1
|
Lagassé HD, Ou J, Sauna ZE, Golding B. Factor VIII moiety of recombinant Factor VIII Fc fusion protein impacts Fc effector function and CD16 + NK cell activation. Front Immunol 2024; 15:1341013. [PMID: 38655263 PMCID: PMC11035769 DOI: 10.3389/fimmu.2024.1341013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024] Open
Abstract
Recombinant Factor VIII-Fc fusion protein (rFVIIIFc) is an enhanced half-life therapeutic protein product used for the management of hemophilia A. Recent studies have demonstrated that rFVIIIFc interacts with Fc gamma receptors (FcγR) resulting in the activation or inhibition of various FcγR-expressing immune cells. We previously demonstrated that rFVIIIFc, unlike recombinant Factor IX-Fc (rFIXFc), activates natural killer (NK) cells via Fc-mediated interactions with FcγRIIIA (CD16). Additionally, we showed that rFVIIIFc activated CD16+ NK cells to lyse a FVIII-specific B cell clone. Here, we used human NK cell lines and primary NK cells enriched from peripheral blood leukocytes to study the role of the FVIII moiety in rFVIIIFc-mediated NK cell activation. Following overnight incubation of NK cells with rFVIIIFc, cellular activation was assessed by measuring secretion of the inflammatory cytokine IFNγ by ELISA or by cellular degranulation. We show that anti-FVIII, anti-Fc, and anti-CD16 all inhibited indicating that these molecules were involved in rFVIIIFc-mediated NK cell activation. To define which domains of FVIII were involved, we used antibodies that are FVIII domain-specific and demonstrated that blocking FVIII C1 or C2 domain-mediated membrane binding potently inhibited rFVIIIFc-mediated CD16+ NK cell activation, while targeting the FVIII heavy chain domains did not. We also show that rFVIIIFc binds CD16 with about five-fold higher affinity than rFIXFc. Based on our results we propose that FVIII light chain-mediated membrane binding results in tethering of the fusion protein to the cell surface, and this, together with increased binding affinity for CD16, allows for Fc-CD16 interactions to proceed, resulting in NK cellular activation. Our working model may explain our previous results where we observed that rFVIIIFc activated NK cells via CD16, whereas rFIXFc did not despite having identical IgG1 Fc domains.
Collapse
Affiliation(s)
- H.A. Daniel Lagassé
- Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Jiayi Ou
- Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Zuben E. Sauna
- Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Basil Golding
- Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
2
|
Childers KC, Peters SC, Spiegel PC. Structural insights into blood coagulation factor VIII: Procoagulant complexes, membrane binding, and antibody inhibition. J Thromb Haemost 2022; 20:1957-1970. [PMID: 35722946 DOI: 10.1111/jth.15793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Advances in structural studies of blood coagulation factor VIII (FVIII) have provided unique insight into FVIII biochemistry. Atomic detail models of the B domain-deleted FVIII structure alone and in complex with its circulatory partner, von Willebrand factor (VWF), provide a structure-based rationale for hemophilia A-associated mutations which impair FVIII stability and increase FVIII clearance rates. In this review, we discuss the findings from these studies and their implications toward the design of a recombinant FVIII with improved circulatory half-life. Additionally, we highlight recent structural studies of FVIII bound to inhibitory antibodies that have refined our understanding of FVIII binding to activated platelet membranes and formation of the intrinsic tenase complex. The combination of bioengineering and structural efforts to understand FVIII biochemistry will improve therapeutics for treating hemophilia A, either through FVIII replacement therapeutics, immune tolerance induction, or gene therapy approaches.
Collapse
Affiliation(s)
- Kenneth C Childers
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - Shaun C Peters
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| | - Paul Clint Spiegel
- Chemistry Department, Western Washington University, Bellingham, Washington, USA
| |
Collapse
|
3
|
Lago J, Groot H, Navas D, Lago P, Gamboa M, Calderón D, Polanía-Villanueva DC. Genetic and Bioinformatic Strategies to Improve Diagnosis in Three Inherited Bleeding Disorders in Bogotá, Colombia. Genes (Basel) 2021; 12:genes12111807. [PMID: 34828413 PMCID: PMC8625804 DOI: 10.3390/genes12111807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/03/2022] Open
Abstract
Inherited bleeding disorders (IBDs) are the most frequent congenital diseases in the Colombian population; three of them are hemophilia A (HA), hemophilia B (HB), and von Willebrand Disease (VWD). Currently, diagnosis relies on multiple clinical laboratory assays to assign a phenotype. Due to the lack of accessibility to these tests, patients can receive an incomplete diagnosis. In these cases, genetic studies reinforce the clinical diagnosis. The present study characterized the molecular genetic basis of 11 HA, three HB, and five VWD patients by sequencing the F8, F9, or the VWF gene. Twelve variations were found in HA patients, four in HB patients, and 19 in WVD patients. From these variations a total of 25 novel variations were found. Disease-causing variations were used as positive controls for validation of the high-resolution melting (HRM) variant-scanning technique. This approach is a low-cost genetic diagnostic method proposed to be incorporated in developing countries. For the data analysis, we developed an accessible open-source code in Python that improves HRM data analysis with better sensitivity of 95% and without bias when using different HRM equipment and software. Analysis of amplicons with a length greater than 300 bp can be performed by implementing an analysis by denaturation domains.
