1
|
Areal CC, Lemmetti N, Leduc T, Bourguignon C, Lina JM, Bélanger-Nelson E, Mongrain V. The absence of Neuroligin-1 shapes wake/sleep architecture, rhythmic and arrhythmic activities of the electrocorticogram in female mice. Mol Brain 2025; 18:38. [PMID: 40269933 PMCID: PMC12020183 DOI: 10.1186/s13041-025-01186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/08/2025] [Indexed: 04/25/2025] Open
Abstract
Associated to glutamatergic neurotransmission, Neuroligin-1 (NLGN1) is a synaptic adhesion molecule with roles in the regulation of behavioral states and cognitive function. It was shown to shape electrocorticographic (ECoG) activity during wakefulness and sleep in male mice, including aperiodic activity under baseline conditions. Given that the expression of Neuroligins (Nlgn) differs between sexes, we here aim to characterize the impact of the absence of NLGN1 on the wakefulness and sleep architecture, rhythmic and arrhythmic activity dynamics, and responses to sleep deprivation in female animals. Nlgn1 knockout (KO) female mice and wild-type (WT) female littermates were implanted with ECoG electrodes, and ECoG signals were recorded for 48 hours comprising a 24-hour baseline, followed by a 6-hour sleep deprivation and 18 hours of undisturbed recovery (REC). Time spent in wakefulness, slow wave sleep (SWS) and paradoxical sleep (PS), and their alternation were interrogated, and ECoG activities were quantified using a standard spectral analysis and a multifractal analysis. Nlgn1 KO females spent more time in PS during the light period under baseline in comparison to WT females. This difference was observed along with more PS bouts and a shorter overall PS bout duration, indicative of a fragmented PS. Additionally, Nlgn1 KO females displayed less ECoG power between 8 and 13 Hz during wake, less power between 1.25 and 3.5 Hz during PS, and more between 2.5 and 3.75 Hz during SWS in comparison to WT. Under both baseline and REC, NLGN1 absence in females was significantly associated with a higher value of the most prevalent Hurst exponent (Hm) during SWS, which points to a higher persistence across scales of ECoG aperiodic activity. Indications for alterations in the daily dynamics of the Dispersion of Hurst exponents around Hm were also found during SWS in KO females. The present study highlights differences in wake/sleep architecture, and in periodic (rhythmic) and aperiodic (arrhythmic/multifractal) activities in female mice lacking NLGN1. These findings provide additional support to a role for NLGN1 in shaping the ECoG organization, in particular during sleep, and will help understanding the origin of sleep disturbances in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Cassandra C Areal
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Canada
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, Canada
| | - Nicolas Lemmetti
- Department of Neuroscience, Université de Montréal, Montréal, Canada
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 Saint-Denis Street, Montréal, H2X 0A9, Canada
| | - Tanya Leduc
- Department of Neuroscience, Université de Montréal, Montréal, Canada
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 Saint-Denis Street, Montréal, H2X 0A9, Canada
| | - Clément Bourguignon
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 Saint-Denis Street, Montréal, H2X 0A9, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, Canada
- Centre de recherches mathématiques, Université de Montréal, Montréal, Canada
- École de technologie supérieure, Montréal, Canada
| | - Erika Bélanger-Nelson
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, Canada
| | - Valérie Mongrain
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, Canada.
- Department of Neuroscience, Université de Montréal, Montréal, Canada.
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 Saint-Denis Street, Montréal, H2X 0A9, Canada.
| |
Collapse
|
2
|
Regniez M, Dufort-Gervais J, Provost C, Mongrain V, Martinez M. Characterization of Sleep, Emotional, and Cognitive Functions in a New Rat Model of Concomitant Spinal Cord and Traumatic Brain Injuries. J Neurotrauma 2024; 41:1044-1059. [PMID: 37885242 DOI: 10.1089/neu.2023.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Traumatic injuries to the spinal cord or the brain have serious medical consequences and lead to long-term disability. The epidemiology, medical complications, and prognosis of isolated spinal cord injury (SCI) and traumatic brain injury (TBI) have been well described. However, there are limited data on patients suffering from concurrent SCI and TBI, even if a large proportion of SCI patients have concomitant TBI. The complications associated with this "dual-diagnosis" such as cognitive or behavioral dysfunction are well known in the rehabilitation setting, but evidence-based and standardized approaches for diagnosis and treatment are lacking. Our goal was to develop and characterize a pre-clinical animal model of concurrent SCI and TBI to help identifying "dual-diagnosis" tools. Female rats received a unilateral contusive SCI at the thoracic level alone (SCI group) or combined with a TBI centered on the contralateral sensorimotor cortex (SCI-TBI group). We first validated that the SCI extent was comparable between SCI-TBI and SCI groups, and that hindlimb function was impaired. We characterized various neurological outcomes, including locomotion, sleep architecture, brain activity during sleep, depressive- and anxiety-like behaviors, and working memory. We report that SCI-TBI and SCI groups show similar impairments in global locomotor function. While wake/sleep amount and distribution and anxiety- and depression-like symptoms were not affected in SCI-TBI and SCI groups in comparison to the control group (laminectomy and craniotomy only), working memory was impaired only in SCI-TBI rats. This pre-clinical model of concomitant SCI and TBI, including more severe variations of it, shows a translational value for the identification of biomarkers to refine the "dual-diagnosis" of neurotrauma in humans.
