1
|
Ragia G, Pallikarou M, Michou C, Thomopoulos T, Chalikias G, Trikas A, Tziakas DN, Manolopoulos VG. Direct oral anticoagulants do not affect miR-27a-3p expression, a regulator of coagulation cascade, in atrial fibrillation patients. J Thromb Thrombolysis 2025:10.1007/s11239-025-03102-5. [PMID: 40257717 DOI: 10.1007/s11239-025-03102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
miR-27a-3p targets several proteins on the coagulation cascade. The potential effect of direct oral anticoagulants (DOACs) treatment on miR-27a-3p expression and their broader regulative effect on anticoagulation is unknown. Fifty-nine atrial fibrillation patients treated with rivaroxaban (n = 19), apixaban (n = 27) or dabigatran (n = 13), were included in the study. miR-27a-3p expression was analyzed at baseline and after 7 days of DOAC therapy by using a predesigned TaqMan assay. Relative quantitation of miR-27a-3p expression was calculated and compared in pooled population and in different sample groups. DOAC therapy did not alter miR-27a-3p expression (0.80 fold-change, p = 0.486, pooled population; 0.839 fold-change, p = 0.706, rivaroxaban; 0.921 fold-change, p = 0.800, apixaban; 0.733 fold-change, p = 0.540, dabigatran). miR-27a-3p expression did not differ between controls and bleeding cases (0.833 fold-change, p = 0.588, baseline). Female patients had a trend towards increased baseline expression (1.564 fold-change, p = 0.177) and reduced expression after DOAC treatment (0.683 fold-change, p = 0.243) compared to male patients. Despite the regulatory role of miR-27a-3p on coagulation cascade, treatment with DOACs did not alter its expression. However, additional studies in different ethnic groups are necessary to fully elucidate the effect, if any, of DOACs on miR-27a-3p expression.
Collapse
Affiliation(s)
- Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, Alexandroupolis, 68100, Greece.
- Individualised Medicine & Pharmacological Research Solutions (IMPReS) Center, Dragana Campus, Alexandroupolis, 68100, Greece.
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| | - Myria Pallikarou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, Alexandroupolis, 68100, Greece
- Individualised Medicine & Pharmacological Research Solutions (IMPReS) Center, Dragana Campus, Alexandroupolis, 68100, Greece
| | - Chrysoula Michou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, Alexandroupolis, 68100, Greece
| | - Thomas Thomopoulos
- Department of Cardiology, "Elpis" General Hospital of Athens, Athens, Greece
| | - Georgios Chalikias
- Cardiology Department, Medical School, Democritus University of Thrace, Dragana Campus, Alexandroupolis, 68100, Greece
| | | | - Dimitrios N Tziakas
- Cardiology Department, Medical School, Democritus University of Thrace, Dragana Campus, Alexandroupolis, 68100, Greece
| | - Vangelis G Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, Dragana Campus, Alexandroupolis, 68100, Greece
- Individualised Medicine & Pharmacological Research Solutions (IMPReS) Center, Dragana Campus, Alexandroupolis, 68100, Greece
- Clinical Pharmacology Unit, Academic General Hospital of Alexandroupolis, Dragana Campus, Alexandroupolis, 68100, Greece
| |
Collapse
|
2
|
Niazi SK, Magoola M. MicroRNA Nobel Prize: Timely Recognition and High Anticipation of Future Products-A Prospective Analysis. Int J Mol Sci 2024; 25:12883. [PMID: 39684593 PMCID: PMC11641023 DOI: 10.3390/ijms252312883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
MicroRNAs (miRNAs) maintain cellular homeostasis by blocking mRNAs by binding with them to fine-tune the expression of genes across numerous biological pathways. The 2024 Nobel Prize in Medicine and Physiology for discovering miRNAs was long overdue. We anticipate a deluge of research work involving miRNAs to repeat the history of prizes awarded for research on other RNAs. Although miRNA therapies are included for several complex diseases, the realization that miRNAs regulate genes and their roles in addressing therapies for hundreds of diseases are expected; but with advancement in drug discovery tools, we anticipate even faster entry of new drugs. To promote this, we provide details of the current science, logic, intellectual property, formulations, and regulatory process with anticipation that many more researchers will introduce novel therapies based on the discussion and advice provided in this paper.
Collapse
|
3
|
Helin TA, Lemponen M, Immonen K, Lakkisto P, Joutsi-Korhonen L. Circulating microRNAs targeting coagulation and fibrinolysis in patients with severe COVID-19. Thromb J 2024; 22:80. [PMID: 39237986 PMCID: PMC11375984 DOI: 10.1186/s12959-024-00649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Coronavirus-19 disease (COVID-19) frequently causes coagulation disturbances. Data remains limited on the effects of microRNAs (miRNAs) on coagulation during COVID-19 infection. We aimed to analyze the comprehensive miRNA profile as well as coagulation markers and blood count in hospitalized COVID-19 patients. METHODS Citrated plasma samples from 40 patients (24 men and 16 women) hospitalized for COVID-19 were analyzed. Basic coagulation tests, von Willebrand factor (VWF), ADAMTS13, blood count, C-reactive protein, and 27 miRNAs known to associate with thrombosis or platelet activation were analyzed. MiRNAs were analyzed using quantitative reverse transcription polymerase chain reaction (RT qPCR), with 10 healthy controls serving as a comparator. RESULTS Among the patients, 15/36 (41%) had platelet count of over 360 × 109/L and 10/36 (28%) had low hemoglobin of < 100 g/L, while 26/37 (72%) had high VWF of over 200 IU/dL. Patients had higher levels of the miRNAs miR-27b-3p, miR-320a-3p, miR-320b-3p, and miR-424-5p, whereas levels of miR-103a-3p and miR-145-5p were lower than those in healthy controls. In total, 11 miRNAs were associated with platelet count. Let-7b-3p was associated with low hemoglobin levels of < 100 g/L. miR-24-3p, miR-27b-3p, miR-126-3p, miR-145-5p and miR-338-5p associated with high VWF. CONCLUSION COVID-19 patients differentially express miRNAs with target genes involved in fibrinolysis inhibition, coagulation activity, and increased inflammatory response. These findings support the notion that COVID-19 widely affects hemostasis, including platelets, coagulation and fibrinolysis.