Collapse
Affiliation(s)
- Juliana Lago
- Laboratorio de Genética Humana, Universidad de Los Andes, Bogotá 111711, Colombia; (J.L.); (H.G.); (D.N.)
| | - Helena Groot
- Laboratorio de Genética Humana, Universidad de Los Andes, Bogotá 111711, Colombia; (J.L.); (H.G.); (D.N.)
| | - Diego Navas
- Laboratorio de Genética Humana, Universidad de Los Andes, Bogotá 111711, Colombia; (J.L.); (H.G.); (D.N.)
| | - Paula Lago
- Department of Basic Sciences, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan;
| | - María Gamboa
- Laboratorio de Referencia en Hemostasia, Bogotá 110231, Colombia;
| | - Dayana Calderón
- Corporación Corpogen, Universidad Central, Bogotá 110311, Colombia;
| | - Diana C. Polanía-Villanueva
- Laboratorio de Genética Humana, Universidad de Los Andes, Bogotá 111711, Colombia; (J.L.); (H.G.); (D.N.)
- Correspondence:
| |
Collapse
|
4
|
Hermans C, Mancuso ME, Nolan B, Pasi KJ. Recombinant factor VIII Fc for the treatment of haemophilia A. Eur J Haematol 2021; 106:745-761. [PMID: 33650192 PMCID: PMC8252769 DOI: 10.1111/ejh.13610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022]
Abstract
Prophylaxis with factor VIII (FVIII) is the current therapeutic approach for people with haemophilia A. However, standard half-life (SHL) FVIII products must be injected frequently, imposing a substantial burden on the individual and making it difficult to tailor therapy according to patient need and lifestyle, which could impact adherence. Recombinant FVIII Fc fusion protein (rFVIIIFc; Elocta® , Sobi; Eloctate® , Sanofi) is a recombinant fusion protein that undergoes slower clearance from the body than SHL FVIII products. This pharmacokinetic property of rFVIIIFc allows prophylactic administration every 3-5 days, or once weekly in selected patients, with doses adjusted to patient needs and clinical outcomes. Higher FVIII levels can be achieved maintaining dosing frequency similar to that usually applied with SHL FVIII. This review provides a summary of recent data from the A-LONG, Kids A-LONG, ASPIRE and PUPs A-LONG studies and recently published real-world experience relevant to rFVIIIFc use in individualised regimens. The review also introduces ongoing studies of rFVIIIFc, including its use for induction of immune tolerance, and discusses some aspects to consider when switching patients to rFVIIIFc and managing ongoing treatment. In summary, rFVIIIFc is suitable for individualised prophylaxis regimens that can be tailored according to patient clinical needs and lifestyle.
Collapse
Affiliation(s)
- Cedric Hermans
- Haemostasis and Thrombosis UnitDivision of HaematologyCliniques Universitaires Saint‐LucUniversité catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Maria Elisa Mancuso
- Center for Thrombosis and Hemorrhagic DiseasesHumanitas Clinical and Research Center ‐ IRCCSRozzanoItaly
| | | | - K. John Pasi
- Royal London Haemophilia CentreBarts and the London School of Medicine and DentistryLondonUK
| |
Collapse
|
5
|
Abstract
The formation of membrane-bound complexes between specific coagulation factors at different cell surfaces is required for effective blood clotting. The most important of these complexes, the intrinsic Tenase and Prothrombinase complexes, are formed on the activated platelet surface during the propagation phase of coagulation. These two complexes are highly specific in their assembly mechanism and function modulated by anionic membranes, thus offering desirable targets for pharmaceutical interventions. Factor V (FV) and factor VIII (FVIII) are highly homologous non-enzymatic proteins. In their active state, FVa and FVIIIa serve as cofactors for the respective serine proteases factor Xa (FXa) and factor IXa (FIXa), significantly increasing their catalytic activity. This is achieved by forming well organized membrane-bound complexes at the phosphatidylserine rich activated platelet membrane in the presence of Ca2+ ions. The tenase (FVIIIa/FIXa) complex, catalyzes the proteolytic conversion of FX to FXa. Subsequently the prothrombinase (FVa/FXa) complex catalyzes the conversion of prothrombin to thrombin, required for efficient blood clotting. Although significant knowledge of FV and FVIII biochemistry and regulation has been achieved, the molecular mechanisms of their function are yet to be defined. Understanding the geometric assembly of the tenase and prothrombinase complexes is paramount in defining the structural basis of bleeding and thrombotic disorders. Such knowledge will enable the design of efficient pro- and anticoagulant therapies critical for regulating abnormal hemostasis. In this chapter, we will summarize the findings to date, showing our achievement in the field and outlining the future findings required to grasp the complexity of these proteins.
