1
|
Moyne M, Durand-Ruel M, Park CH, Salamanca-Giron R, Sterpenich V, Schwartz S, Hummel FC, Morishita T. Impact of spindle-inspired transcranial alternating current stimulation during a nap on sleep-dependent motor memory consolidation in healthy older adults. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2025; 6:zpaf022. [PMID: 40365529 PMCID: PMC12070486 DOI: 10.1093/sleepadvances/zpaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/10/2025] [Indexed: 05/15/2025]
Abstract
With the increase in life expectancy and the rapid evolution of daily life technologies, older adults must constantly learn new skills to adapt to society. Sleep reinforces skills acquired during the day and is associated with the occurrence of specific oscillations such as spindles. However, with age, spindles deteriorate and thus likely contribute to memory impairments observed in older adults. The application of electric currents by means of transcranial alternating current stimulation (tACS) with spindle-like waveform, applied during the night, was found to enhance spindles and motor memory consolidation in young adults. Here, we tested whether tACS bursts inspired by spindles applied during daytime naps may (i) increase spindle density and (ii) foster motor memory consolidation in older adults. Twenty-six healthy older participants performed a force modulation task at 10:00, were retested at 16:30, and the day after the initial training. They had 90-minute opportunity to take a nap while verum or placebo spindle-inspired tACS bursts were applied with similar temporal parameters to those observed in young adults and independently of natural spindles, which are reduced in the elderly. We show that the density of natural spindles correlates with the magnitude of memory consolidation, thus confirming that spindles are promising physiological targets for enhancing memory consolidation in older adults. However, spindle-inspired tACS, as used in the present study, did not enhance either spindles or memory consolidation. We therefore suggest that applying tACS time-locked to natural spindles might be required to entrain them and improve their related functions.
Collapse
Affiliation(s)
- Maëva Moyne
- Defitech Chair of Clinical Neuroengineering, Neuro X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Manon Durand-Ruel
- Defitech Chair of Clinical Neuroengineering, Neuro X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Chang-Hyun Park
- Defitech Chair of Clinical Neuroengineering, Neuro X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Roberto Salamanca-Giron
- Defitech Chair of Clinical Neuroengineering, Neuro X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Virgine Sterpenich
- Fondation Campus Biotech Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland and
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Sophie Schwartz
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland and
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, INX, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| |
Collapse
|
2
|
Shuster AE, Morehouse A, McDevitt EA, Chen PC, Whitehurst LN, Zhang J, Sattari N, Uzoigwe T, Ekhlasi A, Cai D, Simon K, Niethard N, Mednick SC. REM refines and rescues memory representations: a new theory. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2025; 6:zpaf004. [PMID: 40161405 PMCID: PMC11954447 DOI: 10.1093/sleepadvances/zpaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/24/2024] [Indexed: 04/02/2025]
Abstract
Despite extensive evidence on the roles of nonrapid eye movement (NREM) and REM sleep in memory processing, a comprehensive model that integrates their complementary functions remains elusive due to a lack of mechanistic understanding of REM's role in offline memory processing. We present the REM Refining and Rescuing (RnR) Hypothesis, which posits that the principal function of REM sleep is to increase the signal-to-noise ratio within and across memory representations. As such, REM sleep selectively enhances essential nodes within a memory representation while inhibiting the majority (Refine). Additionally, REM sleep modulates weak and strong memory representations so they fall within a similar range of recallability (Rescue). Across multiple NREM-REM cycles, tuning functions of individual memory traces get sharpened, allowing for integration of shared features across representations. We hypothesize that REM sleep's unique cellular, neuromodulatory, and electrophysiological milieu, marked by greater inhibition and a mixed autonomic state of both sympathetic and parasympathetic activity, underpins these processes. The RnR Hypothesis offers a unified framework that explains diverse behavioral and neural outcomes associated with REM sleep, paving the way for future research and a more comprehensive model of sleep-dependent cognitive functions.
