1
|
Golumbeanu M, Briët O, Champagne C, Lemant J, Winkel M, Zogo B, Gerhards M, Sinka M, Chitnis N, Penny M, Pothin E, Smith T. AnophelesModel: An R package to interface mosquito bionomics, human exposure and intervention effects with models of malaria intervention impact. PLoS Comput Biol 2024; 20:e1011609. [PMID: 39269993 PMCID: PMC11424000 DOI: 10.1371/journal.pcbi.1011609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 09/25/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
In recent decades, field and semi-field studies of malaria transmission have gathered geographic-specific information about mosquito ecology, behaviour and their sensitivity to interventions. Mathematical models of malaria transmission can incorporate such data to infer the likely impact of vector control interventions and hence guide malaria control strategies in various geographies. To facilitate this process and make model predictions of intervention impact available for different geographical regions, we developed AnophelesModel. AnophelesModel is an online, open-access R package that quantifies the impact of vector control interventions depending on mosquito species and location-specific characteristics. In addition, it includes a previously published, comprehensive, curated database of field entomological data from over 50 Anopheles species, field data on mosquito and human behaviour, and estimates of vector control effectiveness. Using the input data, the package parameterizes a discrete-time, state transition model of the mosquito oviposition cycle and infers species-specific impacts of various interventions on vectorial capacity. In addition, it offers formatted outputs ready to use in downstream analyses and by other models of malaria transmission for accurate representation of the vector-specific components. Using AnophelesModel, we show how the key implications for intervention impact change for various vectors and locations. The package facilitates quantitative comparisons of likely intervention impacts in different geographical settings varying in vector compositions, and can thus guide towards more robust and efficient malaria control recommendations. The AnophelesModel R package is available under a GPL-3.0 license at https://github.com/SwissTPH/AnophelesModel.
Collapse
Affiliation(s)
- Monica Golumbeanu
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Olivier Briët
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Clara Champagne
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jeanne Lemant
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Munir Winkel
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Maximilian Gerhards
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Marianne Sinka
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Melissa Penny
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- The Kids Research Institute Australia, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Crawley, WA, Australia
| | - Emilie Pothin
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Tom Smith
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Laojun S, Changbunjong T, Chaiphongpachara T. Insights into the mitochondrial cytochrome oxidase I (mt-COI) gene and wing morphometrics of Anopheles baimaii (Diptera: Culicidae) in malaria-endemic islands of Thailand. Parasitol Res 2024; 123:171. [PMID: 38530429 DOI: 10.1007/s00436-024-08195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Anopheles baimaii (Diptera: Culicidae) significantly contributes to the transmission of parasites causing malaria in Southeast Asia and South Asia. This study examined the morphological (wing shape) and molecular (mitochondrial gene) variations of An. baimaii in four of Thailand's border islands, and also investigated the presence of Plasmodium parasites in these mosquitoes. No Plasmodium infections were detected in the samples. Significant differences in wing shape were observed in most island populations (p < 0.05). A single-linkage tree, constructed using Mahalanobis distances, clustered the populations into two groups based on geographical locations. Genetic variation in An. baimaii was also analyzed through cytochrome c oxidase subunit I (COI) gene sequences. This analysis identified 22 segregating sites and a low nucleotide diversity of 0.004. Furthermore, 18 distinct haplotypes were identified, indicating a high haplotype diversity of 0.825. Neutrality tests for the overall population revealed a significantly negative Fu's Fs value (-5.029), indicating a population expansion. In contrast, Tajima's D yielded a negative value (-1.028) that did not reach statistical significance. The mismatch distribution analysis exhibited a bimodal pattern, and the raggedness index was 0.068, showing no significant discrepancy (p = 0.485) between observed and expected distributions. Pairwise genetic differentiation assessments demonstrated significant differences between all populations (p < 0.05). These findings provide valuable insights into the COI gene and wing morphometric variations in An. baimaii across Thailand's islands, offering critical information for understanding the adaptations of this malaria vector and guiding future comprehensive research.
