1
|
Peretto L, D'angiolillo C, Ferraresi P, Balestra D, Pinotti M. Rescue of a panel of Hemophilia A-causing 5'ss splicing mutations by unique Exon-specific U1snRNA variants. Mol Med 2025; 31:121. [PMID: 40148820 PMCID: PMC11948882 DOI: 10.1186/s10020-025-01176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Aberrant mRNA splicing is a well-established pathogenic mechanism for human disease, but its real impact is hardly predictable and underestimated. Splicing can be therefore modulated for therapeutic purposes, and splicing-switching molecules are in clinics for some diseases. Here, conscious that over 10% of all pathogenic mutations occurs at 5'ss, we aimed at characterizing and rescuing nine 5'ss mutations in three models of defective F8 exons whose skipping would lead to factor VIII (FVIII) deficiency (Hemophilia A), the most frequent coagulation factor disorder. METHODS HEK293T cells were transfected with F8 minigene variants, alone or with engineered U1 small nuclear RNAs (U1snRNAs), and splicing patterns analysed via RT-PCR. RESULTS All 5'ss mutations induced exon skipping, and the proportion of correct transcripts, not predictable by computational analysis, was consistent with residual FVIII levels in patients. For each exon we identified a unique engineered U1snRNAs, either compensatory or Exon Specific (ExSpeU1), able to rescue all mutations. Overall, ExSpeU1s were more effective than compensatory U1snRNAs, particularly in the defective exons 6 and 22. CONCLUSIONS Data highlight the importance of splicing assays to elucidate genotype-phenotype relationships and proved the correction efficacy of ExSpeU1s for each targeted defective F8 exon, thus expanding their translational potential for HA.
Collapse
Affiliation(s)
- Laura Peretto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy
| | - Claudia D'angiolillo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy
| | - Paolo Ferraresi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy.
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, 44121, Italy
| |
Collapse
|
2
|
Srivastava V, Liu Z, Wei W, Zhang Y, Paton JC, Paton AW, Mu T, Zhang B. Cell-Based Small-Molecule Screening Identifying Proteostasis Regulators Enhancing Factor VIII Missense Mutant Secretion. Biomolecules 2025; 15:458. [PMID: 40305178 PMCID: PMC12024529 DOI: 10.3390/biom15040458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
Missense mutations are the most prevalent alterations in genetic disorders such as hemophilia A (HA), which results from coagulation factor VIII (FVIII) deficiencies. These mutations disrupt protein biosynthesis, folding, secretion, and function. Current treatments for HA are extremely expensive and inconvenient for patients. Small molecule drugs offer a promising alternative or adjunctive strategy due to their lower cost and ease of administration, enhancing accessibility and patient compliance. By screening drug/chemical libraries with cells stably expressing FVIII-Gaussia luciferase fusion proteins, we identified compounds that enhance FVIII secretion and activity. Among these, suberoylanilide hydroxamic acid (SAHA) improved the secretion and activity of wild-type FVIII and common HA-associated missense mutants, especially mild and moderate ones. SAHA increased FVIII interaction with the endoplasmic reticulum chaperone BiP/GRP78 but not with calreticulin. Lowering cellular BiP levels decreased SAHA-induced FVIII secretion and enhancing BiP expression increased FVIII secretion. SAHA also enhanced secretion and BiP interactions with individual domains of FVIII. In vivo, treating mice with SAHA or a BiP activator boosted endogenous FVIII activity. These findings suggest that SAHA serves as a proteostasis regulator, providing a novel therapeutic approach to improve the secretion and functionality of FVIII missense mutants prone to misfolding.
Collapse
Affiliation(s)
- Vishal Srivastava
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; (V.S.); (Z.L.); (Y.Z.)
| | - Zhigang Liu
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; (V.S.); (Z.L.); (Y.Z.)
| | - Wei Wei
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; (V.S.); (Z.L.); (Y.Z.)
| | - Yuan Zhang
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; (V.S.); (Z.L.); (Y.Z.)
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia; (J.C.P.); (A.W.P.)
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia; (J.C.P.); (A.W.P.)
| | - Tingwei Mu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA;
| | - Bin Zhang
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; (V.S.); (Z.L.); (Y.Z.)