Collapse
Affiliation(s)
- Tuukka A Helin
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland.
| | - Marja Lemponen
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland
| | - Katariina Immonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Päivi Lakkisto
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Lotta Joutsi-Korhonen
- HUS Diagnostic Center, Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, POB 720, Helsinki, 00029, Finland
| |
Collapse
|
4
|
Li Q, Deng Y, Xu Z, Zhou H. Combined transcriptomics and TMT-proteomics reveal abnormal complement and coagulation cascades in cow's milk protein allergy. Int Immunopharmacol 2024; 131:111806. [PMID: 38457985 DOI: 10.1016/j.intimp.2024.111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Cow's milk protein allergy (CMPA) is primarily due to the inability of the intestinal mucosa to establish typical immunological tolerance to proteins found in cow's milk, and the specific molecular mechanism is still unclear. In order to investigate molecular alterations in intestinal tissues during CMPA occurrence, this study analyzed the jejunal tissue of β-lactoglobulin (BLG)-sensitized mice through transcriptomics and quantitative tandem mass tag (TMT)-labeled proteomics. A total of 475 differentially expressed genes (256 up-regulated, 219 down-regulated) and 94 differentially expressed proteins (65 up-regulated, 29 down-regulated) were identified. Comparing the KEGG pathways of the two groups, it was found that both were markedly enriched in the signaling pathways of complement and coagulation cascade. Among these, kallikrein B1 (KLKB1) in this pathway is speculated to be pivotal in CMPA. It may potentially enhance the release of bradykinin by activating the kallikrein-kinin system, leading to pro-inflammatory effects and exacerbating intestinal mucosal damage. This study suggests that the pathways of complement and coagulation cascades could be significant in the context of intestinal immunity in CMPA, and KLKB1 may be its potential therapeutic target.
Collapse
Affiliation(s)
- Qunchao Li
- Department of Pediatrics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yan Deng
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Zhiwei Xu
- Bengbu Medical College, Bengbu, China
| | - Haoquan Zhou
- Department of Pediatrics, Provincial Hospital Affiliated to Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Sun LL, Liu Z, Ran F, Huang D, Zhang M, Li XQ, Li WD. Non-coding RNAs regulating endothelial progenitor cells for venous thrombosis: promising therapy and innovation. Stem Cell Res Ther 2024; 15:7. [PMID: 38169418 PMCID: PMC10762949 DOI: 10.1186/s13287-023-03621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Venous thromboembolism, which includes deep venous thrombosis (DVT) and pulmonary embolism, is the third most common vascular disease in the world and seriously threatens the lives of patients. Currently, the effect of conventional treatments on DVT is limited. Endothelial progenitor cells (EPCs) play an important role in the resolution and recanalization of DVT, but an unfavorable microenvironment reduces EPC function. Non-coding RNAs, especially long non-coding RNAs and microRNAs, play a crucial role in improving the biological function of EPCs. Non-coding RNAs have become clinical biomarkers of diseases and are expected to serve as new targets for disease intervention. A theoretical and experimental basis for the development of new methods for preventing and treating DVT in the clinic will be provided by studies on the role and molecular mechanism of non-coding RNAs regulating EPC function in the occurrence and development of DVT. To summarize, the characteristics of venous thrombosis, the regulatory role of EPCs in venous thrombosis, and the effect of non-coding RNAs regulating EPCs on venous thrombosis are reviewed. This summary serves as a useful reference and theoretical basis for research into the diagnosis, prevention, treatment, and prognosis of venous thrombosis.
Collapse
Affiliation(s)
- Li-Li Sun
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Zhao Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Feng Ran
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Dian Huang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Ming Zhang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Wen-Dong Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliate Hospital of Nanjing University Medical School, #321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
6
|
Gareev I, Pavlov V, Du W, Yang B. MiRNAs and Their Role in Venous Thromboembolic Complications. Diagnostics (Basel) 2023; 13:3383. [PMID: 37958279 PMCID: PMC10650162 DOI: 10.3390/diagnostics13213383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Venous thromboembolic complications (VTCs), which include deep vein thrombosis (DVT) and pulmonary embolism (PE), have remained a pressing problem in modern clinical medicine for a long time. Despite the already wide arsenal of modern methods for diagnosing and treating this disease, VTCs rank third in the structure of causes of death among all cardiovascular diseases, behind myocardial infarction (MI) and ischemic stroke (IS). Numerous studies have confirmed the importance of understanding the molecular processes of VTCs for effective therapy and diagnosis. Significant progress has been made in VTC research in recent years, where the relative contribution of microRNAs (miRNAs) in the mechanism of thrombus formation and their consideration as therapeutic targets have been well studied. In this case, accurate, timely, and as early as possible diagnosis of VTCs is of particular importance, which will help improve both short-term and long-term prognoses of patients. This case accounts for the already well-studied circulating miRNAs as non-invasive biomarkers. This study presents currently available literature data on the role of miRNAs in VTCs, revealing their potential as therapeutic targets and diagnostic and prognostic tools for this terrible disease.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, 3 Lenin Street, 450008 Ufa, Russia;
| | - Valentin Pavlov
- Department of Urology, Bashkir State Medical University, 3 Lenin Street, 450008 Ufa, Russia;
| | - Weijie Du
- Department of Pharmacology, The Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150067, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Baofeng Yang
- Department of Pharmacology, The Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150067, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
7
|
Nourse J, Danckwardt S. "MicroRNAs as prognostic biomarkers for (cancer-associated) venous thromboembolism?": comment. J Thromb Haemost 2023; 21:2634-2637. [PMID: 37597902 DOI: 10.1016/j.jtha.2023.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 08/21/2023]
Affiliation(s)
- Jamie Nourse
- Center for Thrombosis and Hemostasis, University Medical Centre Mainz, Mainz, Germany; Posttranscriptional Gene Regulation, Cancer Research and Experimental Hemostasis, University Medical Centre Mainz, Mainz, Germany; Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, Germany
| | - Sven Danckwardt
- Center for Thrombosis and Hemostasis, University Medical Centre Mainz, Mainz, Germany; Posttranscriptional Gene Regulation, Cancer Research and Experimental Hemostasis, University Medical Centre Mainz, Mainz, Germany; Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany.
| |
Collapse
|
8
|
Anijs RJS, Cannegieter SC, Versteeg HH, Buijs JT. "MicroRNAs as prognostic biomarkers for (cancer-associated) venous thromboembolism?": reply. J Thromb Haemost 2023; 21:2638-2639. [PMID: 37597903 DOI: 10.1016/j.jtha.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 08/21/2023]
Affiliation(s)
- Rayna J S Anijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands. https://twitter.com/AnijsRayna
| | - Suzanne C Cannegieter
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen T Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
9
|
Danckwardt S, Trégouët DA, Castoldi E. Post-transcriptional control of haemostatic genes: mechanisms and emerging therapeutic concepts in thrombo-inflammatory disorders. Cardiovasc Res 2023; 119:1624-1640. [PMID: 36943786 PMCID: PMC10325701 DOI: 10.1093/cvr/cvad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023] Open
Abstract
The haemostatic system is pivotal to maintaining vascular integrity. Multiple components involved in blood coagulation have central functions in inflammation and immunity. A derailed haemostasis is common in prevalent pathologies such as sepsis, cardiovascular disorders, and lately, COVID-19. Physiological mechanisms limit the deleterious consequences of a hyperactivated haemostatic system through adaptive changes in gene expression. While this is mainly regulated at the level of transcription, co- and posttranscriptional mechanisms are increasingly perceived as central hubs governing multiple facets of the haemostatic system. This layer of regulation modulates the biogenesis of haemostatic components, for example in situations of increased turnover and demand. However, they can also be 'hijacked' in disease processes, thereby perpetuating and even causally entertaining associated pathologies. This review summarizes examples and emerging concepts that illustrate the importance of posttranscriptional mechanisms in haemostatic control and crosstalk with the immune system. It also discusses how such regulatory principles can be used to usher in new therapeutic concepts to combat global medical threats such as sepsis or cardiovascular disorders.