Collapse
Affiliation(s)
- Svetla Stoilova-McPhie
- Center for Nanoscale Systems (CNS), Laboratory For Integrated Sciences and Engineering (LISE), Faculty of Art and Sciences (FAS), Harvard University, 11 Oxford Street, Cambridge, MA, 02138, England, UK.
| |
Collapse
|
6
|
Duivelshof BL, Murisier A, Camperi J, Fekete S, Beck A, Guillarme D, D'Atri V. Therapeutic Fc-fusion proteins: Current analytical strategies. J Sep Sci 2020; 44:35-62. [PMID: 32914936 DOI: 10.1002/jssc.202000765] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Fc-Fusion proteins represent a successful class of biopharmaceutical products, with already 13 drugs approved in the European Union and United States as well as three biosimilar versions of etanercept. Fc-Fusion products combine tailored pharmacological properties of biological ligands, together with multiple functions of the fragment crystallizable domain of immunoglobulins. There is a great diversity in terms of possible biological ligands, including the extracellular domains of natural receptors, functionally active peptides, recombinant enzymes, and genetically engineered binding constructs acting as cytokine traps. Due to their highly diverse structures, the analytical characterization of Fc-Fusion proteins is far more complex than that of monoclonal antibodies and requires the use and development of additional product-specific methods over conventional generic/platform methods. This can be explained, for example, by the presence of numerous sialic acids, leading to high diversity in terms of isoelectric points and complex glycosylation profiles including multiple N- and O-linked glycosylation sites. In this review, we highlight the wide range of analytical strategies used to fully characterize Fc-fusion proteins. We also present case studies on the structural assessment of all commercially available Fc-fusion proteins, based on the features and critical quality attributes of their ligand-binding domains.
Collapse
Affiliation(s)
- Bastiaan L Duivelshof
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Amarande Murisier
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Julien Camperi
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Alain Beck
- IRPF - Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Rodriguez M, Porada CD, Almeida-Porada G. Mechanistic Insights into Factor VIII Immune Tolerance Induction via Prenatal Cell Therapy in Hemophilia A. CURRENT STEM CELL REPORTS 2019; 5:145-161. [PMID: 32351874 DOI: 10.1007/s40778-019-00165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Purpose of Review Prenatal stem cell and gene therapy approaches are amongst the few therapies that can promise the birth of a healthy infant with specific known genetic diseases. This review describes fetal immune cell signaling and its potential influence on donor cell engraftment, and summarizes mechanisms of central T cell tolerance to peripherally-acquired antigen in the context of prenatal therapies for Hemophilia A. Recent Findings During early gestation, different subsets of antigen presenting cells take up peripherally-acquired, non-inherited antigens and induce the deletion of antigen-reactive T-cell precursors in the thymus, demonstrating the potential for using prenatal cell and gene therapies to induce central tolerance to FVIII in the context of prenatal diagnosis/therapy of Hemophilia A. Summary Prenatal cell and gene therapies are promising approaches to treat several genetic disorders including Hemophilia A and B. Understanding the mechanisms of how FVIII-specific tolerance is achieved during ontogeny could help develop novel therapies for HA and better approaches to overcome FVIII inhibitors.
Collapse
Affiliation(s)
- Martin Rodriguez
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Graҫa Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Brosey CA, Tainer JA. Evolving SAXS versatility: solution X-ray scattering for macromolecular architecture, functional landscapes, and integrative structural biology. Curr Opin Struct Biol 2019; 58:197-213. [PMID: 31204190 PMCID: PMC6778498 DOI: 10.1016/j.sbi.2019.04.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 11/27/2022]
Abstract
Small-angle X-ray scattering (SAXS) has emerged as an enabling integrative technique for comprehensive analyses of macromolecular structures and interactions in solution. Over the past two decades, SAXS has become a mainstay of the structural biologist's toolbox, supplying multiplexed measurements of molecular shape and dynamics that unveil biological function. Here, we discuss evolving SAXS theory, methods, and applications that extend the field of small-angle scattering beyond simple shape characterization. SAXS, coupled with size-exclusion chromatography (SEC-SAXS) and time-resolved (TR-SAXS) methods, is now providing high-resolution insight into macromolecular flexibility and ensembles, delineating biophysical landscapes, and facilitating high-throughput library screening to assess macromolecular properties and to create opportunities for drug discovery. Looking forward, we consider SAXS in the integrative era of hybrid structural biology methods, its potential for illuminating cellular supramolecular and mesoscale structures, and its capacity to complement high-throughput bioinformatics sequencing data. As advances in the field continue, we look forward to proliferating uses of SAXS based upon its abilities to robustly produce mechanistic insights for biology and medicine.
Collapse
Affiliation(s)
- Chris A Brosey
- Molecular and Cellular Oncology and Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | - John A Tainer
- Molecular and Cellular Oncology and Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Zhang W, Mao JH. [Advances of hemophilia A treatment]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:83-86. [PMID: 29551046 PMCID: PMC7343114 DOI: 10.3760/cma.j.issn.0253-2727.2018.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Indexed: 11/29/2022]
Affiliation(s)
| | - J H Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|