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, OH 44195, USA
| |
Collapse
|
3
|
Shanmugam NRS, Kulandaisamy A, Veluraja K, Gromiha MM. CarbDisMut: database on neutral and disease-causing mutations in human carbohydrate-binding proteins. Glycobiology 2024; 34:cwae011. [PMID: 38335248 DOI: 10.1093/glycob/cwae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/03/2024] [Indexed: 02/12/2024] Open
Abstract
Protein-carbohydrate interactions are involved in several cellular and biological functions. Integrating structure and function of carbohydrate-binding proteins with disease-causing mutations help to understand the molecular basis of diseases. Although databases are available for protein-carbohydrate complexes based on structure, binding affinity and function, no specific database for mutations in human carbohydrate-binding proteins is reported in the literature. We have developed a novel database, CarbDisMut, a comprehensive integrated resource for disease-causing mutations with sequence and structural features. It has 1.17 million disease-associated mutations and 38,636 neutral mutations from 7,187 human carbohydrate-binding proteins. The database is freely available at https://web.iitm.ac.in/bioinfo2/carbdismut. The web-site is implemented using HTML, PHP and JavaScript and supports recent versions of all major browsers, such as Firefox, Chrome and Opera.
Collapse
Affiliation(s)
- N R Siva Shanmugam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - A Kulandaisamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- Basic and Translational Research, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, United States
| | - K Veluraja
- PSN College of Engineering and Technology, Melathediyoor, Tirunelveli, Tamil Nadu 627451, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Computer Science, Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Department of Computer Science, National University of Singapore, 117417, Singapore
| |
Collapse
|
4
|
Zhang H, Xin M, Lin L, Chen C, Balestra D, Ding Q. Pleiotropic effects of different exonic nucleotide changes at the same position contribute to hemophilia B phenotypic variation. J Thromb Haemost 2024; 22:975-989. [PMID: 38184202 DOI: 10.1016/j.jtha.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND The disease-causing effects of genetic variations often depend on their location within a gene. Exonic changes generally lead to alterations in protein production, secretion, activity, or clearance. However, owing to the overlap between proteins and splicing codes, missense variants can also affect messenger RNA splicing, thus adding a layer of complexity and influencing disease phenotypes. OBJECTIVES To extensively characterize a panel of 13 exonic variants in the F9 gene occurring at 6 different factor IX positions and associated with varying severities of hemophilia B (HB). METHODS Computational predictions, splicing analysis, and recombinant factor IX assays were exploited to characterize F9 variants. RESULTS We demonstrated that 5 (38%) of 13 selected F9 exonic variants have pleiotropic effects. Although bioinformatic approaches accurately classified effects, extensive experimental assays were required to elucidate and deepen the molecular mechanisms underlying the pleiotropic effects. Importantly, their characterization was instrumental in developing tailored RNA therapeutics based on engineered U7 small nuclear RNA to mask cryptic splice sites and compensatory U1 small nuclear RNA to enhance exon definition. CONCLUSION Overall, albeit a multitool bioinformatic approach suggested the molecular effects of multiple HB variants, the deep investigation of molecular mechanisms revealed insights into the HB phenotype-genotype relationship, enabling accurate classification of HB variants. Importantly, knowledge of molecular mechanisms allowed the development of tailored RNA therapeutics, which can also be translated to other genetic diseases.
Collapse
Affiliation(s)
- Huayang Zhang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Xin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liya Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changming Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Roussel L, Pham-Huy A, Yu AC, Venkateswaran S, Perez A, Bourdel G, Sun Y, Villavicencio ST, Bernier S, Li Y, Kazimerczak-Brunet M, Alattar R, Déry MA, Shapiro AJ, Penner J, Vinh DC. A Novel Homozygous Mutation Causing Complete TYK2 Deficiency, with Severe Respiratory Viral Infections, EBV-Driven Lymphoma, and Jamestown Canyon Viral Encephalitis. J Clin Immunol 2023; 43:2011-2021. [PMID: 37695435 DOI: 10.1007/s10875-023-01580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Autosomal recessive tyrosine kinase 2 (TYK2) deficiency is characterized by susceptibility to mycobacterial and viral infections. Here, we report a 4-year-old female with severe respiratory viral infections, EBV-driven Burkitt-like lymphoma, and infection with the neurotropic Jamestown Canyon virus. A novel, homozygous c.745C > T (p.R249*) variant was found in TYK2. The deleterious effects of the TYK2 lesion were confirmed by immunoblotting; by evaluating functional responses to IFN-α/β, IL-10, and IL-23; and by assessing its scaffolding effect on the cell surface expression of cytokine receptor subunits. The effects of the mutation could not be pharmacologically circumvented in vitro, suggesting that alternative modalities, such as hematopoietic stem cell transplantation or gene therapy, may be needed. We characterize the first patient from Canada with a novel homozygous mutation in TYK2.
