is a rare, fatal, late-onset, progressive form of myoclonic epilepsy, occurring in humans and dogs. Clinical manifestations of LD usually include seizures, spontaneous and reflex myoclonus with contractions of the neck and limb muscles. We studied the electroencephalogram (EEG) patterns of two beagles in whom LD was subsequently confirmed by genetic testing. In both cases, the EEG recordings, accompanied by electromyography (EMG), have shown similar uncommon patterns. The hypovoltaged background rhythm was interrupted by waxing “crescendo” polyspikes-slow wave complexes appearing 80–250 ms after the start of intermittent photic stimulation, followed by myoclonic jerks after 80–150 ms. This study highlights the value of EEG in establishing a presumptive diagnosis of LD in dogs.
Collapse
Affiliation(s)
- Helga Demeny
- Department of Preclinical and Clinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Bogdan Florea
- Epilepsy and EEG Monitoring Center, Cluj-Napoca, Romania
| | - Flaviu Tabaran
- Department of Preclinical and Clinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Cecilia Gabriella Danciu
- Department of Preclinical and Clinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Laurent Ognean
- Department of Preclinical and Clinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
15
|
[Lafora disease in a Beagle - diagnosis and therapy]. TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE 2020; 48:361-364. [PMID: 33086413 DOI: 10.1055/a-1238-0630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lafora disease is an autosomal recessive lysosomal storage disorder leading to an accumulation of toxic glycogen bodies into the cells of the central nervous system and other tissues. In the progressive form of myoclonic epilepsy, clinical signs typically start around 7 years of age. Causal therapy is impossible, however, in the early stages the symptoms may at least be alleviated by modern antiepileptic drugs. In the case reported here, an approximately 7-year-old Beagle presented with daytime-dependent fasciculations, focal and generalized myoclonus ranging up to a brief tonic-clonic seizure. The signs could be triggered and augmented by stress, sounds and light. Histologic examination was performed on biopsy samples of skin, liver, muscle and nervous tissue to test for the clinical diagnosis of Lafora disease. Sarcoplasmic PAS-positive pla®ue deposits typical of Lafora bodies were detected in the muscle biopsies but not in any of the other specimens. Initial treatment with phenobarbital and imepitoin was unsuccessful. However, treatment with levetiracetam significantly alleviated the clinical signs. At time of writing this publication, 2 years following the diagnosis, the now 9-year-old dog shows occasional, stress-related increase in fokal myoclonic seizures. Episodes of collapse or tonic-clonic seizures did not occur to any further extent.
Collapse
|
16
|
Alisauskaite N, Beckmann K, Dennler M, Zölch N. Brain proton magnetic resonance spectroscopy findings in a Beagle dog with genetically confirmed Lafora disease. J Vet Intern Med 2020; 34:1594-1598. [PMID: 32418279 PMCID: PMC7379037 DOI: 10.1111/jvim.15799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/17/2020] [Accepted: 05/01/2020] [Indexed: 11/30/2022] Open
Abstract
Cortical atrophy has been identified using magnetic resonance imaging (MRI) in humans and dogs with Lafora disease (LD). In humans, proton magnetic resonance spectroscopy (1HMRS) of the brain indicates decreased N‐acetyl‐aspartate (NAA) relative to other brain metabolites. Brain 1HMRS findings in dogs with LD are lacking. A 6‐year‐old female Beagle was presented with a history of a single generalized tonic‐clonic seizure and episodic reflex myoclonus. Clinical, hematological, and neurological examination findings and 3‐Tesla MRI of the brain were unremarkable. Brain 1HMRS with voxel positioning in the thalamus was performed in the affected Beagle. It identified decreased amounts of NAA, glutamate‐glutamine complex, and increased total choline and phosphoethanolamine relative to water and total creatine compared with the reference range in healthy control Beagles. A subsequent genetic test confirmed LD. Abnormalities in 1HMRS despite lack of changes with conventional MRI were identified in a dog with LD.