Collapse
Affiliation(s)
- Sven Danckwardt
- Centre for Thrombosis and Hemostasis (CTH), University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- German Centre for Cardiovascular Research (DZHK),
Berlin, Germany
- Posttranscriptional Gene Regulation, University Medical Centre
Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University
Medical Centre Mainz, Langenbeckstr. 1, 55131
Mainz, Germany
- Center for Healthy Aging (CHA), Mainz,
Germany
| | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health Research Center, UMR 1219, Department of
Molecular Epidemiology of Vascular and Brain Disorders (ELEANOR), University of
Bordeaux, Bordeaux, France
| | - Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht
(CARIM), Maastricht University, Universiteitsingel 50, 6229
ER Maastricht, The Netherlands
| |
Collapse
|
10
|
Lombardi M, Bonora M, Baldetti L, Pieri M, Scandroglio AM, Landoni G, Zangrillo A, Foglieni C, Consolo F. Left ventricular assist devices promote changes in the expression levels of platelet microRNAs. Front Cardiovasc Med 2023; 10:1178556. [PMID: 37396581 PMCID: PMC10308775 DOI: 10.3389/fcvm.2023.1178556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction MicroRNAs (miRs) emerged as promising diagnostic and therapeutic biomarkers in cardiovascular diseases. The potential clinical utility of platelet miRs in the setting of left ventricular assist device (LVAD) support is unexplored. Methods We prospectively measured the expression levels of 12 platelet miRs involved in platelet activation, coagulation, and cardiovascular diseases in LVAD patients by quantitative real-time polymerase chain reaction. Data were longitudinally measured before LVAD implant and after 1, 6, and 12 months of LVAD support, and compared with those measured in healthy volunteers (controls). In silico analysis was also performed to identify pathways targeted by differentially expressed miRs. Results Data from 15 consecutive patients and 5 controls were analyzed. Pre-implant expression levels of platelet miR-126, miR-374b, miR-223, and miR-320a were significantly different in patients vs. controls. The expression levels of platelet miR-25, miR-144, miR-320, and miR-451a changed significantly over the course of LVAD support; in silico analysis revealed that these miRs are implicated in both cardiac- and coagulation-associated pathways. Furthermore, the patients who suffered from bleeding (n = 5, 33%) had significantly higher pre-implant expression levels of platelet miR-151a and miR-454 with respect to the patients who did not. The same miRs were also differentially expressed in bleeders following LVAD implantation early before the clinical manifestation of the events. Discussion This study provides a proof-of-concept evidence of significant modulation of platelet miRs expression driven by LVADs. The possible existence of a platelet miRs signature predictive of the development of bleeding events warrants further validation studies.
Collapse
Affiliation(s)
- Maria Lombardi
- Cardiovascular Research Center, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Marta Bonora
- Università Vita Salute San Raffaele, Milano, Italy
| | - Luca Baldetti
- Cardiac Intensive Care Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Marina Pieri
- Università Vita Salute San Raffaele, Milano, Italy
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Anna Mara Scandroglio
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Giovanni Landoni
- Università Vita Salute San Raffaele, Milano, Italy
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Alberto Zangrillo
- Università Vita Salute San Raffaele, Milano, Italy
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Chiara Foglieni
- Cardiovascular Research Center, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | |
Collapse
|
11
|
Khatami A, Taghizadieh M, Sadri Nahand J, Karimzadeh M, Kiani SJ, Khanaliha K, Kalantari S, Chavoshpour S, Mirzaei H, Donyavi T, Bokharaei-Salim F. Evaluation of MicroRNA Expression Pattern (miR-28, miR-181a, miR-34a, and miR-31) in Patients with COVID-19 Admitted to ICU and Diabetic COVID-19 Patients. Intervirology 2023; 66:63-76. [PMID: 36882006 PMCID: PMC10308556 DOI: 10.1159/000529985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
INTRODUCTION MicroRNAs, or miRNAs, with regulatory performance in inflammatory responses and infection are the prevalent manifestations of severe coronavirus disease (COVID-19). This study aimed to evaluate whether PBMC miRNAs are diagnostic biomarkers to screen the ICU COVID-19 and diabetic COVID-19 subjects. METHODS Candidate miRNAs were selected through previous studies, and then the PBMC levels of selected miRNAs (miR-28, miR-31, miR-34a, and miR-181a) were measured via quantitative reverse transcription PCR. The diagnostic value of miRNAs was determined by the receiver operating characteristic (ROC) curve. The bioinformatics analysis was utilized to predict the DEM genes and relevant bio-functions. RESULTS The COVID-19 patients admitted to ICU had significantly greater levels of selected miRNAs compared to non-hospitalized COVID-19 and healthy people. Besides, the mean miR-28 and miR-34a expression levels in the diabetic COVID-19 group were significantly upregulated when compared with the non-diabetic COVID-19 group. ROC analyses demonstrated the role of miR-28, miR-34a, and miR-181a as new biomarkers to discriminate the non-hospitalized COVID-19 group from the COVID-19 patients admitted to ICU samples, and also miR-34a can probably act as a useful biomarker for screening diabetic COVID-19 patients. Using bioinformatics analyses, we found the performance of target transcripts in many bioprocesses and diverse metabolic routes such as the regulation of multiple inflammatory parameters. DISCUSSION The difference in miRNA expression patterns between the studied groups suggested that miR-28, miR-34a, and miR-181a could be helpful as potent biomarkers for diagnosing and controlling COVID-19.
Collapse
Affiliation(s)
- AliReza Khatami
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,
| | - Mohammad Karimzadeh
- Core Research Facilities (CRF), Isfahan University of Medical Science, Isfahan, Iran
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Jalal Kiani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Kalantari
- Departments of Infectious Diseases and Tropical Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Chavoshpour
- Department of Virology, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Tahereh Donyavi
- Medical Biotechnology Department, School of Allied Medical Sciences, Iran University of Medical Sciences, Kermanshah, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Contemporary Biomarkers in Pulmonary Embolism Diagnosis: Moving beyond D-Dimers. J Pers Med 2022; 12:jpm12101604. [PMID: 36294744 PMCID: PMC9604705 DOI: 10.3390/jpm12101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/05/2022] Open
Abstract
Pulmonary embolism (PE) is a rather common cardiovascular disorder constituting one of the major manifestations of venous thromboembolism (VTE). It is associated with high mortality and substantial recurrence rates, and its diagnosis may be challenging, especially in patients with respiratory comorbidities. Therefore, providing a prompt and accurate diagnosis for PE through developing highly sensitive and specific diagnostic algorithms would be of paramount importance. There is sound evidence supporting the use of biomarkers to enhance the diagnosis and predict the recurrence risk in patients with PE. Therefore, several novel biomarkers, such as factor VIII, Ischemia Modified Albumin, and fibrinogen, as well as several MicroRNAs and microparticles, have been investigated for the diagnosis of this clinical entity. The present review targets to comprehensively present the literature regarding the novel diagnostic biomarkers for PE, as well as to discuss the evidence for their use in daily routine.