Collapse
Affiliation(s)
- Lucie Roussel
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Anne Pham-Huy
- Division of Infectious Diseases, Immunology and Allergy, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Andrea C Yu
- Division of Metabolics and Newborn Screening, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Sunita Venkateswaran
- Division of Neurology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Anna Perez
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Guillaume Bourdel
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Yichun Sun
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Stephanya Tellez Villavicencio
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Stéphane Bernier
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Yongbiao Li
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Makayla Kazimerczak-Brunet
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Rolan Alattar
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Marc-André Déry
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada
| | - Adam J Shapiro
- Division of Respirology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Justin Penner
- Division of Infectious Diseases, Immunology and Allergy, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
- Department of Pediatrics, Qikiqtani General Hospital, Iqaluit, NT, Canada
| | - Donald C Vinh
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute, McGill University Health Centre, 1001 Decarie Blvd., Block E, Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, QC, H4A 3J1, Canada.
- Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
6
|
Lombardi S, Testa MF, Pinotti M, Branchini A. Translation termination codons in protein synthesis and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:1-48. [PMID: 36088072 DOI: 10.1016/bs.apcsb.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fidelity of protein synthesis, a process shaped by several mechanisms involving specialized ribosome regions and external factors, ensures the precise reading of sense as well as stop codons (UGA, UAG, UAA), which are usually localized at the 3' of mRNA and drive the release of the polypeptide chain. However, either natural (NTCs) or premature (PTCs) termination codons, the latter arising from nucleotide changes, can undergo a recoding process named ribosome or translational readthrough, which insert specific amino acids (NTCs) or subset(s) depending on the stop codon type (PTCs). This process is particularly relevant for nonsense mutations, a relatively frequent cause of genetic disorders, which impair gene expression at different levels by potentially leading to mRNA degradation and/or synthesis of truncated proteins. As a matter of fact, many efforts have been made to develop efficient and safe readthrough-inducing compounds, which have been challenged in several models of human disease to provide with a therapy. In this view, the dissection of the molecular determinants shaping the outcome of readthrough, namely nucleotide and protein contexts as well as their interplay and impact on protein structure/function, is crucial to identify responsive nonsense mutations resulting in functional full-length proteins. The interpretation of experimental and mechanistic findings is also important to define a possibly clear picture of potential readthrough-favorable features useful to achieve rescue profiles compatible with therapeutic thresholds typical of each targeted disorder, which is of primary importance for the potential translatability of readthrough into a personalized and mutation-specific, and thus patient-oriented, therapeutic strategy.
Collapse
Affiliation(s)
- Silvia Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Maria Francesca Testa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
7
|
Genetic Deletion of HLJ1 Does Not Affect Blood Coagulation in Mice. Int J Mol Sci 2022; 23:ijms23042064. [PMID: 35216179 PMCID: PMC8880458 DOI: 10.3390/ijms23042064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
HLJ1 (also called DNAJB4) is a member of the DNAJ/Hsp40 family and plays an important role in regulating protein folding and activity. However, there is little information about the role of HLJ1 in the regulation of physiological function. In this study, we investigated the role of HLJ1 in blood coagulation using wild-type C57BL/6 mice and HLJ1-null (HLJ1-/-) mice. Western blot analysis and immunohistochemistry were used to assess the expression and distribution of HLJ1 protein, respectively. The tail bleeding assay was applied to assess the bleeding time and blood loss. A coagulation test was used for measuring the activity of extrinsic, intrinsic and common coagulation pathways. Thromboelastography was used to measure the coagulation parameters in the progression of blood clot formation. The results showed that HLJ1 was detectable in plasma and bone marrow. The distribution of HLJ1 was co-localized with CD41, the marker of platelets and megakaryocytes. However, genetic deletion of HLJ1 did not alter blood loss and the activity of extrinsic and intrinsic coagulation pathways, as well as blood clot formation, compared to wild-type mice. Collectively, these findings suggest that, although HLJ1 appears in megakaryocytes and platelets, it may not play a role in the function of blood coagulation under normal physiological conditions.