Collapse
Affiliation(s)
- Morgane Regniez
- Department of Neuroscience, Université de Montreal, Montréal, Québec, Canada
- Recherche CIUSSS-NIM, Montréal, Québec, Canada
| | | | | | - Valérie Mongrain
- Department of Neuroscience, Université de Montreal, Montréal, Québec, Canada
- Recherche CIUSSS-NIM, Montréal, Québec, Canada
- Research Center of the CHUM, Montréal, Québec, Canada
| | - Marina Martinez
- Department of Neuroscience, Université de Montreal, Montréal, Québec, Canada
- Recherche CIUSSS-NIM, Montréal, Québec, Canada
- Groupe de recherche sur la Signalisation Neurale et la Circuiterie, Université de Montreal, Montréal, Québec, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montreal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Leduc T, El Alami H, Bougadir K, Bélanger-Nelson E, Mongrain V. Neuroligin-2 shapes individual slow waves during slow-wave sleep and the response to sleep deprivation in mice. Mol Autism 2024; 15:13. [PMID: 38570872 PMCID: PMC10993465 DOI: 10.1186/s13229-024-00594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Sleep disturbances are a common comorbidity to most neurodevelopmental disorders and tend to worsen disease symptomatology. It is thus crucial to understand mechanisms underlying sleep disturbances to improve patients' quality of life. Neuroligin-2 (NLGN2) is a synaptic adhesion protein regulating GABAergic transmission. It has been linked to autism spectrum disorders and schizophrenia in humans, and deregulations of its expression were shown to cause epileptic-like hypersynchronized cerebral activity in rodents. Importantly, the absence of Nlgn2 (knockout: KO) was previously shown to alter sleep-wake duration and quality in mice, notably increasing slow-wave sleep (SWS) delta activity (1-4 Hz) and altering its 24-h dynamics. This type of brain oscillation is involved in memory consolidation, and is also a marker of homeostatic sleep pressure. Sleep deprivation (SD) is notably known to impair cognition and the physiological response to sleep loss involves GABAergic transmission. METHODS Using electrocorticographic (ECoG) recordings, we here first aimed to verify how individual slow wave (SW; 0.5-4 Hz) density and properties (e.g., amplitude, slope, frequency) contribute to the higher SWS delta activity and altered 24-h dynamics observed in Nlgn2 KO mice. We further investigated the response of these animals to SD. Finally, we tested whether sleep loss affects the gene expression of Nlgn2 and related GABAergic transcripts in the cerebral cortex of wild-type mice using RNA sequencing. RESULTS Our results show that Nlgn2 KO mice have both greater SW amplitude and density, and that SW density is the main property contributing to the altered 24-h dynamics. We also found the absence of Nlgn2 to accelerate paradoxical sleep recovery following SD, together with profound alterations in ECoG activity across vigilance states. Sleep loss, however, did not modify the 24-h distribution of the hypersynchronized ECoG events observed in these mice. Finally, RNA sequencing confirmed an overall decrease in cortical expression of Nlgn2 and related GABAergic transcripts following SD in wild-type mice. CONCLUSIONS This work brings further insight into potential mechanisms of sleep duration and quality deregulation in neurodevelopmental disorders, notably involving NLGN2 and GABAergic neurotransmission.
Collapse
Affiliation(s)
- Tanya Leduc
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
- Centre d'études avancées en médecine du sommeil (CÉAMS), Recherche - Centre intégré universitaire de santé et services sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada
- Centre de recherche du Centre hospitalier de l'Université de Montréal, 900, St-Denis street, Tour Viger Montréal, Montreal, QC, H2X 0A9, Canada
| | - Hiba El Alami
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
- Centre d'études avancées en médecine du sommeil (CÉAMS), Recherche - Centre intégré universitaire de santé et services sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Khadija Bougadir
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
- Centre d'études avancées en médecine du sommeil (CÉAMS), Recherche - Centre intégré universitaire de santé et services sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Erika Bélanger-Nelson
- Centre d'études avancées en médecine du sommeil (CÉAMS), Recherche - Centre intégré universitaire de santé et services sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada
- Pfizer Canada ULC, Montreal, QC, Canada
| | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada.