Collapse
|
13
|
Ma X, Zhang Q, Zhu H, Huang K, Pang W, Zhang Q. Establishment and analysis of the lncRNA-miRNA-mRNA network based on competitive endogenous RNA identifies functional genes in heart failure. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:4011-4026. [PMID: 34198423 DOI: 10.3934/mbe.2021201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heart failure (HF), a common disease in adults, accounts for significantly global morbidity and mortality. Due to population aging, therapeutic progression in acute cardiovascular events, the prevalence of HF is increasing, in spite of the efficacy of multiple therapies for HF patients with decreased ejection fraction. Despite great progress in the underlying molecular mechanisms, it remains incompletely clear of the function of competing endogenous RNA (ceRNA) network in HF pathogenesis. Herein, we established an HF-related ceRNA network on the basis of differentially expressed long noncoding RNAs (lncRNAs), microRNAs (miRNAs) as well as mRNAs from GSE136547 and GSE124401 datasets. In brief, the ceRNA network composed of 58 mRNA nodes, 5 miRNA nodes, 82 lncRNA nodes as well as 252 edges. In addition, three lncRNAs (KCNQ1OT1, XIST and AC010336) with higher node degrees than other lncRNAs were chosen as hub nodes. At the same time, we have established five subnetwork of miR-17-5p, miR-20b-5p, miR-107, miR-125a-5p and miR-140-5p centered ceRNA. Pathway analysis revealed the enrichment of ceRNA network in cell cycle pathways. Collectively, our research sheds new lights on the essential functions of ceRNA network in HF development, which also suggests possible application of these hub nodes as diagnostic biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Xudan Ma
- Cardiothoracic Department, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qijun Zhang
- Cardiothoracic Department, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Haihong Zhu
- Cardiothoracic Surgery Department, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kefeng Huang
- Cardiothoracic Surgery Department, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Weina Pang
- Cardiothoracic Surgery Department, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qin Zhang
- Cardiothoracic Surgery Department, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
14
|
Zimta AA, Hotea I, Brinza M, Blag C, Iluta S, Constantinescu C, Bashimov A, Marchis-Hund EA, Coudsy A, Muller-Mohnssen L, Dirzu N, Gulei D, Dima D, Serban M, Coriu D, Tomuleasa C. The Possible Non-Mutational Causes of FVIII Deficiency: Non-Coding RNAs and Acquired Hemophilia A. Front Med (Lausanne) 2021; 8:654197. [PMID: 33968959 PMCID: PMC8099106 DOI: 10.3389/fmed.2021.654197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
Hemophilia type A (HA) is the most common type of blood coagulation disorder. While the vast majority of cases are inherited and caused by mutations in the F8 gene, recent data raises new questions regarding the non-heritability of this disease, as well as how other molecular mechanisms might lead to the development of HA or increase the severity of the disease. Some data suggest that miRNAs may affect the severity of HA, but for some patients, miRNA-based interference might cause HA, in the absence of an F8 mutation. A mechanism in HA installation that is also worth investigating and which could be identified in the future is the epigenetic silencing of the F8 gene that might be only temporarily. Acquired HA is increasingly reported and as more cases are identified, the description of the disease might become challenging, as cases without FVIII autoantibodies might be identified.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ionut Hotea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Melen Brinza
- Department of Hematology, Fundeni Clinical Institute, Bucharest, Romania.,Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Cristina Blag
- Department of Pediatrics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Hematology, Emergency Clinical Children's Hospital, Cluj Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Intensive Care Unit, Clinical Hospital for Infectious Diseases, Cluj Napoca, Romania
| | - Atamyrat Bashimov
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Elisabeth-Antonia Marchis-Hund
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Alexandra Coudsy
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Laetitia Muller-Mohnssen
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Noemi Dirzu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Delia Dima
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Margit Serban
- Louis Turcanu Emergency Children's Hospital, Timisoara, Romania.,European Hemophilia Treatment Center, Timisoara, Romania.,Department of Pediatrics, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Daniel Coriu
- Department of Hematology, Fundeni Clinical Institute, Bucharest, Romania.,Department of Hematology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| |
Collapse
|
15
|
A novel rationale for targeting FXI: Insights from the hemostatic microRNA targetome for emerging anticoagulant strategies. Pharmacol Ther 2021; 218:107676. [DOI: 10.1016/j.pharmthera.2020.107676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
|
16
|
Fazzalari A, Basadonna G, Kucukural A, Tanriverdi K, Koupenova M, Pozzi N, Kakuturu J, Friedrich AKU, Korstanje R, Fowler N, Belant JL, Beyer DE, Brooks MB, Dickson EW, Blackwood M, Mueller C, Palesty JA, Freedman JE, Cahan MA. A Translational Model for Venous Thromboembolism: MicroRNA Expression in Hibernating Black Bears. J Surg Res 2021; 257:203-212. [PMID: 32858321 PMCID: PMC11026106 DOI: 10.1016/j.jss.2020.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/17/2020] [Accepted: 06/16/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Hibernating American black bears have significantly different clotting parameters than their summer active counterparts, affording them protection against venous thromboembolism during prolonged periods of immobility. We sought to evaluate if significant differences exist between the expression of microRNAs in the plasma of hibernating black bears compared with their summer active counterparts, potentially contributing to differences in hemostasis during hibernation. MATERIALS AND METHODS MicroRNA sequencing was assessed in plasma from 21 American black bears in summer active (n = 11) and hibernating states (n = 10), and microRNA signatures during hibernating and active state were established using both bear and human genome. MicroRNA targets were predicted using messenger RNA (mRNA) transcripts from black bear kidney cells. In vitro studies were performed to confirm the relationship between identified microRNAs and mRNA expression, using artificial microRNA and human liver cells. RESULTS Using the bear genome, we identified 15 microRNAs differentially expressed in the plasma of hibernating black bears. Of these microRNAs, three were significantly downregulated (miR-141-3p, miR-200a-3p, and miR-200c-3p), were predicted to target SERPINC1, the gene for antithrombin, and demonstrated regulatory control of the gene mRNA expression in cell studies. CONCLUSIONS Our findings suggest that the hibernating black bears' ability to maintain hemostasis and achieve protection from venous thromboembolism during prolonged periods of immobility may be due to changes in microRNA signatures and possible upregulation of antithrombin expression.
