1
|
Batabyal T, Naik AA, Kapur J. Neurocounter - A deep learning framework for high-fidelity spatial localization of neurons. J Neurosci Methods 2025; 418:110444. [PMID: 40187538 DOI: 10.1016/j.jneumeth.2025.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/12/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Many neuroscientific applications require robust and accurate localization of neurons. It is still an unsolved problem because of the enormous variation in intensity, texture, spatial overlap, morphology, and background artifacts. In addition, curating a large dataset containing complete manual annotation of neurons from high-resolution images for training a classifier requires significant time and effort. In this work, we presented Neurocounter, a deep learning network to detect and localize neurons. NEW METHOD Neurocounter contains an encoder, a decoder and an attention module. It is trained on images containing incompletely-annotated neurons having highly varied morphology, and control images containing artifacts and background structures. During training, Neurocounter progressively labels the un-annotated neurons in the training data. It detects centers of neuron soma as the output. RESULTS Neurocounter's self-learning ability reduces the need for time-intensive complete annotation and ensures high accuracy in the localization of neurons across various brain regions (approximately 94 % F1 score). Comparison with existing methods Neurocounter shows its efficacy over the state of the arts by significantly reducing false-positive detection (by at least 3 %). CONCLUSIONS Neurocounter offers precise neuron soma detection in various scenarios, such as with background artifacts, clutter and overlapped cell soma. This tool can be potentially used to reconstruct brain-wide 3D maps of activated neurons from 2D localization of neurons.
Collapse
Affiliation(s)
- Tamal Batabyal
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Aijaz Ahmad Naik
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA; UVA Brain Institute, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
2
|
Liu S, Crawford J, Maltezos H, Sun Y, Tao R, Tao F. A glutamatergic brain neural circuit is critical for modulating trigeminal neuropathic pain. Pain 2025:00006396-990000000-00890. [PMID: 40310866 DOI: 10.1097/j.pain.0000000000003647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/27/2025] [Indexed: 05/03/2025]
Abstract
ABSTRACT Trigeminal neuropathic pain is a predominant symptom in patients with trigeminal neuralgia. However, the underlying neural circuit mechanism is still elusive. In this study, we investigated the role of a brain neural circuit in the modulation of trigeminal neuropathic pain. We used "Targeted Recombination in Active Populations" to identify activated neurons in brain structures. Anterograde and retrograde viral tracing combined with immunofluorescence staining was used to validate the activated neurons-involved neuronal pathway. We performed optogenetic stimulation and behavioral observation to dissect the brain neural circuitry that underlies the modulation of trigeminal neuropathic pain. We further conducted dual-color fiber photometry to analyze dynamic neurotransmitter release and real-time neuronal activity while observing pain behaviors simultaneously. We observed that mouse neurons in the anterior paraventricular nucleus of thalamus were activated specifically by chronic constriction injury of the infraorbital nerve. We further observed that specifical excitation or silencing of the activated neurons bidirectionally modulated the nerve injury-caused trigeminal neuropathic pain in mice. More importantly, optogenetic activation of the brain neural circuit from anterior paraventricular nucleus of thalamus to anterior cingulate cortex exacerbated such pain and this effect was blocked by an N-methyl-d-aspartate receptor antagonist. Meanwhile, optogenetic activation of this neural circuit markedly increased glutamate release and enhanced neuronal activity in the anterior cingulate cortex. Our results suggest that the identified brain neural circuit could be targeted to develop a novel neuromodulation therapy for trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Sufang Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Joshua Crawford
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Hui Maltezos
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Yanjun Sun
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Ran Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, United States
| |
Collapse
|
3
|
Luppi PH, Malcey J, Chancel A, Duval B, Cabrera S, Fort P. Neuronal network controlling REM sleep. J Sleep Res 2025; 34:e14266. [PMID: 38972672 DOI: 10.1111/jsr.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024]
Abstract
Rapid eye movement sleep is a state characterized by concomitant occurrence of rapid eye movements, electroencephalographic activation and muscle atonia. In this review, we provide up to date knowledge on the neuronal network controlling its onset and maintenance. It is now accepted that muscle atonia during rapid eye movement sleep is due to activation of glutamatergic neurons localized in the pontine sublaterodorsal tegmental nucleus. These neurons directly project and excite glycinergic/γ-aminobutyric acid-ergic pre-motoneurons localized in the ventromedial medulla. The sublaterodorsal tegmental nucleus rapid eye movement-on neurons are inactivated during wakefulness and non-rapid eye movement by rapid eye movement-off γ-aminobutyric acid-ergic neurons localized in the ventrolateral periaqueductal grey and the adjacent dorsal deep mesencephalic reticular nucleus. Melanin-concentrating hormone and γ-aminobutyric acid-ergic rapid eye movement sleep-on neurons localized in the lateral hypothalamus would inhibit these rapid eye movement sleep-off neurons initiating the state. Finally, the activation of a few limbic cortical structures during rapid eye movement sleep by the claustrum and the supramammillary nucleus as well as that of the basolateral amygdala would be involved in the function(s) of rapid eye movement sleep. In summary, rapid eye movement sleep is generated by a brainstem generator controlled by forebrain structures involved in autonomic control.
