1
|
Kolczyńska-Matysiak K, Karwen T, Loeffler M, Hawro I, Kassouf T, Stegner D, Sumara G. Dense but not alpha granules of platelets are required for insulin secretion from pancreatic β cells. Biochem Biophys Res Commun 2024; 734:150753. [PMID: 39366180 DOI: 10.1016/j.bbrc.2024.150753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVES Platelets, originally described for their role in blood coagulation, are now also recognized as key players in modulating inflammation, tissue regeneration, angiogenesis, and carcinogenesis. Recent evidence suggests that platelets also influence insulin secretion from pancreatic β cells. The multifaceted functions of platelets are mediated by the factors stored in their alpha granules (AGs) and dense granules (DGs). AGs primarily contain proteins, while DGs are rich in small molecules, and both types of granules are released during blood coagulation. Specific components stored in AGs and DGs are implicated in various inflammatory, regenerative, and tumorigenic processes. However, the relative contributions of AGs and DGs to the regulation of pancreatic β cell function have not been previously explored. METHODS In this study, we utilized mouse models deficient in AG content (neurobeachin-like 2 (Nbeal2) -deficient mice) and models with defective DG release (Unc13d-deficiency in bone marrow-derived cells) to investigate the impact of platelet granules on insulin secretion from pancreatic β cells. RESULTS Our findings indicate that AG deficiency has little to no effect on pancreatic β cell function and glucose homeostasis. Conversely, mice with defective DG release exhibited glucose intolerance and reduced insulin secretion. Furthermore, Unc13d-deficiency in hematopoietic stem cells led to a reduction in adipose tissue gain in obese mice. CONCLUSIONS Obtained data suggest that DGs, but not AGs, mediate the influence of platelets on pancreatic β cells, thereby modulating glucose metabolism.
Collapse
Affiliation(s)
| | - Till Karwen
- Rudolf-Virchow-Zentrum. Center for Integrative and Translational Bioimaging, University of Würzburg, 97080, Würzburg, Germany
| | - Mona Loeffler
- Rudolf-Virchow-Zentrum. Center for Integrative and Translational Bioimaging, University of Würzburg, 97080, Würzburg, Germany
| | - Izabela Hawro
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Toufic Kassouf
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - David Stegner
- Rudolf-Virchow-Zentrum. Center for Integrative and Translational Bioimaging, University of Würzburg, 97080, Würzburg, Germany; Institute of Experimental Biomedicine I, University Hospital Würzburg, 97080, Würzburg, Germany.
| | - Grzegorz Sumara
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warszawa, Poland.
| |
Collapse
|
2
|
Lu CY, Wu JZ, Yao HHY, Liu RJY, Li L, Pluthero FG, Freeman SA, Kahr WHA. Acidification of α-granules in megakaryocytes by vacuolar-type adenosine triphosphatase is essential for organelle biogenesis. J Thromb Haemost 2024; 22:2294-2305. [PMID: 38718926 DOI: 10.1016/j.jtha.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Platelets coordinate blood coagulation at sites of vascular injury and play fundamental roles in a wide variety of (patho)physiological processes. Key to many platelet functions is the transport and secretion of proteins packaged within α-granules, organelles produced by platelet precursor megakaryocytes. Prominent among α-granule cargo are fibrinogen endocytosed from plasma and endogenously synthesized von Willebrand factor. These and other proteins are known to require acidic pH for stable packaging. Luminal acidity has been confirmed for mature α-granules isolated from platelets, but direct measurement of megakaryocyte granule acidity has not been reported. OBJECTIVES To determine the luminal pH of α-granules and their precursors in megakaryocytes and assess the requirement of vacuolar-type adenosine triphosphatase (V-ATPase) activity to establish and maintain the luminal acidity and integrity of these organelles. METHODS Cresyl violet staining was used to detect acidic granules in megakaryocytes. Endocytosis of fibrinogen tagged with the pH-sensitive fluorescent dye fluorescein isothiocyanate was used to load a subset of these organelles. Ratiometric fluorescence analysis was used to determine their luminal pH. RESULTS We show that most of the acidic granules detected in megakaryocytes appear to be α-granules/precursors, for which we established a median luminal pH of 5.2 (IQR, 5.0-5.5). Inhibition of megakaryocyte V-ATPase activity led to enlargement of cargo-containing compartments detected by fluorescence microscopy and electron microscopy. CONCLUSION These observations reveal that V-ATPase activity is required to establish and maintain a luminal acidic pH in megakaryocyte α-granules/precursors, confirming its importance for stable packaging of cargo proteins such as von Willebrand factor.