Collapse
|
8
|
Branchini A, Morfini M, Lunghi B, Belvini D, Radossi P, Bury L, Serino ML, Giordano P, Cultrera D, Molinari AC, Napolitano M, Bigagli E, Castaman G, Pinotti M, Bernardi F. F9 missense mutations impairing factor IX activation are associated with pleiotropic plasma phenotypes. J Thromb Haemost 2022; 20:69-81. [PMID: 34626083 PMCID: PMC9298354 DOI: 10.1111/jth.15552] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Circulating dysfunctional factor IX (FIX) might modulate distribution of infused FIX in hemophilia B (HB) patients. Recurrent substitutions at FIX activation sites (R191-R226, >300 patients) are associated with variable FIX activity and antigen (FIXag) levels. OBJECTIVES To investigate the (1) expression of a complete panel of missense mutations at FIX activation sites and (2) contribution of F9 genotypes on the FIX pharmacokinetics (PK). METHODS We checked FIX activity and antigen and activity assays in plasma and after recombinant expression of FIX variants and performed an analysis of infused FIX PK parameters in patients (n = 30), mostly enrolled in the F9 Genotype and PK HB Italian Study (GePKHIS; EudraCT ID2017-003902-42). RESULTS The variable FIXag amounts and good relation between biosynthesis and activity of multiple R191 variants results in graded moderate-to-mild severity of the R191C>L>P>H substitutions. Recombinant expression may predict the absence in the HB mutation database of the benign R191Q/W/K and R226K substitutions. Equivalent changes at R191/R226 produced higher FIXag levels for R226Q/W/P substitutions, as also observed in p.R226W female carrier plasma. Pharmacokinetics analysis in patients suggested that infused FIX Alpha distribution and Beta elimination phases positively correlated with endogenous FIXag levels. Mean residence time was particularly prolonged (79.4 h, 95% confidence interval 44.3-114.5) in patients (n = 7) with the R191/R226 substitutions, which in regression analysis were independent predictors (β coefficient 0.699, P = .004) of Beta half-life, potentially prolonged by the increasing over time ratio between endogenous and infused FIX. CONCLUSIONS FIX activity and antigen levels and specific features of the dysfunctional R191/R226 variants may exert pleiotropic effects both on HB patients' phenotypes and substitutive treatment.
Collapse
Affiliation(s)
- Alessio Branchini
- Department of Life Sciences and Biotechnology and LTTA CentreUniversity of FerraraFerraraItaly
| | | | - Barbara Lunghi
- Department of Life Sciences and Biotechnology and LTTA CentreUniversity of FerraraFerraraItaly
| | - Donata Belvini
- Transfusion ServiceHaemophilia Centre and HaematologyCastelfranco Veneto HospitalCastelfranco VenetoItaly
| | - Paolo Radossi
- Oncohematology‐Oncologic Institute of VenetoCastelfranco Veneto HospitalCastelfranco VenetoItaly
| | - Loredana Bury
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Maria Luisa Serino
- Haemostasis and Thrombosis CentreUniversity Hospital of FerraraFerraraItaly
| | - Paola Giordano
- Paediatric SectionDepartment of Biomedicine and Human OncologyA. Moro” UniversityBariItaly
| | - Dorina Cultrera
- Haemophilia Regional Reference CenterVittorio Emanuele” University HospitalCataniaItaly
| | | | - Mariasanta Napolitano
- Haematology UnitThrombosis and Haemostasis Reference Regional Center and PROMISE DepartmentUniversity of PalermoPalermoItaly
| | - Elisabetta Bigagli
- Department of Neuroscience, PsychologyDrug Research and Child Health (NEUROFARBA)Section of Pharmacology and ToxicologyUniversity of FlorenceFlorenceItaly
| | - Giancarlo Castaman
- Department of Oncology, Center for Bleeding DisordersCareggi University HospitalFirenzeItaly
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology and LTTA CentreUniversity of FerraraFerraraItaly
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology and LTTA CentreUniversity of FerraraFerraraItaly
| |
Collapse
|
9
|
Lombardi S, Leo G, Merlin S, Follenzi A, McVey JH, Maestri I, Bernardi F, Pinotti M, Balestra D. Dissection of pleiotropic effects of variants in and adjacent to F8 exon 19 and rescue of mRNA splicing and protein function. Am J Hum Genet 2021; 108:1512-1525. [PMID: 34242570 DOI: 10.1016/j.ajhg.2021.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