Collapse
Affiliation(s)
- Pierre-Hervé Luppi
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Justin Malcey
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Amarine Chancel
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Blandine Duval
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
| | - Sébastien Cabrera
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| | - Patrice Fort
- INSERM, U1028; CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France
- University Lyon 1, Lyon, France
| |
Collapse
|
4
|
Brown RE. Evo-devo applied to sleep research: an approach whose time has come. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae040. [PMID: 39022590 PMCID: PMC11253433 DOI: 10.1093/sleepadvances/zpae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Sleep occurs in all animals but its amount, form, and timing vary considerably between species and between individuals. Currently, little is known about the basis for these differences, in part, because we lack a complete understanding of the brain circuitry controlling sleep-wake states and markers for the cell types which can identify similar circuits across phylogeny. Here, I explain the utility of an "Evo-devo" approach for comparative studies of sleep regulation and function as well as for sleep medicine. This approach focuses on the regulation of evolutionary ancient transcription factors which act as master controllers of cell-type specification. Studying these developmental transcription factor cascades can identify novel cell clusters which control sleep and wakefulness, reveal the mechanisms which control differences in sleep timing, amount, and expression, and identify the timepoint in evolution when different sleep-wake control neurons appeared. Spatial transcriptomic studies, which identify cell clusters based on transcription factor expression, will greatly aid this approach. Conserved developmental pathways regulate sleep in mice, Drosophila, and C. elegans. Members of the LIM Homeobox (Lhx) gene family control the specification of sleep and circadian neurons in the forebrain and hypothalamus. Increased Lhx9 activity may account for increased orexin/hypocretin neurons and reduced sleep in Mexican cavefish. Other transcription factor families specify sleep-wake circuits in the brainstem, hypothalamus, and basal forebrain. The expression of transcription factors allows the generation of specific cell types for transplantation approaches. Furthermore, mutations in developmental transcription factors are linked to variation in sleep duration in humans, risk for restless legs syndrome, and sleep-disordered breathing. This paper is part of the "Genetic and other molecular underpinnings of sleep, sleep disorders, and circadian rhythms including translational approaches" collection.
Collapse
Affiliation(s)
- Ritchie E Brown
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, West Roxbury, MA, USA
| |
Collapse
|
5
|
Atluri N, Dulko E, Jedrusiak M, Klos J, Osuru HP, Davis E, Beenhakker M, Kapur J, Zuo Z, Lunardi N. Anatomical Substrates of Rapid Eye Movement Sleep Rebound in a Rodent Model of Post-sevoflurane Sleep Disruption. Anesthesiology 2024; 140:729-741. [PMID: 38157434 PMCID: PMC10939895 DOI: 10.1097/aln.0000000000004893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Previous research suggests that sevoflurane anesthesia may prevent the brain from accessing rapid eye movement (REM) sleep. If true, then patterns of neural activity observed in REM-on and REM-off neuronal populations during recovery from sevoflurane should resemble those seen after REM sleep deprivation. In this study, the authors hypothesized that, relative to controls, animals exposed to sevoflurane present with a distinct expression pattern of c-Fos, a marker of neuronal activation, in a cluster of nuclei classically associated with REM sleep, and that such expression in sevoflurane-exposed and REM sleep-deprived animals is largely similar. METHODS Adult rats and Targeted Recombination in Active Populations mice were implanted with electroencephalographic electrodes for sleep-wake recording and randomized to sevoflurane, REM deprivation, or control conditions. Conventional c-Fos immunohistochemistry and genetically tagged c-Fos labeling were used to quantify activated neurons in a group of REM-associated nuclei in the midbrain and basal forebrain. RESULTS REM sleep duration increased during recovery from sevoflurane anesthesia relative to controls (157.0 ± 24.8 min vs. 124.2 ± 27.8 min; P = 0.003) and temporally correlated with increased c-Fos expression in the sublaterodorsal nucleus, a region active during REM sleep (176.0 ± 36.6 cells vs. 58.8 ± 8.7; P = 0.014), and decreased c-Fos expression in the ventrolateral periaqueductal gray, a region that is inactive during REM sleep (34.8 ± 5.3 cells vs. 136.2 ± 19.6; P = 0.001). Fos changes similar to those seen in sevoflurane-exposed mice were observed in REM-deprived animals relative to controls (sublaterodorsal nucleus: 85.0 ± 15.5 cells vs. 23.0 ± 1.2, P = 0.004; ventrolateral periaqueductal gray: 652.8 ± 71.7 cells vs. 889.3 ± 66.8, P = 0.042). CONCLUSIONS In rodents recovering from sevoflurane, REM-on and REM-off neuronal activity maps closely resemble those of REM sleep-deprived animals. These findings provide new evidence in support of the idea that sevoflurane does not substitute for endogenous REM sleep. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Navya Atluri