Collapse
Affiliation(s)
- Alessandra E Shuster
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Allison Morehouse
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | | | - Pin-Chun Chen
- Department of Experimental Psychology, Oxford University, Oxford, UK
| | | | - Jing Zhang
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Negin Sattari
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Tracy Uzoigwe
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Ali Ekhlasi
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| | - Denise Cai
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine Simon
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Pulmonology Department, Children’s Hospital of Orange County, Orange, CA, USA
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Mather M. The emotion paradox in the aging body and brain. Ann N Y Acad Sci 2024; 1536:13-41. [PMID: 38676452 DOI: 10.1111/nyas.15138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
With age, parasympathetic activity decreases, while sympathetic activity increases. Thus, the typical older adult has low heart rate variability (HRV) and high noradrenaline levels. Younger adults with this physiological profile tend to be unhappy and stressed. Yet, with age, emotional experience tends to improve. Why does older adults' emotional well-being not suffer as their HRV decreases? To address this apparent paradox, I present the autonomic compensation model. In this model, failing organs, the initial phases of Alzheimer's pathology, and other age-related diseases trigger noradrenergic hyperactivity. To compensate, older brains increase autonomic regulatory activity in the pregenual prefrontal cortex (PFC). Age-related declines in nerve conduction reduce the ability of the pregenual PFC to reduce hyperactive noradrenergic activity and increase peripheral HRV. But these pregenual PFC autonomic compensation efforts have a significant impact in the brain, where they bias processing in favor of stimuli that tend to increase parasympathetic activity (e.g., stimuli that increase feelings of safety) and against stimuli that tend to increase sympathetic activity (e.g., threatening stimuli). In summary, the autonomic compensation model posits that age-related chronic sympathetic/noradrenergic hyperactivity stimulates regulatory attempts that have the side effect of enhancing emotional well-being.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, Department of Psychology, and Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Höller Y, Eyjólfsdóttir S, Van Schalkwijk FJ, Trinka E. The effects of slow wave sleep characteristics on semantic, episodic, and procedural memory in people with epilepsy. Front Pharmacol 2024; 15:1374760. [PMID: 38725659 PMCID: PMC11079234 DOI: 10.3389/fphar.2024.1374760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Slow wave sleep (SWS) is highly relevant for verbal and non-verbal/spatial memory in healthy individuals, but also in people with epilepsy. However, contradictory findings exist regarding the effect of seizures on overnight memory retention, particularly relating to procedural and non-verbal memory, and thorough examination of episodic memory retention with ecologically valid tests is missing. This research explores the interaction of SWS duration with epilepsy-relevant factors, as well as the relation of spectral characteristics of SWS on overnight retention of procedural, verbal, and episodic memory. In an epilepsy monitoring unit, epilepsy patients (N = 40) underwent learning, immediate and 12 h delayed testing of memory retention for a fingertapping task (procedural memory), a word-pair task (verbal memory), and an innovative virtual reality task (episodic memory). We used multiple linear regression to examine the impact of SWS duration, spectral characteristics of SWS, seizure occurrence, medication, depression, seizure type, gender, and epilepsy duration on overnight memory retention. Results indicated that none of the candidate variables significantly predicted overnight changes for procedural memory performance. For verbal memory, the occurrence of tonic-clonic seizures negatively impacted memory retention and higher psychoactive medication load showed a tendency for lower verbal memory retention. Episodic memory was significantly impacted by epilepsy duration, displaying a potential nonlinear impact with a longer duration than 10 years negatively affecting memory performance. Higher drug load of anti-seizure medication was by tendency related to better overnight retention of episodic memory. Contrary to expectations longer SWS duration showed a trend towards decreased episodic memory performance. Analyses on associations between memory types and EEG band power during SWS revealed lower alpha-band power in the frontal right region as significant predictor for better episodic memory retention. In conclusion, this research reveals that memory modalities are not equally affected by important epilepsy factors such as duration of epilepsy and medication, as well as SWS spectral characteristics.
Collapse
Affiliation(s)
- Yvonne Höller
- Faculty of Psychology, University of Akureyri, Akureyri, Iceland
| | | | - Frank Jasper Van Schalkwijk
- Hertie-Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Tübingen, Germany
| | - Eugen Trinka
- Department of Neurology, Christian Doppler University Hospital, Member of the European Reference Network EpiCARE, Neuroscience Institute, Paracelsus Medical University and Centre for Cognitive Neuroscience Salzburg, Salzburg, Austria
| |
Collapse
|
5
|
Kumral D, Matzerath A, Leonhart R, Schönauer M. Spindle-dependent memory consolidation in healthy adults: A meta-analysis. Neuropsychologia 2023; 189:108661. [PMID: 37597610 DOI: 10.1016/j.neuropsychologia.2023.108661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Accumulating evidence suggests a central role for sleep spindles in the consolidation of new memories. However, no meta-analysis of the association between sleep spindles and memory performance has been conducted so far. Here, we report meta-analytical evidence for spindle-memory associations and investigate how multiple factors, including memory type, spindle type, spindle characteristics, and EEG topography affect this relationship. The literature search yielded 53 studies reporting 1427 effect sizes, resulting in a small to moderate effect for the average association. We further found that spindle-memory associations were significantly stronger for procedural memory than for declarative memory. Neither spindle types nor EEG scalp topography had an impact on the strength of the spindle-memory relation, but we observed a distinct functional role of global and fast sleep spindles, especially for procedural memory. We also found a moderation effect of spindle characteristics, with power showing the largest effect sizes. Collectively, our findings suggest that sleep spindles are involved in learning, thereby representing a general physiological mechanism for memory consolidation.