The pathogenic significance of nucleotide variants commonly relies on nucleotide position within the gene, with exonic changes generally attributed to quantitative or qualitative alteration of protein biosynthesis, secretion, activity, or clearance. However, these changes may exert pleiotropic effects on both protein biology and mRNA splicing due to the overlapping of the amino acid and splicing codes, thus shaping the disease phenotypes. Here, we focused on hemophilia A, in which the definition of F8 variants' causative role and association to bleeding phenotypes is crucial for proper classification, genetic counseling, and management of affected individuals. We extensively characterized a large panel of hemophilia A-causing variants (n = 30) within F8 exon 19 by combining and comparing in silico and recombinant expression analyses. We identified exonic variants with pleiotropic effects and dissected the altered protein features of all missense changes. Importantly, results from multiple prediction algorithms provided qualitative results, while recombinant assays allowed us to correctly infer the likely phenotype severity for 90% of variants. Molecular characterization of pathogenic variants was also instrumental for the development of tailored correction approaches to rescue splicing affecting variants or missense changes impairing protein folding. A single engineered U1snRNA rescued mRNA splicing of nine different variants and the use of a chaperone-like drug resulted in improved factor VIII protein secretion for four missense variants. Overall, dissection of the molecular mechanisms of a large panel of HA variants allowed precise classification of HA-affected individuals and favored the development of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Silvia Lombardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy
| | - Gabriele Leo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, Novara 28100, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, Novara 28100, Italy
| | - John H McVey
- School of Bioscience and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Iva Maestri
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara 44123, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy.
| | - Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy.
| |
Collapse
|
10
|
Lombardi S, Aaen KH, Nilsen J, Ferrarese M, Gjølberg TT, Bernardi F, Pinotti M, Andersen JT, Branchini A. Fusion of engineered albumin with factor IX Padua extends half-life and improves coagulant activity. Br J Haematol 2021; 194:453-462. [PMID: 34109608 PMCID: PMC8362221 DOI: 10.1111/bjh.17559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
The short half‐life of coagulation factor IX (FIX) for haemophilia B (HB) therapy has been prolonged through fusion with human serum albumin (HSA), which drives the neonatal Fc receptor (FcRn)‐mediated recycling of the chimera. However, patients would greatly benefit from further FIX‐HSA half‐life extension. In the present study, we designed a FIX‐HSA variant through the engineering of both fusion partners. First, we developed a novel cleavable linker combining the two FIX activation sites, which resulted in improved HSA release. Second, insertion of the FIX R338L (Padua) substitution conferred hyperactive features (sevenfold higher specific activity) as for FIX Padua alone. Furthermore, we exploited an engineered HSA (QMP), which conferred enhanced human (h)FcRn binding [dissociation constant (KD) 0·5 nM] over wild‐type FIX‐HSA (KD 164·4 nM). In hFcRn transgenic mice, Padua‐QMP displayed a significantly prolonged half‐life (2·7 days, P < 0·0001) versus FIX‐HSA (1 day). Overall, we developed a novel FIX‐HSA protein with improved activity and extended half‐life. These combined properties may result in a prolonged functional profile above the therapeutic threshold, and thus in a potentially widened therapeutic window able to improve HB therapy. This rational engineering of both partners may pave the way for new fusion strategies for the design of engineered biotherapeutics.