Collapse
Affiliation(s)
- Neringa Alisauskaite
- Neurology Service, Department of Small Animal Surgery, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Katrin Beckmann
- Neurology Service, Department of Small Animal Surgery, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Matthias Dennler
- Clinic for Diagnostic Imaging, Department of Diagnostics and Clinical Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Niklaus Zölch
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Kehl A, Cizinauskas S, Langbein-Detsch I, Mueller E. NHLRC1 dodecamer expansion in a Welsh Corgi (Pembroke) with Lafora disease. Anim Genet 2019; 50:413-414. [PMID: 31172540 DOI: 10.1111/age.12795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2019] [Indexed: 11/29/2022]
|
18
|
Barrientos L, Maiolini A, Häni A, Jagannathan V, Leeb T. NHLRC1 dodecamer repeat expansion demonstrated by whole genome sequencing in a Chihuahua with Lafora disease. Anim Genet 2018; 50:118-119. [PMID: 30525203 DOI: 10.1111/age.12756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Laura Barrientos
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,Instituto de Genética Veterinaria (IGEVET), CCT La Plata - CONICET - Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (UNLP), CP1900, La Plata, Buenos Aires, Argentina
| | - Arianna Maiolini
- Division of Clinical Neurology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Annakatrin Häni
- Division of Clinical Neurology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| |
Collapse
|
19
|
Ahonen S, Seath I, Rusbridge C, Holt S, Key G, Wang T, Wang P, Minassian BA. Nationwide genetic testing towards eliminating Lafora disease from Miniature Wirehaired Dachshunds in the United Kingdom. Canine Genet Epidemiol 2018; 5:2. [PMID: 29610669 PMCID: PMC5869781 DOI: 10.1186/s40575-018-0058-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Canine DNA-testing has become an important tool in purebred dog breeding and many breeders use genetic testing results when planning their breeding strategies. In addition, information obtained from testing of hundreds dogs in one breed gives valuable information about the breed-wide genotype frequency of disease associated allele. Lafora disease is a late onset, recessively inherited genetic disease which is diagnosed in Miniature Wirehaired Dachshunds (MWHD). It is one of the most severe forms of canine epilepsy leading to neurodegeneration and, frequently euthanasia within a few years of diagnosis. Canine Lafora disease is caused by a dodecamer repeat expansion mutation in the NHLRC1 gene and a DNA test is available to identify homozygous dogs at risk, carriers and dogs free of the mutation. RESULTS Blood samples were collected from 733 MWHDs worldwide, mostly of UK origin, for canine Lafora disease testing. Among the tested MWHD population 7.0% were homozygous for the mutation and at risk for Lafora disease. In addition, 234 dogs were heterozygous, indicating a carrier frequency of 31.9% in the tested population. Among the tested MWHDs, the mutant allele frequency was 0.2. In addition, data from the tested dogs over 6 years (2012-2017) indicated that the frequency of the homozygous and carrier dogs has decreased from 10.4% to 2.7% and 41.5% to 25.7%, respectively among MWHDs tested. As a consequence, the frequency of dogs free of the mutation has increased from 48.1% to 71.6%. CONCLUSIONS This study provides valuable data for the MWHD community and shows that the DNA test is a useful tool for the breeders to prevent occurrence of Lafora disease in MWHDs. DNA testing has, over 6 years, helped to decrease the frequency of carriers and dogs at risk. Additionally, the DNA test can continue to be used to slowly eradicate the disease-causing mutation in the breed. However, this should be done carefully, over time, to avoid further compromising the genetic diversity of the breed. The DNA test also provides a diagnostic tool for veterinarians if they are presented with a dog that shows clinical signs associated with canine Lafora disease.