Collapse
Affiliation(s)
- Amanda Fazzalari
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts; The Stanley J. Dudrick Department of Surgery, Saint Mary's Hospital, Waterbury, Connecticut
| | - Giacomo Basadonna
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Alper Kucukural
- Bioinformatics Core, University of Massachusetts Medical School, Worcester, Massachusetts; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Kahraman Tanriverdi
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Milka Koupenova
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Natalie Pozzi
- The Stanley J. Dudrick Department of Surgery, Saint Mary's Hospital, Waterbury, Connecticut
| | - Jahnavi Kakuturu
- The Stanley J. Dudrick Department of Surgery, Saint Mary's Hospital, Waterbury, Connecticut
| | | | - Ron Korstanje
- The Korstanje Lab, The Jackson Laboratory, Bar Harbor, Maine
| | - Nicholas Fowler
- Camp Fire Program in Wildlife Conservation, State University of New York College of Environmental Science and Forestry, Syracuse, New York
| | - Jerrold L Belant
- Camp Fire Program in Wildlife Conservation, State University of New York College of Environmental Science and Forestry, Syracuse, New York
| | - Dean E Beyer
- Department of Fisheries and Wildlife, College of Agriculture & Natural Resources, Michigan State University, East Lansing, Michigan; Michigan Department of Natural Resources, Marquette, Michigan
| | - Marjory B Brooks
- Comparative Coagulation Section, Cornell University Animal Health Diagnostic Center, Ithaca, New York
| | - Eric W Dickson
- Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Meghan Blackwood
- Mueller Lab for Gene Therapy, Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Chris Mueller
- Mueller Lab for Gene Therapy, Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - J Alexander Palesty
- The Stanley J. Dudrick Department of Surgery, Saint Mary's Hospital, Waterbury, Connecticut
| | - Jane E Freedman
- Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Mitchell A Cahan
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
17
|
Martucci G, Arcadipane A, Tuzzolino F, Occhipinti G, Panarello G, Carcione C, Bonicolini E, Vitiello C, Lorusso R, Conaldi PG, Miceli V. Identification of a Circulating miRNA Signature to Stratify Acute Respiratory Distress Syndrome Patients. J Pers Med 2020; 11:15. [PMID: 33375484 PMCID: PMC7824233 DOI: 10.3390/jpm11010015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/07/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023] Open
Abstract
There is a need to improve acute respiratory distress syndrome (ARDS) diagnosis and management, particularly with extracorporeal membrane oxygenation (ECMO), and different biomarkers have been tested to implement a precision-focused approach. We included ARDS patients on veno-venous (V-V) ECMO in a prospective observational pilot study. Blood samples were obtained before cannulation, and screened for the expression of 754 circulating microRNA (miRNAs) using high-throughput qPCR and hierarchical cluster analysis. The miRNet database was used to predict target genes of deregulated miRNAs, and the DIANA tool was used to identify significant enrichment pathways. A hierarchical cluster of 229 miRNAs (identified after quality control screening) produced a clear separation of 11 patients into two groups: considering the baseline SAPS II, SOFA, and RESP score cluster A (n = 6) showed higher severity compared to cluster B (n = 5); p values < 0.05. After analysis of differentially expressed miRNAs between the two clusters, 95 deregulated miRNAs were identified, and reduced to 13 by in silico analysis. These miRNAs target genes implicated in tissue remodeling, immune system, and blood coagulation pathways. The blood levels of 13 miRNAs are altered in severe ARDS. Further investigations will have to match miRNA results with inflammatory biomarkers and clinical data.
Collapse
Affiliation(s)
- Gennaro Martucci
- Anesthesia and Intensive Care Department, IRCCS-ISMETT, 90133 Palermo, Italy; (G.M.); (G.O.); (G.P.); (E.B.); (C.V.)
| | - Antonio Arcadipane
- Anesthesia and Intensive Care Department, IRCCS-ISMETT, 90133 Palermo, Italy; (G.M.); (G.O.); (G.P.); (E.B.); (C.V.)
| | - Fabio Tuzzolino
- Research Department, IRCCS-ISMETT, 90133 Palermo, Italy; (F.T.); (P.G.C.); (V.M.)
| | - Giovanna Occhipinti
- Anesthesia and Intensive Care Department, IRCCS-ISMETT, 90133 Palermo, Italy; (G.M.); (G.O.); (G.P.); (E.B.); (C.V.)
| | - Giovanna Panarello
- Anesthesia and Intensive Care Department, IRCCS-ISMETT, 90133 Palermo, Italy; (G.M.); (G.O.); (G.P.); (E.B.); (C.V.)
| | | | - Eleonora Bonicolini
- Anesthesia and Intensive Care Department, IRCCS-ISMETT, 90133 Palermo, Italy; (G.M.); (G.O.); (G.P.); (E.B.); (C.V.)
| | - Chiara Vitiello
- Anesthesia and Intensive Care Department, IRCCS-ISMETT, 90133 Palermo, Italy; (G.M.); (G.O.); (G.P.); (E.B.); (C.V.)
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department Heart and Vascular Centre, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
- Cardiovascular Research Institute Maastricht (CARIM), 6229HX Maastricht, The Netherlands
| | - Pier Giulio Conaldi
- Research Department, IRCCS-ISMETT, 90133 Palermo, Italy; (F.T.); (P.G.C.); (V.M.)
| | - Vitale Miceli
- Research Department, IRCCS-ISMETT, 90133 Palermo, Italy; (F.T.); (P.G.C.); (V.M.)
| |
Collapse
|
18
|
Danese E, Montagnana M, Gelati M, Lippi G. The Role of Epigenetics in the Regulation of Hemostatic Balance. Semin Thromb Hemost 2020; 47:53-62. [PMID: 33368118 DOI: 10.1055/s-0040-1718400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetics, a term conventionally used to explain the intricate interplay between genes and the environment, is now regarded as the fundament of developmental biology. Several lines of evidence garnered over the past decades suggest that epigenetic alterations, mostly encompassing DNA methylation, histone tail modifications, and generation of microRNAs, play an important, though still incompletely explored, role in both primary and secondary hemostasis. Epigenetic variations may interplay with platelet functions and their responsiveness to antiplatelet drugs, and they may also exert a substantial contribution in modulating the production and release into the bloodstream of proteins involved in blood coagulation and fibrinolysis. This emerging evidence may have substantial biological and clinical implications. An enhanced understanding of posttranscriptional mechanisms would help to clarify some remaining enigmatic issues in primary and secondary hemostasis, which cannot be thoughtfully explained by genetics or biochemistry alone. Increased understanding would also pave the way to developing innovative tests for better assessment of individual risk of bleeding or thrombosis. The accurate recognition of key epigenetic mechanisms in hemostasis would then contribute to identify new putative therapeutic targets, and develop innovative agents that could be helpful for preventing or managing a vast array of hemostasis disturbances.