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Elzbieta Dulko
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Michal Jedrusiak
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Joanna Klos
- Max Planck Institute for Biological Intelligence, Munich, Germany
| | - Hari P Osuru
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Eric Davis
- Department of Internal Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark Beenhakker
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Nadia Lunardi
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
6
|
Chancel A, Fort P, Luppi PH. The role of the hypothalamic Lhx6 GABAergic neurons in REM sleep control. Sleep 2024; 47:zsad331. [PMID: 38159085 PMCID: PMC10925945 DOI: 10.1093/sleep/zsad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Indexed: 01/03/2024] Open
Affiliation(s)
- Amarine Chancel
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, SLEEP Team, Bron, France
| | - Patrice Fort
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, SLEEP Team, Bron, France
| | - Pierre-Hervé Luppi
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, SLEEP Team, Bron, France
| |
Collapse
|
7
|
Oh SG, Lee EY, Lee HS. Projections from LIM homeobox 6 (Lhx6) + zona incerta neurons to the cholinergic or monoaminergic nuclei of the rat. Anat Rec (Hoboken) 2023; 306:905-917. [PMID: 36583474 DOI: 10.1002/ar.25143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
A recent report suggested that LIM homeobox 6 (Lhx6) + GABA-releasing neurons of the ventral zona incerta (VZI) promote sleep, particularly paradoxical sleep (PS). While their potential involvement in sleep still needs to be firmly confirmed, little is known about their specific input/output connections with widespread brain regions, including those involved in sleep. Thus, the present study was designed to examine whether Lhx6-expressing neurons (in parallel to intermingled MCH-expressing ones) may send efferent projections to cholinergic and/or monoaminergic nuclei from basal forebrain (BF) to brainstem (BS). Based on the present observations, the proportions of Lhx6+ neuronal projection to the BF and BS cholinergic nuclei over the total number of Lhx6+ VZI cells were approximately 5.9% and 6.9%, respectively. Likewise, the proportions of Lhx6+ neuronal projection to the dorsal raphe and locus coeruleus over the total number of Lhx6+ VZI cells were about 4.3% and 3.9%, respectively. In addition, Lhx6+ cells projecting to the cholinergic or monoaminergic nuclei were scattered along the entire dorsal-to-ventral extent of the VZI. Based on the present as well as our previous observations, it is suggested that Lhx6+ VZI neurons might play an important role in the regulation of PS, partly via the neural network involving the cholinergic as well as monoaminergic nuclei of the rat.
Collapse
Affiliation(s)
- Sung-Gyoon Oh
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, South Korea
| | - Eun-Yeup Lee
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, South Korea
| | - Hyun-Sook Lee
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, South Korea
- Research Institute of Medical Science, School of Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|
8
|
Sotelo MI, Tyan J, Markunas C, Sulaman BA, Horwitz L, Lee H, Morrow JG, Rothschild G, Duan B, Eban-Rothschild A. Lateral hypothalamic neuronal ensembles regulate pre-sleep nest-building behavior. Curr Biol 2022; 32:806-822.e7. [PMID: 35051354 PMCID: PMC10455050 DOI: 10.1016/j.cub.2021.12.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023]
Abstract
The transition from wakefulness to sleep requires striking alterations in brain activity, physiology, and behavior, yet the precise neuronal circuit elements facilitating this transition remain unclear. Prior to sleep onset, many animal species display characteristic behaviors, including finding a safe location, performing hygiene-related behaviors, and preparing a space for sleep. It has been proposed that the pre-sleep period is a transitional phase in which engaging in a specific behavioral repertoire de-arouses the brain and facilitates the wake-to-sleep transition, yet both causal evidence for this premise and an understanding of the neuronal circuit elements involved are lacking. Here, we combine detailed behavioral observations, EEG-EMG recordings, selective targeting, and activity modulation of pre-sleep-active neurons to reveal the behaviors preceding sleep initiation and their underlying neurobiological mechanisms. We show that mice engage in temporally structured behaviors with stereotypic EEG signatures prior to sleep and that nest-building and grooming become significantly more prevalent with sleep proximity. We next demonstrate that the ability to build a nest promotes the initiation and consolidation of sleep and that the lack of nesting material chronically fragments sleep. Lastly, we identify broadly projecting and predominantly glutamatergic neuronal ensembles in the lateral hypothalamus that regulate the motivation to engage in pre-sleep nest-building behavior and gate sleep initiation and intensity. Our study provides causal evidence for the facilitatory role of pre-sleep behaviors in sleep initiation and consolidation and a functional characterization of the neuronal underpinnings regulating a sleep-related and goal-directed complex behavior.