Collapse
Affiliation(s)
- Sedthapong Laojun
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, 75000, Thailand
| | - Tanasak Changbunjong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, 75000, Thailand.
| |
Collapse
|
3
|
Genetic Diversity, Haplotype Relationships, and kdr Mutation of Malaria Anopheles Vectors in the Most Plasmodium knowlesi-Endemic Area of Thailand. Trop Med Infect Dis 2022; 7:tropicalmed7120412. [PMID: 36548667 PMCID: PMC9786164 DOI: 10.3390/tropicalmed7120412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
Plasmodium knowlesi, a malaria parasite that occurs naturally in long-tailed macaques, pig-tailed macaques, and banded leaf monkeys, is currently regarded as the fifth of the human malaria parasites. We aimed to investigate genetic diversity based on the cytochrome c oxidase subunit I (COI) gene, detect Plasmodium parasites, and screen for the voltage-gated sodium channel (VGSC)-mutation-mediated knockdown resistance (kdr) of Anopheles mosquitoes in Ranong province, which is the most P. knowlesi-endemic area in Thailand. One hundred and fourteen Anopheles females belonging to eight species, including An. baimaii (21.05%), An. minimus s.s. (20.17%), An. epiroticus (19.30%), An. jamesii (19.30%), An. maculatus s.s. (13.16%), An. barbirostris A3 (5.26%), An. sawadwongporni (0.88%), and An. aconitus (0.88%), were caught in three geographical regions of Ranong province. None of the Anopheles mosquitoes sampled in this study were infected with Plasmodium parasites. Based on the sequence analysis of COI sequences, An. epiroticus had the highest level of nucleotide diversity (0.012), followed by An. minimus (0.011). In contrast, An. maculatus (0.002) had the lowest level of nucleotide diversity. The Fu's Fs and Tajima's D values of the Anopheles species in Ranong were all negative, except the Tajima's D values of An. minimus (0.077). Screening of VGSC sequences showed no presence of the kdr mutation of Anopheles mosquitoes. Our results could be used to further select effective techniques for controlling Anopheles populations in Thailand's most P. knowlesi-endemic area.
Collapse
|
4
|
Cramer EY, Quang NX, Hertz JC, Van Nguyen D, Quang HH, Mendenhall I, Lover AA. Ivermectin Treatment for Cattle Reduced the Survival of Two Malaria Vectors, Anopheles dirus and Anopheles epiroticus, Under Laboratory Conditions in Central Vietnam. Am J Trop Med Hyg 2021; 104:2165-2168. [PMID: 33901003 PMCID: PMC8176477 DOI: 10.4269/ajtmh.20-1239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/03/2021] [Indexed: 01/30/2023] Open
Abstract
Ivermectin is a low-cost and nontoxic mosquitocide that may have a role in malaria elimination. However, the extent to which this drug impacts the mortality of Anopheles dirus and Anopheles epiroticus, two important malaria vectors in Southeast Asia, is unknown. This study compared and quantified anopheline mortality after feeding on ivermectin-treated cattle and control cattle in Vietnam. Local anopheline colonies fed on cattle 1 to 3, 6 to 8, 13 to 15, 20 to 22, and 28 to 30 days after injection (DAI) with ivermectin (intervention) or saline (control). An. dirus that fed on ivermectin-treated cattle had higher mortality rates than controls for up to 20 DAI (P < 0.05); An. epiroticus that fed on ivermectin-treated cattle had consistently higher mortality rates than controls for up to 8 DAI (P < 0.05). Feeding on ivermectin-treated cattle increased the mortality rate of these vector species for biologically relevant time periods. Therefore, ivermectin has the potential to become an important tool for integrated vector management.