Collapse
Affiliation(s)
- Elisa Danese
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Martina Montagnana
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Matteo Gelati
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
19
|
Mo Y, Zhang Y, Mo L, Wan R, Jiang M, Zhang Q. The role of miR-21 in nickel nanoparticle-induced MMP-2 and MMP-9 production in mouse primary monocytes: In vitro and in vivo studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115597. [PMID: 33254626 PMCID: PMC7708676 DOI: 10.1016/j.envpol.2020.115597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 05/02/2023]
Abstract
Exposure to metal nanoparticles causes both pulmonary and systemic effects. Nanoparticles can enter the circulation and act directly or indirectly on blood cells, such as monocytes. Monocytes/macrophages are among the first cells to home to inflammatory sites and play a key role in the immune response. Here we investigated the effects of nickel nanoparticles (Nano-Ni), partially [O]-passivated Nano-Ni (Nano-Ni-P), and carbon-coated Nano-Ni (Nano-Ni-C) on MMP-2 and MMP-9 production in mouse primary monocytes both in vitro and in vivo and explored the potential mechanisms involved. The dose- and time-response studies showed that exposure of primary monocytes from wild-type (WT) mice to 30 μg/mL of Nano-Ni for 24 h caused significant MMP-2 and MMP-9 production; therefore, these dose and time point were chosen for the following in vitro studies. Nano-Ni and Nano-Ni-P caused miR-21 upregulation, as well as MMP-2, MMP-9, TIMP-1 and TIMP-2 upregulation in monocytes from WT, but not miR-21 knock-out (KO), mice, indicating the important role of miR-21 in Nano-Ni-induced MMPs and TIMPs upregulation. However, Nano-Ni-C did not cause these effects, suggesting surface modification of Nano-Ni, such as carbon coating, alleviates Nano-Ni-induced miR-21 and MMPs upregulation. These results were further confirmed by in vivo studies by intratracheal instillation of nickel nanoparticles into WT and miR-21 KO mice. Finally, our results demonstrated that exposure of primary monocytes from WT mice to Nano-Ni and Nano-Ni-P caused downregulation of RECK, a direct miR-21 target, suggesting the involvement of miR-21/RECK pathway in Nano-Ni-induced MMP-2 and MMP-9 production.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Luke Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Rong Wan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Mizu Jiang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
20
|
Krychtiuk KA, Speidl WS, Giannitsis E, Gigante B, Gorog DA, Jaffe AS, Mair J, Möckel M, Mueller C, Storey RF, Vilahur G, Wojta J, Huber K, Halvorsen S, Geisler T, Morais J, Lindahl B, Thygesen K. Biomarkers of coagulation and fibrinolysis in acute myocardial infarction: a joint position paper of the Association for Acute CardioVascular Care and the European Society of Cardiology Working Group on Thrombosis. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2020; 10:343-355. [PMID: 33620437 DOI: 10.1093/ehjacc/zuaa025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022]
Abstract
The formation of a thrombus in an epicardial artery may result in an acute myocardial infarction (AMI). Despite major advances in acute treatment using network approaches to allocate patients to timely reperfusion and optimal antithrombotic treatment, patients remain at high risk for thrombotic complications. Ongoing activation of the coagulation system as well as thrombin-mediated platelet activation may both play a crucial role in this context. Whether measurement of circulating biomarkers of coagulation and fibrinolysis could be useful for risk stratification in secondary prevention is currently not fully understood. In addition, measurement of such biomarkers could be helpful to identify thrombus formation as the leading mechanism for AMI. The introduction of biomarkers of myocardial injury such as high-sensitivity cardiac troponins made rule-out of AMI even more precise. However, elevated markers of myocardial injury cannot provide proof of a type 1 AMI, let alone thrombus formation. The combined measurement of markers of myocardial injury with biomarkers reflecting ongoing thrombus formation might be helpful for the fast and correct diagnosis of an atherothrombotic type 1 AMI. This position paper gives an overview of the current knowledge and possible role of biomarkers of coagulation and fibrinolysis for the diagnosis of AMI, risk stratification, and individualized treatment strategies in patients with AMI.
Collapse
Affiliation(s)
- Konstantin A Krychtiuk
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Walter S Speidl
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Evangelos Giannitsis
- Department of Internal Medicine III, Cardiology, Angiology, Pulmonology, Medical University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Bruna Gigante
- Unit of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden.,Department of Clinical Science, Danderyds Hospital, Entrévägen 2, 182 57 Danderyd, Sweden
| | - Diana A Gorog
- Department of Medicine, National Heart & Lung Institute, Imperial College, Guy Scadding Building, Dovehouse St, Chelsea, London SW3 6LY, UK.,Postgraduate Medical School, University of Hertfordshire, Hatfield, UK
| | - Allan S Jaffe
- Department of Cardiology, Mayo Clinic, 1216 2nd St SW Rochester, MN 55902, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, 1216 2nd St SW Rochester, MN 55902, USA
| | - Johannes Mair
- Department of Internal Medicine III - Cardiology and Angiology, Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Martin Möckel
- Division of Emergency and Acute Medicine and Chest Pain Units, Charite - Universitätsmedizin Berlin, Campus Mitte and Virchow, Augustenburger Pl. 1, 13353 Berlin, Germany
| | - Christian Mueller
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Spitalstrasse 2, 4056 Basel, Switzerland
| | - Robert F Storey
- Cardiovascular Research Unit, Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Rd, Sheffield S10 2RX, UK
| | - Gemma Vilahur
- Cardiovascular Program ICCC - Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Carrer de Sant Quintí, 89, 08041 Barcelona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Instituto de Salud Carlos III, Calle de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Johann Wojta
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Kurt Huber
- Ludwig Boltzmann Institute for Cardiovascular Research, Waehringer Guertel 18-20, 1090 Vienna, Austria.,3rd Medical Department of Cardiology and Intensive Care Medicine, Wilhelminenhospital, Montleartstraße 37, 1160 Vienna, Austria
| | - Sigrun Halvorsen
- Department of Cardiology, Oslo University Hospital Ulleval, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
| | - Tobias Geisler
- University Hospital Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Joao Morais
- Division of Cardiology, Santo Andre's Hospital, R. de Santo André, 2410-197 Leiria, Portugal
| | - Bertil Lindahl
- Department of Medical Sciences, Uppsala Clinical Research Center, Dag Hammarskjölds Väg 38, 751 85 Uppsala University, Uppsala, Sweden
| | - Kristian Thygesen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 161, 8200 Aarhus N, Denmark
| |
Collapse
|
21
|
Selvaraj SR, Pipe SW. Not in the genotype: can unexplained hemophilia A result from "micro(RNA) management"? Transfusion 2020; 60:227-228. [PMID: 32022934 DOI: 10.1111/trf.15668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Sundar R Selvaraj
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Steven W Pipe
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
22
|
Piacente C, Martucci G, Miceli V, Pavone G, Papeo A, Occhipinti G, Panarello G, Lorusso R, Tanaka K, Arcadipane A. A narrative review of antithrombin use during veno-venous extracorporeal membrane oxygenation in adults: rationale, current use, effects on anticoagulation, and outcomes. Perfusion 2020; 35:452-464. [PMID: 32228213 DOI: 10.1177/0267659120913803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND During extracorporeal membrane oxygenation, the large contact surface between the blood and the extracorporeal circuit causes a continuous activation of coagulation and inflammation. Unfractionated heparin, a glycosaminoglycan that must bind to antithrombin as a cofactor, is currently the standard anticoagulant adopted during extracorporeal membrane oxygenation. Antithrombin, beyond being a potent natural anticoagulant, acts in the cross-talk between coagulation and inflammatory system through anticoagulation and coagulation-independent effects. OBJECTIVES In this review, we describe, in the adult setting of veno-venous extracorporeal membrane oxygenation, the pathophysiological rationale for antithrombin use, the current practice of administration, and the effects of antithrombin on anticoagulation, bleeding, and outcomes. DATA SOURCES Studies on adults (18 years or older) on veno-venous extracorporeal membrane oxygenation published from 1995 to 2018 in order to evaluate the use of antithrombin. RESULTS In adults on veno-venous extracorporeal membrane oxygenation, antithrombin supplementation has a highly pathophysiological rationale since coagulation factor consumption, systemic inflammatory response syndrome, and endothelial activation are triggered by extracorporeal membrane oxygenation. Eleven articles are focused on the topic but among the authors there is no consensus on the threshold for supplementation (ranging from 70% to 80%) as well as on the dose (rarely standardized) and time of administration (bolus vs continuous infusion). Consistently, antithrombin is considered able to achieve better anticoagulation targets in or not in the presence of heparin resistance. The impact of antithrombin administration on bleeding still shows contrasting results. CONCLUSION Antithrombin use in veno-venous extracorporeal membrane oxygenation should be investigated on the threshold for supplementation, dose, and time of administration.