Collapse
Affiliation(s)
- Silvia Lombardi
- Department of Life Sciences and Biotechnology and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Kristin H Aaen
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jeannette Nilsen
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Mattia Ferrarese
- Department of Life Sciences and Biotechnology and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Torleif T Gjølberg
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Ophthalmology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Jan T Andersen
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology and LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Hayakawa Y, Tamura S, Suzuki N, Odaira K, Tokoro M, Kawashima F, Hayakawa F, Takagi A, Katsumi A, Suzuki A, Okamoto S, Kanematsu T, Matsushita T, Kojima T. Essential role of a carboxyl-terminal α-helix motif in the secretion of coagulation factor XI. J Thromb Haemost 2021; 19:920-930. [PMID: 33421272 DOI: 10.1111/jth.15242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Coagulation factor XI (FXI) is a plasma serine protease zymogen that contributes to hemostasis. However, the mechanism of its secretion remains unclear. OBJECTIVE To determine the molecular mechanism of FXI secretion by characterizing a novel FXI mutant identified in a FXI-deficient Japanese patient. PATIENT/METHODS The FXI gene (F11) was analyzed by direct sequencing. Mutant recombinant FXI (rFXI) was overexpressed in HEK293 or COS-7 cells. Western blotting and enzyme-linked immunosorbent assay were performed to examine the FXI extracellular secretion profile. Immunofluorescence microscopy was used to investigate the subcellular localization of the rFXI mutant. RESULTS We identified a novel homozygous frameshift mutation in F11 [c.1788dupC (p.E597Rfs*65)], resulting in a unique and extended carboxyl-terminal (C-terminal) structure in FXI. Although rFXI-E597Rfs*65 was intracellularly synthesized, its extracellular secretion was markedly reduced. Subcellular localization analysis revealed that rFXI-E597Rfs*65 was abnormally retained in the endoplasmic reticulum (ER). We generated a series of C-terminal-truncated rFXI mutants to further investigate the role of the C-terminal region in FXI secretion. Serial rFXI experiments revealed that a threonine at position 622, the fourth residue from the C-terminus, was essential for secretion. Notably, Thr622 engages in the formation of an α-helix motif, indicating the importance of the C-terminal α-helix in FXI intracellular behavior and secretion. CONCLUSION FXI E597Rfs*65 results in the pathogenesis of a severe secretory defect resulting from aberrant ER-to-Golgi trafficking caused by the lack of a C-terminal α-helix motif. This study demonstrates the impact of the C-terminal structure, especially the α-helix motif, on FXI secretion.
Collapse
Affiliation(s)
- Yuri Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shogo Tamura
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuaki Suzuki
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Koya Odaira
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mahiru Tokoro
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumika Kawashima
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Takagi
- Department of Medical Technology, Shubun University, Ichinomiya, Japan
| | - Akira Katsumi
- Department of Hematology, National Center for Geriatrics and Gerontology, Obu City, Japan
| | - Atsuo Suzuki
- Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Shuichi Okamoto
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Kanematsu
- Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Tadashi Matsushita
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
- Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan
| | - Tetsuhito Kojima
- Division of Cellular and Genetic Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Aichi Health Promotion Foundation, Nagoya, Japan
| |
Collapse
|
12
|
Molecular Insights into Determinants of Translational Readthrough and Implications for Nonsense Suppression Approaches. Int J Mol Sci 2020; 21:ijms21249449. [PMID: 33322589 PMCID: PMC7764779 DOI: 10.3390/ijms21249449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/27/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
The fidelity of protein synthesis, a process shaped by several mechanisms involving specialized ribosome regions and external factors, ensures the precise reading of sense and stop codons. However, premature termination codons (PTCs) arising from mutations may, at low frequency, be misrecognized and result in PTC suppression, named ribosome readthrough, with production of full-length proteins through the insertion of a subset of amino acids. Since some drugs have been identified as readthrough inducers, this fidelity drawback has been explored as a therapeutic approach in several models of human diseases caused by nonsense mutations. Here, we focus on the mechanisms driving translation in normal and aberrant conditions, the potential fates of mRNA in the presence of a PTC, as well as on the results obtained in the research of efficient readthrough-inducing compounds. In particular, we describe the molecular determinants shaping the outcome of readthrough, namely the nucleotide and protein context, with the latter being pivotal to produce functional full-length proteins. Through the interpretation of experimental and mechanistic findings, mainly obtained in lysosomal and coagulation disorders, we also propose a scenario of potential readthrough-favorable features to achieve relevant rescue profiles, representing the main issue for the potential translatability of readthrough as a therapeutic strategy.