Collapse
Affiliation(s)
- Saija Ahonen
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
| | - Ian Seath
- Dachshund Breed Council, Wrington, North Somerset, UK
| | - Clare Rusbridge
- Fitzpatrick Referrals Orthopedics and Neurology, Halfway Lane, Eashing, Godalming, Surrey UK
- School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey UK
| | - Susan Holt
- Dachshund Breed Council, Wrington, North Somerset, UK
| | - Gill Key
- Dachshund Breed Council, Wrington, North Somerset, UK
| | - Travis Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
| | - Berge A. Minassian
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
- Department of Pediatrics, University of Texas Southwestern, 5323 Harry Blvd, Dallas, TX 75390-9063 USA
| |
Collapse
|
20
|
Chambers JK, Thongtharb A, Shiga T, Azakami D, Saito M, Sato M, Morozumi M, Nakayama H, Uchida K. Accumulation of Laforin and Other Related Proteins in Canine Lafora Disease With EPM2B Repeat Expansion. Vet Pathol 2018; 55:543-551. [DOI: 10.1177/0300985818758471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Canine Lafora disease (LD) is an autosomal recessive genetic disorder causing nonfatal structural epilepsy, mainly affecting miniature wirehaired dachshunds. Repeat expansion in the EPM2B gene causes a functional impairment of the ubiquitin ligase malin which regulates glycogen metabolism. Abnormally structured glycogen accumulates and develop polyglucosan bodies predominantly in the central nervous system. The authors performed a comprehensive clinical, genetic, and pathological study of 4 LD cases affecting miniature wirehaired dachshund dogs with EPM2B repeat expansions, with systemic distribution of polyglucosan bodies and accumulation of laforin and other functionally associated proteins in the polyglucosan bodies. Myoclonic seizures first appeared at 7–9 years of age, and the dogs died at 14–16 years of age. Immunohistochemistry for calbindin revealed that the polyglucosan bodies were located in the cell bodies and dendritic processes of Purkinje cells. Polyglucosan bodies were also positive for laforin, hsp70, α/β-synuclein, ubiquitin, LC3, and p62. Laforin-positive polyglucosan bodies were located in neurofilament-positive neurons but not in GFAP-positive astrocytes. In nonneural tissues, periodic acid-Schiff (PAS)-positive polyglucosan bodies were observed in the heart, skeletal muscle, liver, apocrine sweat gland, and smooth muscle layer of the urinary bladder. In the skeletal muscle, polyglucosan bodies were observed only in type 1 fibers and not in type 2 fibers. The results indicate that although the repeat expansion of the EPM2B gene is specific to dogs, the immunohistochemical properties of polyglucosan body in canine LD are comparable to human LD. However, important phenotypic variations exist between the 2 species including the affected skeletal muscle fiber type.
Collapse
Affiliation(s)
- James K. Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyō, Tokyo, Japan
| | - Atigan Thongtharb
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyō, Tokyo, Japan
| | - Takanori Shiga
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyō, Tokyo, Japan
| | - Daigo Azakami
- Laboratory of Veterinary Nursing, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Miyoko Saito
- Laboratory of Veterinary Surgery II, Azabu University, Chuo Ward, Sagamihara, Kanagawa Prefecture, Japan
| | - Masumi Sato
- National Institute of Animal Health, Tsukuba, Ibaraki Prefecture, Japan
| | | | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyō, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyō, Tokyo, Japan
| |
Collapse
|
21
|
Swain L, Key G, Tauro A, Ahonen S, Wang P, Ackerley C, Minassian BA, Rusbridge C. Lafora disease in miniature Wirehaired Dachshunds. PLoS One 2017; 12:e0182024. [PMID: 28767715 PMCID: PMC5540395 DOI: 10.1371/journal.pone.0182024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/11/2017] [Indexed: 12/13/2022] Open
Abstract
Lafora disease (LD) is an autosomal recessive late onset, progressive myoclonic epilepsy with a high prevalence in the miniature Wirehaired Dachshund. The disease is due to a mutation in the Epm2b gene which results in intracellular accumulation of abnormal glycogen (Lafora bodies). Recent breed-wide testing suggests that the carrier plus affected rate may be as high as 20%. A characteristic feature of the disease is spontaneous and reflex myoclonus; however clinical signs and disease progression are not well described. A survey was submitted to owners of MWHD which were homozygous for Epm2b mutation (breed club testing program) or had late onset reflex myoclonus and clinical diagnosis of LD. There were 27 dogs (11 male; 16 female) for analysis after young mutation-positive dogs that had yet to develop disease were excluded. Average age of onset of clinical signs was 6.94 years (3.5–12). The most common initial presenting sign was reflex and spontaneous myoclonus (77.8%). Other presenting signs included hypnic myoclonus (51.9%) and generalized seizures (40.7%). Less common presenting signs include focal seizures, “jaw smacking”, “fly catching”, “panic attacks”, impaired vision, aggression and urinary incontinence. All these clinical signs may appear, and then increase in frequency and intensity over time. The myoclonus in particular becomes more severe and more refractory to treatment. Signs that developed later in the disease include dementia (51.9%), blindness (48.1%), aggression to people (25.9%) and dogs (33.3%), deafness (29.6%) and fecal (29.6%) and urinary (37.0%) incontinence as a result of loss of house training (disinhibited type behavior). Further prospective study is needed to further characterize the canine disease and to allow more specific therapeutic strategies and to tailor therapy as the disease progresses.