Collapse
Affiliation(s)
- Deniz Kumral
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Alina Matzerath
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Rainer Leonhart
- Institute of Psychology, Social Psychology and Methodology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Monika Schönauer
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Bernstein Center Freiburg, Freiburg Im Breisgau, Germany
| |
Collapse
|
6
|
Bates ME, Price JL, Leganes-Fonteneau M, Muzumdar N, Piersol K, Frazier I, Buckman JF. The Process of Heart Rate Variability, Resonance at 0.1 hz, and the Three Baroreflex Loops: A Tribute to Evgeny Vaschillo. Appl Psychophysiol Biofeedback 2022; 47:327-340. [PMID: 35536496 PMCID: PMC9088144 DOI: 10.1007/s10484-022-09544-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/04/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Marsha E. Bates
- Department of Kinesiology & Health, Rutgers University—New Brunswick, 08854 Piscataway, NJ United States
- Center of Alcohol & Substance Use Studies, Rutgers University—New Brunswick, 08854 Piscataway, NJ United States
| | - Julianne L. Price
- Department of Kinesiology & Health, Rutgers University—New Brunswick, 08854 Piscataway, NJ United States
- Center of Alcohol & Substance Use Studies, Rutgers University—New Brunswick, 08854 Piscataway, NJ United States
| | - Mateo Leganes-Fonteneau
- Department of Kinesiology & Health, Rutgers University—New Brunswick, 08854 Piscataway, NJ United States
- Center of Alcohol & Substance Use Studies, Rutgers University—New Brunswick, 08854 Piscataway, NJ United States
| | - Neel Muzumdar
- Department of Kinesiology & Health, Rutgers University—New Brunswick, 08854 Piscataway, NJ United States
- Center of Alcohol & Substance Use Studies, Rutgers University—New Brunswick, 08854 Piscataway, NJ United States
| | - Kelsey Piersol
- Department of Kinesiology & Health, Rutgers University—New Brunswick, 08854 Piscataway, NJ United States
- Center of Alcohol & Substance Use Studies, Rutgers University—New Brunswick, 08854 Piscataway, NJ United States
| | - Ian Frazier
- Department of Kinesiology & Health, Rutgers University—New Brunswick, 08854 Piscataway, NJ United States
- Center of Alcohol & Substance Use Studies, Rutgers University—New Brunswick, 08854 Piscataway, NJ United States
| | - Jennifer F. Buckman
- Department of Kinesiology & Health, Rutgers University—New Brunswick, 08854 Piscataway, NJ United States
- Center of Alcohol & Substance Use Studies, Rutgers University—New Brunswick, 08854 Piscataway, NJ United States
| |
Collapse
|
7
|
Chen PC, Zhang J, Thayer JF, Mednick SC. Understanding the roles of central and autonomic activity during sleep in the improvement of working memory and episodic memory. Proc Natl Acad Sci U S A 2022; 119:e2123417119. [PMID: 36279428 PMCID: PMC9636982 DOI: 10.1073/pnas.2123417119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The last decade has seen significant progress in identifying sleep mechanisms that support cognition. Most of these studies focus on the link between electrophysiological events of the central nervous system during sleep and improvements in different cognitive domains, while the dynamic shifts of the autonomic nervous system across sleep have been largely overlooked. Recent studies, however, have identified significant contributions of autonomic inputs during sleep to cognition. Yet, there remain considerable gaps in understanding how central and autonomic systems work together during sleep to facilitate cognitive improvement. In this article we examine the evidence for the independent and interactive roles of central and autonomic activities during sleep and wake in cognitive processing. We specifically focus on the prefrontal-subcortical structures supporting working memory and mechanisms underlying the formation of hippocampal-dependent episodic memory. Our Slow Oscillation Switch Model identifies separate and competing underlying mechanisms supporting the two memory domains at the synaptic, systems, and behavioral levels. We propose that sleep is a competitive arena in which both memory domains vie for limited resources, experimentally demonstrated when boosting one system leads to a functional trade-off in electrophysiological and behavioral outcomes. As these findings inevitably lead to further questions, we suggest areas of future research to better understand how the brain and body interact to support a wide range of cognitive domains during a single sleep episode.