Collapse
Affiliation(s)
- Estee Y Cramer
- 1Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts-Amherst, Amherst, Massachusetts
| | - Nguyen Xuan Quang
- 2Institute for Malariology, Parasitology and Entomology, Ministry of Health, Quy Nhon, Vietnam
| | | | - Do Van Nguyen
- 2Institute for Malariology, Parasitology and Entomology, Ministry of Health, Quy Nhon, Vietnam
| | - Huynh Hong Quang
- 2Institute for Malariology, Parasitology and Entomology, Ministry of Health, Quy Nhon, Vietnam
| | - Ian Mendenhall
- 4Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Andrew A Lover
- 1Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts-Amherst, Amherst, Massachusetts
| |
Collapse
|
5
|
Sumarnrote A, Overgaard HJ, Corbel V, Thanispong K, Chareonviriyaphap T, Manguin S. Species diversity and insecticide resistance within the Anopheles hyrcanus group in Ubon Ratchathani Province, Thailand. Parasit Vectors 2020; 13:525. [PMID: 33069255 PMCID: PMC7568835 DOI: 10.1186/s13071-020-04389-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
Background Members of the Anopheles hyrcanus group have been incriminated as important malaria vectors. This study aims to identify the species and explore the insecticide susceptibility profile within the Anopheles hyrcanus group in Ubon Ratchathani Province, northeastern Thailand where increasing numbers of malaria cases were reported in 2014. Methods Between 2013 and 2015, five rounds of mosquito collections were conducted using human landing and cattle bait techniques during both the rainy and dry seasons. Anopheles mosquitoes were morphologically identified and their insecticide susceptibility status was investigated. Synergist bioassays were carried out with An. hyrcanus (s.l.) due to their resistance to all insecticides. An ITS2-PCR assay was conducted to identify to species the Hyrcanus group specimens. Results Out of 10,361 Anopheles females collected, representing 18 taxa in 2 subgenera, 71.8% were morphologically identified as belonging to the Hyrcanus Group (subgenus Anopheles), followed by An. barbirostris group (7.9%), An. nivipes (6.5%), An. philippinensis (5.9%) and the other 14 Anopheles species. Specimens of the Hyrcanus Group were more prevalent during the rainy season and were found to be highly zoophilic. Anopheles hyrcanus (s.l.) was active throughout the night, with an early peak of activity between 18:00 h and 21:00 h. ITS2-PCR assay conducted on 603 DNA samples from specimens within the Hyrcanus Group showed the presence of five sisters species. Anopheles peditaeniatus was the most abundant species (90.5%, n = 546), followed by An. nitidus (4.5%, n = 27), An. nigerrimus (4.3%, n = 26), An. argyropus (0.5%, n = 3), and An. sinensis (0.2%, n = 1). All An. hyrcanus (s.l.) specimens that were found resistant to insecticides (deltamethrin 0.05%, permethrin 0.75% and DDT 4% and synergist tests) belonged to An. peditaeniatus. The degree of resistance in An. peditaeniatus to each of these three insecticides was approximately 50%. Addition of PBO (Piperonyl butoxide), but not DEF (S.S.S-tributyl phosphotritioate), seemed to restore susceptibility, indicating a potential role of oxidases as a detoxifying enzyme resistance mechanism. Conclusions A better understanding of mosquito diversity related to host preference, biting activity and insecticide resistance status will facilitate the implementation of locally adapted vector control strategies.![]()
Collapse
Affiliation(s)
- Anchana Sumarnrote
- Department of Entomology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Hans J Overgaard
- Department of Entomology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand.,Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement (IRD), University of Montpellier, Montpellier, France.,Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Vincent Corbel
- Department of Entomology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand.,Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Institut de Recherche pour le Développement (IRD), University of Montpellier, Montpellier, France
| | - Kanutcharee Thanispong
- Bureau of Vector-borne Disease, Department of Disease control, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Sylvie Manguin
- HydroSciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD), CNRS, Université Montpellier, Montpellier, France.
| |
Collapse
|
6
|
Syafruddin D, Lestari YE, Permana DH, Asih PBS, St. Laurent B, Zubaidah S, Rozi IE, Kosasih S, Shinta, Sukowati S, Hakim L, Haryanto E, Mangunwardoyo W, Bangs MJ, Lobo NF. Anopheles sundaicus complex and the presence of Anopheles epiroticus in Indonesia. PLoS Negl Trop Dis 2020; 14:e0008385. [PMID: 32614914 PMCID: PMC7363104 DOI: 10.1371/journal.pntd.0008385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/15/2020] [Accepted: 05/12/2020] [Indexed: 11/21/2022] Open
Abstract
Anopheles sundaicus s.l. is an important malaria vector primarily found in coastal landscapes of western and central Indonesia. The species complex has a wide geographical distribution in South and Southeast Asia and exhibits ecological and behavioural variability over its range. Studies on understanding the distribution of different members in the complex and their bionomics related to malaria transmission might be important guiding more effective vector intervention strategies. Female An. sundaicus s.l. were collected from seven provinces, 12 locations in Indonesia representing Sumatra: North Sumatra, Bangka-Belitung, South Lampung, and Bengkulu; in Java: West Java; and the Lesser Sunda Islands: West Nusa Tenggara and East Nusa Tenggara provinces. Sequencing of ribosomal DNA ITS2 gene fragments and two mitochondrial DNA gene markers, COI and cytb, enabled molecular identification of morphologically indistinguishable members of the complex. Findings allowed inference on the distribution of the An. sundaicus s.l. present in Indonesia and further illustrate the phylogenetic relationships of An. epiroticus within the complex. A total of 370 An. sundaicus s.l specimens were analysed for the ITS2 fragment. The ITS2 sequence alignment revealed two consistent species-specific point mutations, a T>C transition at base 479 and a G>T transversion at base 538 that differentiated five haplotypes: TG, CG, TT, CT, and TY. The TG haplotype matched published An. epiroticus-indicative sequences from Thailand, Vietnam and peninsular Malaysia. The previously described insertion event (base 603) was observed in all identified specimens. Analysis of the COI and cytb genes revealed no consistent nucleotide variations that could definitively distinguish An. epiroticus from other members in the Sundaicus Complex. The findings indicate and support the existence of An. epiroticus in North Sumatra and Bangka-Belitung archipelago. Further studies are recommended to determine the full distributional extent of the Sundaicus complex in Indonesia and investigate the role of these species in malaria transmission.