Collapse
|
13
|
Cohen CT, Turner NA, Moake JL. Production and control of coagulation proteins for factor X activation in human endothelial cells and fibroblasts. Sci Rep 2020; 10:2005. [PMID: 32029851 PMCID: PMC7005260 DOI: 10.1038/s41598-020-59058-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022] Open
Abstract
Human endothelial cells (ECs) synthesize, store, and secrete von Willebrand factor multimeric strings and coagulation factor (F) VIII. It is not currently known if ECs produce other coagulation factors for active participation in coagulation. We found that 3 different types of human ECs in primary culture produce clotting factors necessary for FX activation via the intrinsic (FVIII-FIX) and extrinsic (tissue factor [TF]-FVII) coagulation pathways, as well as prothrombin. Human dermal fibroblasts were used as comparator cells. TF, FVII, FIX, FX, and prothrombin were detected in ECs, and TF, FVII, FIX, and FX were detected in fibroblasts. In addition, FVII, FIX, FX, and prothrombin were detected by fluorescent microscopy in EC cytoplasm (associated with endoplasmic reticulum and Golgi proteins). FX activation occurred on human umbilical vein EC surfaces without the addition of external coagulation proteins, proteolytic enzymes, or phospholipids. Tumour necrosis factor, which suppresses the generation of activated protein C and increases TF, augmented FX activation. Fibroblasts also produced TF, but (in contrast to ECs) were incapable of activating FX without the exogenous addition of FX and had a marked increase in FX activation following the addition of both FX and FVII. We conclude that human ECs produce their own coagulation factors that can activate cell surface FX without the addition of exogenous proteins or phospholipids.
Collapse
Affiliation(s)
- Clay T Cohen
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Nancy A Turner
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Joel L Moake
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
14
|
Lombardi S, Ferrarese M, Marchi S, Pinton P, Pinotti M, Bernardi F, Branchini A. Translational readthrough of GLA nonsense mutations suggests dominant-negative effects exerted by the interaction of wild-type and missense variants. RNA Biol 2019; 17:254-263. [PMID: 31613176 DOI: 10.1080/15476286.2019.1676115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nonsense mutations are relatively frequent in the rare X-linked lysosomal α-galactosidase A (α-Gal) deficiency (Fabry disease; FD), but have been poorly investigated. Here, we evaluated the responsiveness of a wide panel (n = 14) of GLA premature termination codons (PTCs) to the RNA-based approach of drug-induced readthrough through expression of recombinant α-Gal (rGal) nonsense and missense variants.We identified four high-responders to the readthrough-inducing aminoglycoside G418 in terms of full-length protein (C56X/W209X, ≥10% of wild-type rGal) and/or activity (Q119X/W209X/Q321X, ~5-7%), resulting in normal (Q119X/Q321X) or reduced (C56X, 0.27 ± 0.11; W209X, 0.35 ± 0.1) specific activity.To provide mechanistic insights we investigated the predicted amino acid substitutions mediated by readthrough (W209C/R, C56W/R), which resulted in correct lysosomal localization and appreciable protein/activity levels for the W209C/R variants. Differently, the C56W/R variants, albeit appreciably produced and localized into lysosomes, were inactive, thus indicating detrimental effects of substitutions at this position.Noticeably, when co-expressed with the functional W209C or W209R variants, the wild-type rGal displayed a reduced specific activity (0.5 ± 0.2 and 0.6 ± 0.2, respectively) that, considering the dimeric features of the α-Gal enzyme, suggested dominant-negative effects of missense variants through their interaction with the wild-type.Overall, we provide a novel mechanism through which amino acids inserted during readthrough might impact on the functional protein output. Our findings may also have implications for the interpretation of pathological phenotypes in heterozygous FD females, and for other human disorders involving dimeric or oligomeric proteins.