Collapse
Affiliation(s)
- Maria I Sotelo
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jean Tyan
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chelsea Markunas
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bibi A Sulaman
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lorraine Horwitz
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hankyu Lee
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joshua G Morrow
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gideon Rothschild
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
9
|
Yamazaki R, Wang D, De Laet A, Maciel R, Agnorelli C, Cabrera S, Arthaud S, Libourel PA, Fort P, Lee H, Luppi PH. Granule cells in the infrapyramidal blade of the dentate gyrus are activated during paradoxical (REM) sleep hypersomnia but not during wakefulness: a study using TRAP mice. Sleep 2021; 44:6318825. [PMID: 34245290 DOI: 10.1093/sleep/zsab173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/18/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Determine whether in the hippocampus and the supramammillary nucleus (SuM) the same neurons are reactivated when mice are exposed one week apart to two periods of wakefulness (W-W), paradoxical sleep rebound (PSR-PSR) or a period of W followed by a period of PSR (W-PSR). METHODS We combined the innovative TRAP2 mice method in which neurons expressing cFos permanently express tdTomato after tamoxifen injection with cFos immunohistochemistry. RESULTS We found out that a large number of tdTomato+ and cFos+ cells are localized in the dentate gyrus (DG) after PSR and W while CA1 and CA3 contained both types of neurons only after W. The number of cFos+ cells in the infrapyramidal but not the suprapyramidal blade of the DG was positively correlated with the amount of PS. In addition, we did not find double-labeled cells in the DG whatever the group of mice. In contrast, a high percentage of CA1 neurons were double-labeled in W-W mice. Finally, in the supramammillary nucleus, a large number of cells were double-labeled in W-W, PSR-PSR but not in W-PSR mice. CONCLUSIONS Altogether, our results are the first to show that different neurons are activated during W and PS in the supramammillary nucleus and the hippocampus. Further, we showed for the first time that granule cells of the infrapyramidal blade of the DG are activated during PS but not during W. Further experiments are now needed to determine whether these granule cells belong to memory engrams inducing memory reactivation during PS.
Collapse
Affiliation(s)
- Risa Yamazaki
- Team "SLEEP", Centre de Recherche en Neurosciences de Lyon (CRNL), UMR 5292 CNRS/U1028 INSERM and Université de Lyon, Lyon I, Neurocampus-Michel Jouvet, 95 Boulevard Pinel, 69500 Bron, France
| | - Dianru Wang
- Team "SLEEP", Centre de Recherche en Neurosciences de Lyon (CRNL), UMR 5292 CNRS/U1028 INSERM and Université de Lyon, Lyon I, Neurocampus-Michel Jouvet, 95 Boulevard Pinel, 69500 Bron, France
| | - Anna De Laet
- Team "SLEEP", Centre de Recherche en Neurosciences de Lyon (CRNL), UMR 5292 CNRS/U1028 INSERM and Université de Lyon, Lyon I, Neurocampus-Michel Jouvet, 95 Boulevard Pinel, 69500 Bron, France
| | - Renato Maciel
- Team "SLEEP", Centre de Recherche en Neurosciences de Lyon (CRNL), UMR 5292 CNRS/U1028 INSERM and Université de Lyon, Lyon I, Neurocampus-Michel Jouvet, 95 Boulevard Pinel, 69500 Bron, France
| | - Claudio Agnorelli
- Team "SLEEP", Centre de Recherche en Neurosciences de Lyon (CRNL), UMR 5292 CNRS/U1028 INSERM and Université de Lyon, Lyon I, Neurocampus-Michel Jouvet, 95 Boulevard Pinel, 69500 Bron, France
| | - Sébastien Cabrera
- Team "SLEEP", Centre de Recherche en Neurosciences de Lyon (CRNL), UMR 5292 CNRS/U1028 INSERM and Université de Lyon, Lyon I, Neurocampus-Michel Jouvet, 95 Boulevard Pinel, 69500 Bron, France
| | - Sébastien Arthaud
- Team "SLEEP", Centre de Recherche en Neurosciences de Lyon (CRNL), UMR 5292 CNRS/U1028 INSERM and Université de Lyon, Lyon I, Neurocampus-Michel Jouvet, 95 Boulevard Pinel, 69500 Bron, France
| | - Paul-Antoine Libourel
- Team "SLEEP", Centre de Recherche en Neurosciences de Lyon (CRNL), UMR 5292 CNRS/U1028 INSERM and Université de Lyon, Lyon I, Neurocampus-Michel Jouvet, 95 Boulevard Pinel, 69500 Bron, France
| | - Patrice Fort