Collapse
Affiliation(s)
- Lindsay Swain
- Fitzpatrick Referrals Orthopedics and Neurology, Halfway Lane, Eashing, Godalming, Surrey, United Kingdom
| | - Gill Key
- Dachshund Breed Council, Wrington, North Somerset, United Kingdom
| | - Anna Tauro
- Fitzpatrick Referrals Orthopedics and Neurology, Halfway Lane, Eashing, Godalming, Surrey, United Kingdom
| | - Saija Ahonen
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Cameron Ackerley
- Department of Pathology and Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Berge A. Minassian
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Pediatrics (Neurology), The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Clare Rusbridge
- Fitzpatrick Referrals Orthopedics and Neurology, Halfway Lane, Eashing, Godalming, Surrey, United Kingdom
- School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Lowrie M, Garosi L. Classification of Involuntary Movements in Dogs: Myoclonus and Myotonia. J Vet Intern Med 2017; 31:979-987. [PMID: 28557061 PMCID: PMC5508344 DOI: 10.1111/jvim.14771] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/07/2017] [Accepted: 04/27/2017] [Indexed: 12/25/2022] Open
Abstract
Myoclonus is a sudden brief, involuntary muscle jerk. Of all the movement disorders, myoclonus is the most difficult to encapsulate into any simple framework. On the one hand, a classification system is required that is clinically useful to aid in guiding diagnosis and treatment. On the other hand, there is need for a system that organizes current knowledge regarding biological mechanisms to guide scientific research. These 2 needs are distinct, making it challenging to develop a robust classification system suitable for all purposes. We attempt to classify myoclonus as “epileptic” and “nonepileptic” based on its association with epileptic seizures. Myotonia in people may be divided into 2 clinically and molecularly defined forms: (1) nondystrophic myotonias and (2) myotonic dystrophies. The former are a group of skeletal muscle channelopathies characterized by delayed skeletal muscle relaxation. Many distinct clinical phenotypes are recognized in people, the majority relating to mutations in skeletal muscle voltage‐gated chloride (CLCN1) and sodium channel (SCN4A) genes. In dogs, myotonia is associated with mutations in CLCN1. The myotonic dystrophies are considered a multisystem clinical syndrome in people encompassing 2 clinically and molecularly defined forms designated myotonic dystrophy types 1 and 2. No mutation has been linked to veterinary muscular dystrophies. We detail veterinary examples of myotonia and attempt classification according to guidelines used in humans. This more precise categorization of myoclonus and myotonia aims to promote the search for molecular markers contributing to the phenotypic spectrum of disease. Our work aimed to assist recognition for these 2 enigmatic conditions.
Collapse
Affiliation(s)
- M Lowrie
- Dovecote Veterinary Hospital, Derby, UK
| | - L Garosi
- Davies Veterinary Specialists, Hitchin, UK
| |
Collapse
|
23
|
Generalized myoclonic epilepsy with photosensitivity in juvenile dogs caused by a defective DIRAS family GTPase 1. Proc Natl Acad Sci U S A 2017; 114:2669-2674. [PMID: 28223533 DOI: 10.1073/pnas.1614478114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The clinical and electroencephalographic features of a canine generalized myoclonic epilepsy with photosensitivity and onset in young Rhodesian Ridgeback dogs (6 wk to 18 mo) are described. A fully penetrant recessive 4-bp deletion was identified in the DIRAS family GTPase 1 (DIRAS1) gene with an altered expression pattern of DIRAS1 protein in the affected brain. This neuronal DIRAS1 gene with a proposed role in cholinergic transmission provides not only a candidate for human myoclonic epilepsy but also insights into the disease etiology, while establishing a spontaneous model for future intervention studies and functional characterization.
Collapse
|