Collapse
Affiliation(s)
- Claudia Piacente
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Gennaro Martucci
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
- Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - Vitale Miceli
- Research Department, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Gaetano Pavone
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Anna Papeo
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Giovanna Occhipinti
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Giovanna Panarello
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| | - Roberto Lorusso
- Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Kenichi Tanaka
- Department of Anesthesiology, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Antonio Arcadipane
- Department of Anesthesia and Intensive Care, IRCCS-Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione (ISMETT), Palermo, Italy
| |
Collapse
|
23
|
Jankowska KI, Chattopadhyay M, Sauna ZE, Atreya CD. A Foundational Study for Normal F8-Containing Mouse Models for the miRNA Regulation of Hemophilia A: Identification and Analysis of Mouse miRNAs that Downregulate the Murine F8 Gene. Int J Mol Sci 2020; 21:E5621. [PMID: 32781510 PMCID: PMC7460574 DOI: 10.3390/ijms21165621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
Hemophilia A (HA) is associated with defects in the F8 gene, encoding coagulation factor VIII (FVIII). Our previous studies show that F8-targeting micro RNAs (miRNAs), a group of small RNAs involved in gene regulation, can downregulate F8 expression causing HA in individuals with normal F8-genotypes and increased HA severity in patients with mutations in F8. Understanding the mechanistic underpinnings of human genetic diseases caused or modulated by miRNAs require a small animal model, such as a mouse model. Here, we report a foundational study to develop such a model system. We identified the mouse 3'untranslated region (3'UTR) on murine F8-mRNA (muF8-mRNA) that can bind to murine miRNAs. We then selected three miRNAs for evaluation: miR-208a, miR-351 and miR-125a. We first demonstrate that these three miRNAs directly target the 3'UTR of muF8-mRNA and reduce the expression of a reporter gene (luciferase) mRNA fused to the muF8-3' UTR in mammalian cells. Furthermore, in mouse cells that endogenously express the F8 gene and produce FVIII protein, the ectopic expression of these miRNAs downregulated F8-mRNA and FVIII protein. These results provide proof-of-concept and reagents as a foundation for using a normal F8-containing mouse as a model for the miRNA regulation of normal F8 in causing or aggravating the genetic disease HA.
Collapse
Affiliation(s)
- Katarzyna I. Jankowska
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (K.I.J.); (M.C.)
| | - Maitreyi Chattopadhyay
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (K.I.J.); (M.C.)
- OTAT//DCGT/GTB in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Zuben E. Sauna
- OTAT/DPPT/HB in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Chintamani D. Atreya
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (K.I.J.); (M.C.)
| |
Collapse
|
24
|
Jankowska KI, McGill J, Pezeshkpoor B, Oldenburg J, Sauna ZE, Atreya CD. Further Evidence That MicroRNAs Can Play a Role in Hemophilia A Disease Manifestation: F8 Gene Downregulation by miR-19b-3p and miR-186-5p. Front Cell Dev Biol 2020; 8:669. [PMID: 32850803 PMCID: PMC7406646 DOI: 10.3389/fcell.2020.00669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Hemophilia A (HA) is a F8 gene mutational disorder resulting in deficiency or dysfunctional FVIII protein. However, surprisingly, in few cases, HA is manifested even without mutations in F8. To understand this anomaly, we recently sequenced microRNAs (miRNAs) of two patients with mild and moderate HA with no F8 gene mutations and selected two highly expressing miRNAs, miR-374b-5p and miR-30c-5p, from the pool to explain the FVIII deficiency that could be mediated by miRNA-based F8/FVIII suppression. In this report, an established orthogonal in vivo RNA-affinity purification approach was utilized to directly identify a group of F8-interacting miRNAs and we tested them for F8/FVIII suppression. From this pool, two miRNAs, miR-19b-3p and miR-186-5p, were found to be upregulated in a severe HA patient with a mutation in the F8 coding sequence and two HA patients without mutations in the F8 coding sequence were selected to demonstrate their role in F8 gene expression regulation in mammalian cells. Overall, these results provide further evidence for the hypothesis that by targeting the 3′UTR of F8, miRNAs can modulate FVIII protein levels. This mechanism could either be the primary cause of HA in patients who lack F8 mutations or control the severity of the disease in patients with F8 mutations.
Collapse
Affiliation(s)
- Katarzyna I Jankowska
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Joseph McGill
- OTAT/DPPT/HB in the Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Behnaz Pezeshkpoor
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| | - Zuben E Sauna
- OTAT/DPPT/HB in the Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Chintamani D Atreya
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
25
|
Nourse J, Spada S, Danckwardt S. Emerging Roles of RNA 3'-end Cleavage and Polyadenylation in Pathogenesis, Diagnosis and Therapy of Human Disorders. Biomolecules 2020; 10:biom10060915. [PMID: 32560344 PMCID: PMC7356254 DOI: 10.3390/biom10060915] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022] Open
Abstract
A crucial feature of gene expression involves RNA processing to produce 3′ ends through a process termed 3′ end cleavage and polyadenylation (CPA). This ensures the nascent RNA molecule can exit the nucleus and be translated to ultimately give rise to a protein which can execute a function. Further, alternative polyadenylation (APA) can produce distinct transcript isoforms, profoundly expanding the complexity of the transcriptome. CPA is carried out by multi-component protein complexes interacting with multiple RNA motifs and is tightly coupled to transcription, other steps of RNA processing, and even epigenetic modifications. CPA and APA contribute to the maintenance of a multitude of diverse physiological processes. It is therefore not surprising that disruptions of CPA and APA can lead to devastating disorders. Here, we review potential CPA and APA mechanisms involving both loss and gain of function that can have tremendous impacts on health and disease. Ultimately we highlight the emerging diagnostic and therapeutic potential CPA and APA offer.
Collapse
Affiliation(s)
- Jamie Nourse
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Stefano Spada
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (J.N.); (S.S.)