Collapse
Affiliation(s)
- Din Syafruddin
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | | | | | | - Brandyce St. Laurent
- Eck Institute for Global Health, University of Notre Dame, IN, United States of America
| | - Siti Zubaidah
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Ismail E. Rozi
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Sully Kosasih
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Shinta
- Health Ecology Research & Development Centre, National Institute of Health, Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Supratman Sukowati
- Health Ecology Research & Development Centre, National Institute of Health, Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Lukman Hakim
- Division of Vector Borne Disease, Ministry of Health, Jakarta, Indonesia
| | - Edhi Haryanto
- Division of Vector Borne Disease, Ministry of Health, Jakarta, Indonesia
| | - Wibowo Mangunwardoyo
- Department of Biology, Faculty of Mathematics and Science, Universitas Indonesia, Depok, Indonesia
| | - Michael J. Bangs
- PT Freeport Indonesia, International SOS, Freeport Medical Services, Kuala Kencana, Papua, Indonesia
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Neil F. Lobo
- Eck Institute for Global Health, University of Notre Dame, IN, United States of America
| |
Collapse
|
7
|
Davidson JR, Baskin RN, Hasan H, Burton TA, Wardiman M, Rahma N, Saputra FR, Aulya MS, Wahid I, Syafruddin D, Hawkes FM, Lobo NF. Characterization of vector communities and biting behavior in South Sulawesi with host decoy traps and human landing catches. Parasit Vectors 2020; 13:329. [PMID: 32600472 PMCID: PMC7324974 DOI: 10.1186/s13071-020-04205-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/20/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Indonesia has high mosquito diversity, with circulating malaria and arboviruses. Human landing catches (HLC) are ethically questionable where arboviral transmission occurs. The host decoy trap (HDT) is an exposure-free alternative outdoor sampling device. To determine HDT efficacy for local culicids, and to characterize local mosquito fauna, the trapping efficacy of the HDT was compared to that of HLCs in one peri-urban (Lakkang) and one rural (Pucak) village in Sulawesi, Indonesia. RESULTS In Lakkang the outdoor HLCs collected significantly more Anopheles per night (n = 22 ± 9) than the HDT (n = 3 ± 1), while the HDT collected a significantly greater nightly average of Culex mosquitoes (n = 110 ± 42), than the outdoor HLC (n = 15.1 ± 6.0). In Pucak, there was no significant difference in Anopheles collected between trap types; however, the HDT collected significantly more Culex mosquitoes than the outdoor HLC nightly average (n = 53 ± 11 vs 14 ± 3). Significantly higher proportions of blood-fed mosquitoes were found in outdoor HLC (n = 15 ± 2%) compared to HDT (n = 2 ± 0%). More blood-fed culicines were collected with outdoor HLC compared to the HDT, while Anopheles blood-fed proportions did not differ. For the HDT, 52.6%, 36.8% and 10.5% of identified blood meals were on cow, human, and dog, respectively. Identified blood meals for outdoor HLCs were 91.9% human, 6.3% cow, and 0.9% each dog and cat. Mosquitoes from Pucak were tested for arboviruses, with one Culex pool and one Armigeres pool positive for flavivirus, and one Anopheles pool positive for alphavirus. CONCLUSIONS The HDT collected the highest abundance of culicine specimens. Outdoor HLCs collected the highest abundance of Anopheles specimens. Although the HDT can attract a range of different Asian mosquito genera and species, it remains to be optimized for Anopheles in Asia. The high proportion of human blood meals in mosquitoes collected by outdoor HLCs raises concerns on the potential exposure risk to collectors using this methodology and highlights the importance of continuing to optimize a host-mimic trap such as the HDT.