Collapse
Affiliation(s)
- Silvia Lombardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mattia Ferrarese
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
15
|
Andersen E, Chollet ME, Baroni M, Pinotti M, Bernardi F, Skarpen E, Sandset PM, Skretting G. The effect of the chemical chaperone 4-phenylbutyrate on secretion and activity of the p.Q160R missense variant of coagulation factor FVII. Cell Biosci 2019; 9:69. [PMID: 31467667 PMCID: PMC6712599 DOI: 10.1186/s13578-019-0333-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/17/2019] [Indexed: 01/09/2023] Open
Abstract
Background Congenital coagulation factor (F) VII deficiency is a rare bleeding disorder caused by mutations in the F7 gene. The missense factor FVII variant p.Q160R is the disease-causing mutation in all Norwegian FVII deficient patients and results in reduced biological activity and antigen levels of FVII in patient plasma. Previous in vitro studies on this variant demonstrated impaired intracellular trafficking and reduced secretion, possibly due to protein misfolding. The aim of the study was therefore to assess the impact of chemical chaperones on cellular processing and secretion of this variant using a cell model based on overexpression of the recombinant protein. Results Through screening of compounds, we identified 4-phenylbutyrate (4-PBA) to increase the secretion of recombinant (r) FVII-160R by ~ 2.5-fold. Additionally, treatment with 4-PBA resulted in a modest increase in specific biological activity. Intracellular localization studies revealed that upon treatment with 4-PBA, rFVII-160R was secreted through Golgi and Golgi reassembly-stacking protein (GRASP)-structures. Conclusions The present study demonstrates that the chemical chaperone 4-PBA, restores intracellular trafficking and increases the secretion of a missense FVII variant with functional properties in the extrinsic coagulation pathway.
Collapse
Affiliation(s)
- Elisabeth Andersen
- 1Department of Haematology, Oslo University Hospital, Oslo, Norway.,2Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.,3Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Maria Eugenia Chollet
- 1Department of Haematology, Oslo University Hospital, Oslo, Norway.,2Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Marcello Baroni
- Department of Life Sciences and Biotechnology, and LTTA Centre, University of Ferrara, Oslo, Norway
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, and LTTA Centre, University of Ferrara, Oslo, Norway
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, and LTTA Centre, University of Ferrara, Oslo, Norway
| | - Ellen Skarpen
- 5Core Facility for Advanced Light Microscopy, Institute for Cancer Research, Oslo University Hospital, Ferrara, Italy
| | - Per Morten Sandset
- 1Department of Haematology, Oslo University Hospital, Oslo, Norway.,2Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.,3Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Grethe Skretting
- 1Department of Haematology, Oslo University Hospital, Oslo, Norway.,2Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
16
|
Balestra D, Branchini A. Molecular Mechanisms and Determinants of Innovative Correction Approaches in Coagulation Factor Deficiencies. Int J Mol Sci 2019; 20:ijms20123036. [PMID: 31234407 PMCID: PMC6627357 DOI: 10.3390/ijms20123036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Molecular strategies tailored to promote/correct the expression and/or processing of defective coagulation factors would represent innovative therapeutic approaches beyond standard substitutive therapy. Here, we focus on the molecular mechanisms and determinants underlying innovative approaches acting at DNA, mRNA and protein levels in inherited coagulation factor deficiencies, and in particular on: (i) gene editing approaches, which have permitted intervention at the DNA level through the specific recognition, cleavage, repair/correction or activation of target sequences, even in mutated gene contexts; (ii) the rescue of altered pre-mRNA processing through the engineering of key spliceosome components able to promote correct exon recognition and, in turn, the synthesis and secretion of functional factors, as well as the effects on the splicing of missense changes affecting exonic splicing elements; this section includes antisense oligonucleotide- or siRNA-mediated approaches to down-regulate target genes; (iii) the rescue of protein synthesis/function through the induction of ribosome readthrough targeting nonsense variants or the correction of folding defects caused by amino acid substitutions. Overall, these approaches have shown the ability to rescue the expression and/or function of potentially therapeutic levels of coagulation factors in different disease models, thus supporting further studies in the future aimed at evaluating the clinical translatability of these new strategies.
Collapse
Affiliation(s)
- Dario Balestra
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|