1
|
Dias I, Kollarik S, Siegel M, Baumann CR, Moreira CG, Noain D. Novel murine closed-loop auditory stimulation paradigm elicits macrostructural sleep benefits in neurodegeneration. J Sleep Res 2025; 34:e14316. [PMID: 39223830 PMCID: PMC11911048 DOI: 10.1111/jsr.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Boosting slow-wave activity (SWA) by modulating slow waves through closed-loop auditory stimulation (CLAS) might provide a powerful non-pharmacological tool to investigate the link between sleep and neurodegeneration. Here, we established mouse CLAS (mCLAS)-mediated SWA enhancement and explored its effects on sleep deficits in neurodegeneration, by targeting the up-phase of slow waves in mouse models of Alzheimer's disease (AD, Tg2576) and Parkinson's disease (PD, M83). We found that tracking a 2 Hz component of slow waves leads to highest precision of non-rapid eye movement (NREM) sleep detection in mice, and that its combination with a 30° up-phase target produces a significant 15-30% SWA increase from baseline in wild-type (WTAD) and transgenic (TGAD) mice versus a mock stimulation group. Conversely, combining 2 Hz with a 40° phase target yields a significant increase ranging 30-35% in WTPD and TGPD mice. Interestingly, these phase-target-triggered SWA increases are not genotype dependent but strain specific. Sleep alterations that may contribute to disease progression and burden were described in AD and PD lines. Notably, pathological sleep traits were rescued by mCLAS, which elicited a 14% decrease of pathologically heightened NREM sleep fragmentation in TGAD mice, accompanied by a steep decrease in microarousal events during both light and dark periods. Overall, our results indicate that model-tailored phase targeting is key to modulate SWA through mCLAS, prompting the acute alleviation of key neurodegeneration-associated sleep phenotypes and potentiating sleep regulation and consolidation. Further experiments assessing the long-term effect of mCLAS in neurodegeneration may majorly impact the establishment of sleep-based therapies.
Collapse
Affiliation(s)
- Inês Dias
- Department of NeurologyUniversity Hospital Zurich (USZ)SchlierenSwitzerland
- Department of Health Sciences and Technology (D‐HEST)ETH ZurichZurichSwitzerland
- Neuroscience Center Zurich (ZNZ)University of Zurich (UZH)ZurichSwitzerland
| | - Sedef Kollarik
- Department of NeurologyUniversity Hospital Zurich (USZ)SchlierenSwitzerland
| | - Michelle Siegel
- Department of NeurologyUniversity Hospital Zurich (USZ)SchlierenSwitzerland
| | - Christian R. Baumann
- Department of NeurologyUniversity Hospital Zurich (USZ)SchlierenSwitzerland
- Neuroscience Center Zurich (ZNZ)University of Zurich (UZH)ZurichSwitzerland
- Center of Competence Sleep and HealthUniversity of Zurich (UZH)ZurichSwitzerland
| | - Carlos G. Moreira
- Department of NeurologyUniversity Hospital Zurich (USZ)SchlierenSwitzerland
| | - Daniela Noain
- Department of NeurologyUniversity Hospital Zurich (USZ)SchlierenSwitzerland
- Neuroscience Center Zurich (ZNZ)University of Zurich (UZH)ZurichSwitzerland
- Center of Competence Sleep and HealthUniversity of Zurich (UZH)ZurichSwitzerland
| |
Collapse
|
2
|
Esfahani MJ, Farboud S, Ngo HVV, Schneider J, Weber FD, Talamini LM, Dresler M. Closed-loop auditory stimulation of sleep slow oscillations: Basic principles and best practices. Neurosci Biobehav Rev 2023; 153:105379. [PMID: 37660843 DOI: 10.1016/j.neubiorev.2023.105379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Sleep is essential for our physical and mental well-being. During sleep, despite the paucity of overt behavior, our brain remains active and exhibits a wide range of coupled brain oscillations. In particular slow oscillations are characteristic for sleep, however whether they are directly involved in the functions of sleep, or are mere epiphenomena, is not yet fully understood. To disentangle the causality of these relationships, experiments utilizing techniques to detect and manipulate sleep oscillations in real-time are essential. In this review, we first overview the theoretical principles of closed-loop auditory stimulation (CLAS) as a method to study the role of slow oscillations in the functions of sleep. We then describe technical guidelines and best practices to perform CLAS and analyze results from such experiments. We further provide an overview of how CLAS has been used to investigate the causal role of slow oscillations in various sleep functions. We close by discussing important caveats, open questions, and potential topics for future research.