Collapse
Affiliation(s)
- Jenna R. Davidson
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, 46556 USA
| | - Robert N. Baskin
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, 46556 USA
| | - Hajar Hasan
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, 90245 Indonesia
| | - Timothy A. Burton
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, 46556 USA
| | - Muhammad Wardiman
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, 90245 Indonesia
| | - Nur Rahma
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, 90245 Indonesia
| | - Fadly R. Saputra
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, 90245 Indonesia
| | - Muhammad Sultanul Aulya
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, 90245 Indonesia
| | - Isra Wahid
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, 90245 Indonesia
| | - Din Syafruddin
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, 90245 Indonesia
- Eijkman Institute of Molecular Biology, Jakarta, Indonesia
| | - Frances M. Hawkes
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB UK
| | - Neil F. Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, 46556 USA
| |
Collapse
|
8
|
Chaiphongpachara T, Laojun S. Wing morphometric variability of the malaria vector Anopheles (Cellia) epiroticus Linton et Harbach (Diptera: Culicidae) for the duration of the rainy season in coastal areas of Samut Songkhram, Thailand. Folia Parasitol (Praha) 2020; 67. [PMID: 32350157 DOI: 10.14411/fp.2020.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/03/2019] [Indexed: 11/19/2022]
Abstract
In Thailand, Anopheles (Cellia) epiroticus Linton et Harbach (Diptera: Culicidae) is the secondary vector of human malaria along coastal regions. While there are some studies of phenotypic variability and population structure of A. epiroticus, more information on morphological variation would enhance epidemiological understanding of medically important mosquito vectors. This research examined morphological variation at three different distances from coastlines of Samut Songkhram Province, Thailand, using landmark-based geometric morphometrics. Wing shape of A. epiroticus was significantly different in the area 0.2 km away from the sea compared to areas 2 and 4 km away from the sea (p < 0.05). Phenotypic variability in wing shape is associated with distance from the sea. Morphological variations in the area closest to the sea were most pronounced, showing a relationship between A. epiroticus and the ecosystem that affects wing geometry. These results provide important information to understand morphological variation of A. epiroticus in coastal areas.
Collapse
Affiliation(s)
- Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Science, Suan Sunandha Rajabhat University, Samut Songkhram, Thailand
| | - Sedthapong Laojun
- College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram,Thailand
| |
Collapse
|
9
|
Tananchai C, Manguin S, Bangs MJ, Chareonviriyaphap T. Malaria Vectors and Species Complexes in Thailand: Implications for Vector Control. Trends Parasitol 2019; 35:544-558. [PMID: 31182384 DOI: 10.1016/j.pt.2019.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 11/18/2022]
Abstract
There are seven Anopheles species incriminated as important (primary) malaria vectors in Thailand. These vectors belong to species complexes or are in closely related groups that are difficult to separate morphologically. Precise species identification, using molecular methods, enables control operations to target only important vectors and to increase understanding of their specific ecological requirements, bionomic characteristics, and behavioral traits. This review focuses on adult mosquito behavior, vector transmission capacity, and geographical distribution of malaria vectors in Thailand identified using genetic and molecular identification methods between 1994 and 2019. A better understanding of Anopheles biodiversity, biology, behavior, vector capacity, and distribution in Thailand and neighboring countries in the Greater Mekong Subregion (GMS) will facilitate more effective and efficient vector-control strategies and consequently contribute to a further decrease in the malaria burden.