Collapse
Affiliation(s)
- Chien-Yi Lu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jing Ze Wu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Helen H Y Yao
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Richard J Y Liu
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Ling Li
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Fred G Pluthero
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Spencer A Freeman
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walter H A Kahr
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Tyagi R, Basu S, Kumar A, Saikia UN, Siniah S, Sharma S, Ahluwalia J, Suri D. Thrombocytopenia in a child with polyarthritis: A pointer to gray platelet syndrome. Pediatr Blood Cancer 2023; 70:e29916. [PMID: 35925939 DOI: 10.1002/pbc.29916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Reva Tyagi
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Suprit Basu
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwani Kumar
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sangeetha Siniah
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Saniya Sharma
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jasmina Ahluwalia
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Glembotsky AC, De Luca G, Heller PG. A Deep Dive into the Pathology of Gray Platelet Syndrome: New Insights on Immune Dysregulation. J Blood Med 2021; 12:719-732. [PMID: 34408521 PMCID: PMC8364843 DOI: 10.2147/jbm.s270018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
The gray platelet syndrome (GPS) is a rare platelet disorder, characterized by impaired alpha-granule biogenesis in megakaryocytes and platelets due to NBEAL2 mutations. Typical clinical features include macrothrombocytopenia, bleeding and elevated vitamin B12 levels, while bone marrow fibrosis and splenomegaly may develop during disease progression. Recently, the involvement of other blood lineages has been highlighted, revealing the role of NBEAL2 outside the megakaryocyte-platelet axis. Low leukocyte counts, decreased neutrophil granulation and impaired neutrophil extracellular trap formation represent prominent findings in GPS patients, reflecting deranged innate immunity and associated with an increased susceptibility to infection. In addition, low numbers and impaired degranulation of NK cells have been demonstrated in animal models. Autoimmune diseases involving different organs and a spectrum of autoantibodies are present in a substantial proportion of GPS patients, expanding the syndromic spectrum of this disorder and pointing to dysregulation of the adaptive immune response. Low-grade inflammation, as evidenced by elevation of liver-derived acute-phase reactants, is another previously unrecognized feature of GPS which may contribute to disease manifestations. This review will focus on the mechanisms underlying the pathogenesis of blood cell abnormalities in human GPS patients and NBEAL2-null animal models, providing insight into the effects of NBEAL2 in hemostasis, inflammation and immunity.
Collapse
Affiliation(s)
- Ana C Glembotsky
- Departamento Hematología Investigación, Instituto de Investigaciones Médicas "Dr. A. Lanari", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento Hematología Investigación, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Buenos Aires, Argentina
| | - Geraldine De Luca
- Departamento Hematología Investigación, Instituto de Investigaciones Médicas "Dr. A. Lanari", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento Hematología Investigación, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Buenos Aires, Argentina
| | - Paula G Heller
- Departamento Hematología Investigación, Instituto de Investigaciones Médicas "Dr. A. Lanari", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento Hematología Investigación, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Instituto de Investigaciones Médicas (IDIM), Buenos Aires, Argentina
| |
Collapse
|
5
|
Inherited Platelet Disorders: An Updated Overview. Int J Mol Sci 2021; 22:ijms22094521. [PMID: 33926054 PMCID: PMC8123627 DOI: 10.3390/ijms22094521] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Platelets play a major role in hemostasis as ppwell as in many other physiological and pathological processes. Accordingly, production of about 1011 platelet per day as well as appropriate survival and functions are life essential events. Inherited platelet disorders (IPDs), affecting either platelet count or platelet functions, comprise a heterogenous group of about sixty rare diseases caused by molecular anomalies in many culprit genes. Their clinical relevance is highly variable according to the specific disease and even within the same type, ranging from almost negligible to life-threatening. Mucocutaneous bleeding diathesis (epistaxis, gum bleeding, purpura, menorrhagia), but also multisystemic disorders and/or malignancy comprise the clinical spectrum of IPDs. The early and accurate diagnosis of IPDs and a close patient medical follow-up is of great importance. A genotype-phenotype relationship in many IPDs makes a molecular diagnosis especially relevant to proper clinical management. Genetic diagnosis of IPDs has been greatly facilitated by the introduction of high throughput sequencing (HTS) techniques into mainstream investigation practice in these diseases. However, there are still unsolved ethical concerns on general genetic investigations. Patients should be informed and comprehend the potential implications of their genetic analysis. Unlike the progress in diagnosis, there have been no major advances in the clinical management of IPDs. Educational and preventive measures, few hemostatic drugs, platelet transfusions, thrombopoietin receptor agonists, and in life-threatening IPDs, allogeneic hematopoietic stem cell transplantation are therapeutic possibilities. Gene therapy may be a future option. Regular follow-up by a specialized hematology service with multidisciplinary support especially for syndromic IPDs is mandatory.
Collapse
|