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main, Germany
- Correspondence:
| |
Collapse
|
26
|
Jankowska KI, Sauna ZE, Atreya CD. Role of microRNAs in Hemophilia and Thrombosis in Humans. Int J Mol Sci 2020; 21:ijms21103598. [PMID: 32443696 PMCID: PMC7279366 DOI: 10.3390/ijms21103598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNA) play an important role in gene expression at the posttranscriptional level by targeting the untranslated regions of messenger RNA (mRNAs). These small RNAs have been shown to control cellular physiological processes including cell differentiation and proliferation. Dysregulation of miRNAs have been associated with numerous diseases. In the past few years miRNAs have emerged as potential biopharmaceuticals and the first miRNA-based therapies have entered clinical trials. Our recent studies suggest that miRNAs may also play an important role in the pathology of genetic diseases that are currently considered to be solely due to mutations in the coding sequence. For instance, among hemophilia A patients there exist a small subset, with normal wildtype genes; i.e., lacking in mutations in the coding and non-coding regions of the F8 gene. Similarly, in many patients with missense mutations in the F8 gene, the genetic defect does not fully explain the severity of the disease. Dysregulation of miRNAs that target mRNAs encoding coagulation factors have been shown to disturb gene expression. Alterations in protein levels involved in the coagulation cascade mediated by miRNAs could lead to bleeding disorders or thrombosis. This review summarizes current knowledge on the role of miRNAs in hemophilia and thrombosis. Recognizing and understanding the functions of miRNAs by identifying their targets is important in identifying their roles in health and diseases. Successful basic research may result in the development and improvement of tools for diagnosis, risk evaluation or even new treatment strategies.
Collapse
Affiliation(s)
- Katarzyna I. Jankowska
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Zuben E. Sauna
- OTAT/DPPT/HB in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Chintamani D. Atreya
- OBRR/DBCD/LCH in the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA;
- Correspondence:
| |
Collapse
|
27
|
Morelli VM, Brækkan SK, Hansen JB. Role of microRNAs in Venous Thromboembolism. Int J Mol Sci 2020; 21:ijms21072602. [PMID: 32283653 PMCID: PMC7177540 DOI: 10.3390/ijms21072602] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that execute their function by targeted downregulation of gene expressions. There is growing evidence from epidemiological studies and animal models suggesting that the expression level of miRNAs is dysregulated in venous thromboembolism (VTE). In this review, we summarize the current knowledge on the role of miRNAs as biomarkers for VTE and provide general insight into research exploring the modulation of miRNA activity in animal models of venous thrombosis. Up to now, published studies have yielded inconsistent results on the role of miRNAs as biomarkers for VTE with most of the reports focused on diagnostic research. The limited statistical power of the individual studies, due to the small sample sizes, may substantially contribute to the poor reproducibility among studies. In animal models, over-expression or inhibition of some miRNAs appear to influence venous thrombus formation and resolution. However, there is an important gap in knowledge on the potential role of miRNAs as therapeutic targets in VTE. Future research involving large cohorts should be designed to clarify the clinical usefulness of miRNAs as biomarkers for VTE, and animal model studies should be pursued to unravel the role of miRNAs in the pathogenesis of VTE and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Vânia M. Morelli
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (S.K.B.); (J.-B.H.)
- Correspondence: ; Tel.: +47-77625105
| | - Sigrid K. Brækkan
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (S.K.B.); (J.-B.H.)
- Division of Internal Medicine, University Hospital of North Norway, N-9037 Tromsø, Norway
| | - John-Bjarne Hansen
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway; (S.K.B.); (J.-B.H.)
- Division of Internal Medicine, University Hospital of North Norway, N-9037 Tromsø, Norway
| |
Collapse
|
28
|
Ogorodnikov A, Levin M, Tattikota S, Tokalov S, Hoque M, Scherzinger D, Marini F, Poetsch A, Binder H, Macher-Göppinger S, Probst HC, Tian B, Schaefer M, Lackner KJ, Westermann F, Danckwardt S. Transcriptome 3'end organization by PCF11 links alternative polyadenylation to formation and neuronal differentiation of neuroblastoma. Nat Commun 2018; 9:5331. [PMID: 30552333 PMCID: PMC6294251 DOI: 10.1038/s41467-018-07580-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022] Open
Abstract
Diversification at the transcriptome 3'end is an important and evolutionarily conserved layer of gene regulation associated with differentiation and dedifferentiation processes. Here, we identify extensive transcriptome 3'end-alterations in neuroblastoma, a tumour entity with a paucity of recurrent somatic mutations and an unusually high frequency of spontaneous regression. Utilising extensive RNAi-screening we reveal the landscape and drivers of transcriptome 3'end-diversification, discovering PCF11 as critical regulator, directing alternative polyadenylation (APA) of hundreds of transcripts including a differentiation RNA-operon. PCF11 shapes inputs converging on WNT-signalling, and governs cell cycle, proliferation, apoptosis and neurodifferentiation. Postnatal PCF11 down-regulation induces a neurodifferentiation program, and low-level PCF11 in neuroblastoma associates with favourable outcome and spontaneous tumour regression. Our findings document a critical role for APA in tumorigenesis and describe a novel mechanism for cell fate reprogramming in neuroblastoma with potentially important clinical implications. We provide an interactive data repository of transcriptome-wide APA covering > 170 RNAis, and an APA-network map with regulatory hubs.
Collapse
Affiliation(s)
- Anton Ogorodnikov
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Haemostasis, University Medical Centre Mainz, Mainz, 55131, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany
- McManus Laboratory, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Michal Levin
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Haemostasis, University Medical Centre Mainz, Mainz, 55131, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany
| | - Surendra Tattikota
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Haemostasis, University Medical Centre Mainz, Mainz, 55131, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany
| | - Sergey Tokalov
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Haemostasis, University Medical Centre Mainz, Mainz, 55131, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany
| | - Mainul Hoque
- Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Denise Scherzinger
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre Mainz, Mainz, 55131, Germany
| | - Federico Marini
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre Mainz, Mainz, 55131, Germany
| | - Ansgar Poetsch
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- Institute for Plant Biochemistry, Ruhr-University Bochum, Bochum, 44801, Germany
- School of Biomedical & Healthcare Sciences, Plymouth University, Plymouth, PL4 8AA, United Kingdom
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, 79104, Germany
| | | | - Hans Christian Probst
- Institute for Immunology, University Medical Centre Mainz, Mainz, 55131, Germany
- Research Center for Immunotherapy (FZI), University Medical Centre Mainz, Mainz, 55131, Germany
| | - Bin Tian
- Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Michael Schaefer
- Department of Anaesthesiology and Research Centre Translational Neurosciences, University Medical Centre Mainz, Mainz, 55131, Germany
| | - Karl J Lackner
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany
| | - Frank Westermann
- Division of Neuroblastoma Genomics, German Cancer Research Centre (DKFZ), Heidelberg, 69120, Germany
| | - Sven Danckwardt
- Posttranscriptional Gene Regulation, Cancer Research and Experimental Haemostasis, University Medical Centre Mainz, Mainz, 55131, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Mainz, Mainz, 55131, Germany.
- Centre for Thrombosis and Haemostasis (CTH), University Medical Centre Mainz, Mainz, 55131, Germany.
- German Centre for Cardiovascular Research (DZHK), Mainz, 55131, Germany.
| |
Collapse
|