- Team "SLEEP", Centre de Recherche en Neurosciences de Lyon (CRNL), UMR 5292 CNRS/U1028 INSERM and Université de Lyon, Lyon I, Neurocampus-Michel Jouvet, 95 Boulevard Pinel, 69500 Bron, France
| | - Hyunsook Lee
- Team "SLEEP", Centre de Recherche en Neurosciences de Lyon (CRNL), UMR 5292 CNRS/U1028 INSERM and Université de Lyon, Lyon I, Neurocampus-Michel Jouvet, 95 Boulevard Pinel, 69500 Bron, France.,Department of Anatomy, School of Medicine, Konkuk University, 05029 Seoul, South Korea.,Research Institute of Medical Science, School of Medicine, Konkuk University, 05029 Seoul, South Korea
| | - Pierre-Hervé Luppi
- Team "SLEEP", Centre de Recherche en Neurosciences de Lyon (CRNL), UMR 5292 CNRS/U1028 INSERM and Université de Lyon, Lyon I, Neurocampus-Michel Jouvet, 95 Boulevard Pinel, 69500 Bron, France
| |
Collapse
|
10
|
Yamazaki R, Toda H, Libourel PA, Hayashi Y, Vogt KE, Sakurai T. Evolutionary Origin of Distinct NREM and REM Sleep. Front Psychol 2021; 11:567618. [PMID: 33381062 PMCID: PMC7767968 DOI: 10.3389/fpsyg.2020.567618] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
Sleep is mandatory in most animals that have the nervous system and is universally observed in model organisms ranging from the nematodes, zebrafish, to mammals. However, it is unclear whether different sleep states fulfill common functions and are driven by shared mechanisms in these different animal species. Mammals and birds exhibit two obviously distinct states of sleep, i.e., non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep, but it is unknown why sleep should be so segregated. Studying sleep in other animal models might give us clues that help solve this puzzle. Recent studies suggest that REM sleep, or ancestral forms of REM sleep might be found in non-mammalian or -avian species such as reptiles. These observations suggest that REM sleep and NREM sleep evolved earlier than previously thought. In this review, we discuss the evolutionary origin of the distinct REM/NREM sleep states to gain insight into the mechanistic and functional reason for these two different types of sleep.
Collapse
Affiliation(s)
- Risa Yamazaki
- CNRS UMR 5292, INSERM U1028, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Hirofumi Toda
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Paul-Antoine Libourel
- CNRS UMR 5292, INSERM U1028, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kaspar E Vogt
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Takeshi Sakurai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan.,Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
11
|
Park SH, Weber F. Neural and Homeostatic Regulation of REM Sleep. Front Psychol 2020; 11:1662. [PMID: 32793050 PMCID: PMC7385183 DOI: 10.3389/fpsyg.2020.01662] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Rapid eye movement (REM) sleep is a distinct, homeostatically controlled brain state characterized by an activated electroencephalogram (EEG) in combination with paralysis of skeletal muscles and is associated with vivid dreaming. Understanding how REM sleep is controlled requires identification of the neural circuits underlying its initiation and maintenance, and delineation of the homeostatic processes regulating its expression on multiple timescales. Soon after its discovery in humans in 1953, the pons was demonstrated to be necessary and sufficient for the generation of REM sleep. But, especially within the last decade, researchers have identified further neural populations in the hypothalamus, midbrain, and medulla that regulate REM sleep by either promoting or suppressing this brain state. The discovery of these populations was greatly facilitated by the availability of novel technologies for the dissection of neural circuits. Recent quantitative models integrate findings about the activity and connectivity of key neurons and knowledge about homeostatic mechanisms to explain the dynamics underlying the recurrence of REM sleep. For the future, combining quantitative with experimental approaches to directly test model predictions and to refine existing models will greatly advance our understanding of the neural and homeostatic processes governing the regulation of REM sleep.
Collapse
Affiliation(s)
| | - Franz Weber
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|