Collapse
Affiliation(s)
- Chatchai Tananchai
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Sylvie Manguin
- HydroSciences Montpellier (UMR-HSM), Institut de Recherche pour le Développement France (IRD), CNRS, Université Montpellier, Montpellier, France
| | - Michael J Bangs
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand; Public Health and Malaria Control Department, PT Freeport Indonesia, International SOS, Jl. Kertajasa, Kuala Kencana, Papua 99920, Indonesia
| | | |
Collapse
|
10
|
Tananchai C, Pattanakul M, Nararak J, Sinou V, Manguin S, Chareonviriyaphap T. Diversity and biting patterns of Anopheles species in a malaria endemic area, Umphang Valley, Tak Province, western Thailand. Acta Trop 2019; 190:183-192. [PMID: 30439344 DOI: 10.1016/j.actatropica.2018.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 11/26/2022]
Abstract
Malaria is highly endemic in Umphang Valley, a district in the western edge of Tak Province, along the boundary with Kayin State of Myanmar. Although there are high indigenous malaria cases in this area every year, nothing about malaria vectors and their transmission role have been investigated before this study. The objective of this work is to characterize the Anopheles species diversity and trophic behavior of malaria vectors in the transmission area of Umphang Valley. Females of Anopheles mosquitoes were collected every two months during a two-year period. Mosquito collections were using standard collection technique, indoor and outdoor human landing collections and outdoor cattle bait collection. Anopheles mosquitoes were identified using morphological characters and multiplex AS-PCR assay for the identification of sibling species within groups and complexes present. From a total of 16,468 Anopheles females, 2723 specimens (16.54%) were collected from humans and 13,745 specimens (83.46%) were captured from cattle. From human landing collections, 2447 specimens (89.86%) of Anopheles minimus were obtained, followed by 119 Anopheles peditaeniatus (4.37%), 62 Anopheles maculatus (2.28%), 17 Anopheles dirus (0.6%), 15 Anopheles aconitus (0.5%) and 6 Anopheles sawadwongporni (0.2%) respectively. Seven putative malaria vectors, including An. minimus, An. dirus, An. baimaii, An. sawadwongporni, An. maculatus, An. pseudowillmori and An. aconitus were documented from this study and trophic behavior of each respective species were observed. Such information is definitely crucial for defining the vector capacity of each single species and for designing appropriate vector prevention and control strategies against target vector species.
Collapse
|
11
|
Tainchum K, Nararak J, Boonyuan W, Bangs MJ, Chareonviriyaphap T. Behavioral responses of Anopheles species (Culicidae: Diptera) with varying surface exposure to pyrethroid-treated netting in an excito-repellency test system. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2016; 41:254-264. [PMID: 27860013 DOI: 10.1111/jvec.12220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/16/2016] [Indexed: 06/06/2023]
Abstract
Indoor Residual Spray (IRS) with insecticides has been a procedure used for decades to protect humans from biting mosquitoes and potential vectors of pathogens. The objective of this study was to determine the responses of three wild-caught species of malaria vectors exposed to pyrethroids of three different surface coverage percents using an excito-repellency test box. Each species was exposed to three insecticide-treated surfaces at varying exposure levels (full coverage, 50%, and 25% of the maximum allowable by the test system) to a single standard field dose of either lambda-cyhalothrin or alpha-cypermethrin. Larger numbers of mosquitoes escaped the treated chambers in the direct contact test compared to the spatial repellent chambers in all three different treated surface exposures. No significant differences in the percent of escaped mosquitoes were detected in the 50% and full coverage surface coverage exposures, whereas the 25% coverage produced significantly lower avoidance responses for both compounds. This study found that varying levels of surface exposure with synthetic pyrethroids can impact the behavioral avoidance responses of Anopheles; however, it may also be possible to reduce the amount of coverage to achieve similar avoidance actions. This information may assist policy makers in designing more cost effective strategies involving residual insecticides to control mosquito vectors.
Collapse
Affiliation(s)
- Krajana Tainchum
- Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand (CASAF, NRU-KU, Thailand)
- Department of Pest Management, Faculty of Natural Resources, Prince of Songkla University, Songkhla 90112, Thailand
| | - Jirod Nararak
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Wasana Boonyuan
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Michael J Bangs
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
- Public Health and Malaria Control Department, International SOS, Jl. Kertajasa, Kuala Kencana, Papua 99920, Indonesia
| | - Theeraphap Chareonviriyaphap
- Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand (CASAF, NRU-KU, Thailand)
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
12
|
Anopheles species diversity and distribution of the malaria vectors of Thailand. Trends Parasitol 2015; 31:109-19. [DOI: 10.1016/j.pt.2015.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/26/2014] [Accepted: 01/12/2015] [Indexed: 11/18/2022]
|