Collapse
Affiliation(s)
| | - Soha Farboud
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, the Netherlands
| | - Hong-Viet V Ngo
- Department of Psychology, University of Essex, United Kingdom; Department of Psychology, University of Lübeck, Germany; Center for Brain, Behaviour and Metabolism, University of Lübeck, Germany
| | - Jules Schneider
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Frederik D Weber
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Lucia M Talamini
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboudumc, the Netherlands.
| |
Collapse
|
3
|
Albrecht JN, Jaramillo V, Huber R, Karlen W, Baumann CR, Brotschi B. Technical feasibility of using auditory phase-targeted stimulation after pediatric severe traumatic brain injury in an intensive care setting. BMC Pediatr 2022; 22:616. [PMID: 36289537 PMCID: PMC9597971 DOI: 10.1186/s12887-022-03667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Supplementary treatment options after pediatric severe traumatic brain injury (TBI) are needed to improve neurodevelopmental outcome. Evidence suggests enhancement of brain delta waves via auditory phase-targeted stimulation might support neuronal reorganization, however, this method has never been applied in analgosedated patients on the pediatric intensive care unit (PICU). Therefore, we conducted a feasibility study to investigate this approach: In a first recording phase, we examined feasibility of recording over time and in a second stimulation phase, we applied stimulation to address tolerability and efficacy. METHODS Pediatric patients (> 12 months of age) with severe TBI were included between May 2019 and August 2021. An electroencephalography (EEG) device capable of automatic delta wave detection and sound delivery through headphones was used to record brain activity and for stimulation (MHSL-SleepBand version 2). Stimulation tolerability was evaluated based on report of nurses, visual inspection of EEG data and clinical signals (heart rate, intracranial pressure), and whether escalation of therapy to reduce intracranial pressure was needed. Stimulation efficacy was investigated by comparing EEG power spectra of active stimulation versus muted stimulation (unpaired t-tests). RESULTS In total, 4 out of 32 TBI patients admitted to the PICU (12.5%) between 4 and 15 years of age were enrolled in the study. All patients were enrolled in the recording phase and the last one also to the stimulation phase. Recordings started within 5 days after insult and lasted for 1-4 days. Overall, 23-88 h of EEG data per patient were collected. In patient 4, stimulation was enabled for 50 min: No signs of patient stress reactions were observed. Power spectrums between active and muted stimulation were not statistically different (all P > .05). CONCLUSION Results suggests good feasibility of continuously applying devices needed for auditory stimulation over multiple days in pediatric patients with TBI on PICU. Very preliminary evidence suggests good tolerability of auditory stimuli, but efficacy of auditory stimuli to enhance delta waves remains unclear and requires further investigation. However, only low numbers of severe TBI patients could be enrolled in the study and, thus, future studies should consider an international multicentre approach.
Collapse
Affiliation(s)
- Joëlle Ninon Albrecht
- Child Development Center, University Children's Hospital Zurich, University of Zurich (UZH), Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich (UZH), Zurich, Switzerland
| | - Valeria Jaramillo
- Child Development Center, University Children's Hospital Zurich, University of Zurich (UZH), Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich (UZH), Zurich, Switzerland
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, UK
- Care Research and Technology Centre, UK Dementia Research Institute, at Imperial College, University of Surrey, London, Guildford, UK
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, University of Zurich (UZH), Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, University of Zurich (UZH), Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich (UZH), Zurich, Switzerland
| | - Walter Karlen
- Mobile Health Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Institute of Biomedical Engineering, University of Ulm, Ulm, Germany
| | | | - Barbara Brotschi
- Children's Research Center, University Children's Hospital Zurich, University of Zurich (UZH), Zurich, Switzerland.
- Department of Neonatology and Paediatric Intensive Care, University Children's Hospital Zurich, University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|