Collapse
Affiliation(s)
- Pin-Chun Chen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Jing Zhang
- Department of Cognitive Sciences, University of California, Irvine, CA 92697
| | - Julian F. Thayer
- Department of Psychological Sciences, University of California, Irvine, CA 92697
| | - Sara C. Mednick
- Department of Cognitive Sciences, University of California, Irvine, CA 92697
| |
Collapse
|
8
|
Potential Benefits of Daytime Naps on Consecutive Days for Motor Adaptation Learning. Clocks Sleep 2022; 4:387-401. [PMID: 36134945 PMCID: PMC9497798 DOI: 10.3390/clockssleep4030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Daytime napping offers benefits for motor memory learning and is used as a habitual countermeasure to improve daytime functioning. A single nap has been shown to ameliorate motor memory learning, although the effect of consecutive napping on motor memory consolidation remains unclear. This study aimed to explore the effect of daytime napping over multiple days on motor memory learning. Twenty university students were divided into a napping group and no-nap (awake) group. The napping group performed motor adaption tasks before and after napping for three consecutive days, whereas the no-nap group performed the task on a similar time schedule as the napping group. A subsequent retest was conducted one week after the end of the intervention. Significant differences were observed only for speed at 30 degrees to complete the retention task, which was significantly faster in the napping group than in the awake group. No significant consolidation effects over the three consecutive nap intervention periods were confirmed. Due to the limitations of the different experimental environments of the napping and the control group, the current results warrant further investigation to assess whether consecutive napping may benefit motor memory learning, which is specific to speed.
Collapse
|
9
|
Qian L, Ru T, He M, Li S, Zhou G. Effects of a brief afternoon nap on declarative and procedural memory. Neurobiol Learn Mem 2022; 194:107662. [PMID: 35870718 DOI: 10.1016/j.nlm.2022.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/27/2022] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
The relationship between sleep and memory consolidation has not been fully revealed. The current study aimed to investigate how a brief afternoon nap contributed to the consolidation of declarative and procedural memory by exploring the relationship between sleep characteristics (i.e., the durations of sleep stages and slow oscillation, slow-wave activity, and spindle activity extracted from sleep) and task performance and the relationship between delta, theta, alpha, and beta bands extracted from wake during task performance and task performance. Twenty-three healthy young adults underwent a paired associates learning task and a sequential finger-tapping task with easy and difficult levels and were tested for memory performance before and after the intervention (i.e., an about 30-min nap or stay awake). Electroencephalogram (EEG) signals were continously recorded during the whole experiment. Results revealed that a short afternoon nap improved movement speed for the procedural memory task, regardless of the task difficulty, but unaffected the performance on the declarative memory task. Besides, the improvement in movement speed for the easy procedural memory task was positively correlated with slow-wave activity (SWA) during non-rapid-eye-movement (NREM) sleep but negatively correlated with slow oscillation and spindle activity during sleep stage 2 and NREM sleep, and the improvement in the difficult procedural memory task correlated positively with SWA during NREM sleep. Moreover, performance on the easy declarative and procedural memory tasks was negatively correlated with the relative power of alpha or theta; whereas the alpha band was positively correlated with the difficult declarative memory performance. These findings suggested that a brief afternoon nap with NREM sleep would benefit procedural memory consolidation but not declarative memory; such contribution of napping to memory consolidation would be either explained by the sleep characteristics or physiological arousal during performing tasks; task difficulty would moderate the relationship between the declarative memory performance and EEGs during task performance.