- Centre d'études avancées en médecine du sommeil (CÉAMS), Recherche - Centre intégré universitaire de santé et services sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada.
- Centre de recherche du Centre hospitalier de l'Université de Montréal, 900, St-Denis street, Tour Viger Montréal, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
4
|
Ballester Roig MN, Mongrain V. Sleep-inducing effect of Rhynchophylline in EphA4 knockout mice. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2023; 4:zpad037. [PMID: 37840649 PMCID: PMC10572089 DOI: 10.1093/sleepadvances/zpad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Indexed: 10/17/2023]
Abstract
We have recently demonstrated that the alkaloid rhynchophylline (RHY; purified from Uncaria plants) induces sleep and modifies electrocorticographic (ECoG) activity throughout the 24-h day in a vigilance state-dependent manner in wild-type mice. We here asked whether this alkaloid impacts wake/sleep variables in the absence of the cell adhesion protein EPHA4, via ECoG recording in EphA4 knockout (KO) mice submitted to the same RHY treatment contemporaneously to the wild-type mice (littermates). We uncover that RHY decreases time spent awake and increases time spent in slow wave sleep in EphA4 KO mice and alters the 24-h time course of ECoG activity during wakefulness and sleep states. These observations are similar to the reported effects of RHY in wild-type littermate animals, which strongly supports that RHY-driven sleep alterations are not dependent on the presence of EPHA4.
Collapse
Affiliation(s)
- Maria Neus Ballester Roig
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, QC, Canada
| | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
5
|
Cellular Effects of Rhynchophylline and Relevance to Sleep Regulation. Clocks Sleep 2021; 3:312-341. [PMID: 34207633 PMCID: PMC8293156 DOI: 10.3390/clockssleep3020020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
Uncaria rhynchophylla is a plant highly used in the traditional Chinese and Japanese medicines. It has numerous health benefits, which are often attributed to its alkaloid components. Recent studies in humans show that drugs containing Uncaria ameliorate sleep quality and increase sleep time, both in physiological and pathological conditions. Rhynchophylline (Rhy) is one of the principal alkaloids in Uncaria species. Although treatment with Rhy alone has not been tested in humans, observations in rodents show that Rhy increases sleep time. However, the mechanisms by which Rhy could modulate sleep have not been comprehensively described. In this review, we are highlighting cellular pathways that are shown to be targeted by Rhy and which are also known for their implications in the regulation of wakefulness and sleep. We conclude that Rhy can impact sleep through mechanisms involving ion channels, N-methyl-d-aspartate (NMDA) receptors, tyrosine kinase receptors, extracellular signal-regulated kinases (ERK)/mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K)/RAC serine/threonine-protein kinase (AKT), and nuclear factor-kappa B (NF-κB) pathways. In modulating multiple cellular responses, Rhy impacts neuronal communication in a way that could have substantial effects on sleep phenotypes. Thus, understanding the mechanisms of action of Rhy will have implications for sleep pharmacology.
Collapse
|
6
|
Rapid fast-delta decay following prolonged wakefulness marks a phase of wake-inertia in NREM sleep. Nat Commun 2020; 11:3130. [PMID: 32561733 PMCID: PMC7305232 DOI: 10.1038/s41467-020-16915-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/30/2020] [Indexed: 11/25/2022] Open
Abstract
Sleep-wake driven changes in non-rapid-eye-movement sleep (NREM) sleep (NREMS) EEG delta (δ-)power are widely used as proxy for a sleep homeostatic process. Here, we noted frequency increases in δ-waves in sleep-deprived mice, prompting us to re-evaluate how slow-wave characteristics relate to prior sleep-wake history. We identified two classes of δ-waves; one responding to sleep deprivation with high initial power and fast, discontinuous decay during recovery sleep (δ2) and another unrelated to time-spent-awake with slow, linear decay (δ1). Reanalysis of previously published datasets demonstrates that δ-band heterogeneity after sleep deprivation is also present in human subjects. Similar to sleep deprivation, silencing of centromedial thalamus neurons boosted subsequent δ2-waves, specifically. δ2-dynamics paralleled that of temperature, muscle tone, heart rate, and neuronal ON-/OFF-state lengths, all reverting to characteristic NREMS levels within the first recovery hour. Thus, prolonged waking seems to necessitate a physiological recalibration before typical NREMS can be reinstated. Changes in EEG delta-activity are widely used as proxy of sleep propensity. Here the authors demonstrate in mice and humans the presence of two types of delta-waves, only one of which reports on prior sleep-wake history with dynamics denoting a wake-inertia process accompanying deepest non-rapid-eye-movement sleep (NREM) sleep.
Collapse
|
7
|
Riemann D. Basic research, chronobiology, ontogeny and clinical sleep medicine. J Sleep Res 2017; 26:529-530. [PMID: 28884892 DOI: 10.1111/jsr.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|