Collapse
Affiliation(s)
- Liu Qian
- Lab of Light and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Taotao Ru
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Lab of Light and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou 510631, China.
| | - Meiheng He
- Lab of Light and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Siyu Li
- Lab of Light and Physio-psychological Health, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Guofu Zhou
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
10
|
Bootsma JM, Caljouw SR, Veldman MP, Maurits NM, Rothwell JC, Hortobágyi T. Neural Correlates of Motor Skill Learning Are Dependent on Both Age and Task Difficulty. Front Aging Neurosci 2021; 13:643132. [PMID: 33828478 PMCID: PMC8019720 DOI: 10.3389/fnagi.2021.643132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
Although a general age-related decline in neural plasticity is evident, the effects of age on neural plasticity after motor practice are inconclusive. Inconsistencies in the literature may be related to between-study differences in task difficulty. Therefore, we aimed to determine the effects of age and task difficulty on motor learning and associated brain activity. We used task-related electroencephalography (EEG) power in the alpha (8–12 Hz) and beta (13–30 Hz) frequency bands to assess neural plasticity before, immediately after, and 24-h after practice of a mirror star tracing task at one of three difficulty levels in healthy younger (19–24 yr) and older (65–86 yr) adults. Results showed an age-related deterioration in motor performance that was more pronounced with increasing task difficulty and was accompanied by a more bilateral activity pattern for older vs. younger adults. Task difficulty affected motor skill retention and neural plasticity specifically in older adults. Older adults that practiced at the low or medium, but not the high, difficulty levels were able to maintain improvements in accuracy at retention and showed modulation of alpha TR-Power after practice. Together, these data indicate that both age and task difficulty affect motor learning, as well as the associated neural plasticity.
Collapse
Affiliation(s)
- Josje M Bootsma
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Simone R Caljouw
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Menno P Veldman
- Movement Control and Neuroplasticity Research Group, Department of Movement Science, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Natasha M Maurits
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London (UCL) Institute of Neurology, London, United Kingdom
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
van Schalkwijk FJ, Hauser T, Hoedlmoser K, Ameen MS, Wilhelm FH, Sauter C, Klösch G, Moser D, Gruber G, Anderer P, Saletu B, Parapatics S, Zeitlhofer J, Schabus M. Procedural memory consolidation is associated with heart rate variability and sleep spindles. J Sleep Res 2019; 29:e12910. [PMID: 31454120 PMCID: PMC7317359 DOI: 10.1111/jsr.12910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 11/30/2022]
Abstract
Sleep and memory studies often focus on overnight rather than long‐term memory changes, traditionally associating overnight memory change (OMC) with sleep architecture and sleep patterns such as spindles. In addition, (para‐)sympathetic innervation has been associated with OMC after a daytime nap using heart rate variability (HRV). In this study we investigated overnight and long‐term performance changes for procedural memory and evaluated associations with sleep architecture, spindle activity (SpA) and HRV measures (R‐R interval [RRI], standard deviation of R‐R intervals [SDNN], as well as spectral power for low [LF] and high frequencies [HF]). All participants (N = 20, Mage = 23.40 ± 2.78 years) were trained on a mirror‐tracing task and completed a control (normal vision) and learning (mirrored vision) condition. Performance was evaluated after training (R1), after a full‐night sleep (R2) and 7 days thereafter (R3). Overnight changes (R2‐R1) indicated significantly higher accuracy after sleep, whereas a significant long‐term (R3‐R2) improvement was only observed for tracing speed. Sleep architecture measures were not associated with OMC after correcting for multiple comparisons. However, individual SpA change from the control to the learning night indicated that only “SpA enhancers” exhibited overnight improvements for accuracy and long‐term improvements for speed. HRV analyses revealed that lower SDNN and LF power was associated with better OMC for the procedural speed measure. Altogether, this study indicates that overnight improvement for procedural memory is specific for spindle enhancers, and is associated with HRV during sleep following procedural learning.
Collapse
Affiliation(s)
- Frank J van Schalkwijk
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| | - Theresa Hauser
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| | - Kerstin Hoedlmoser
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| | - Mohamed S Ameen
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| | - Frank H Wilhelm
- Clinical Stress and Emotion Laboratory, Division of Clinical Psychology, Psychotherapy and Health Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Cornelia Sauter
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Competence Center of Sleep Medicine, Charité - University Medicine, Berlin, Germany
| | - Gerhard Klösch
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Doris Moser
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Georg Gruber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Peter Anderer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Bernd Saletu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Silvia Parapatics
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Josef Zeitlhofer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Manuel Schabus
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| |
Collapse
|