1
|
Gu Y, Bi Y, Huang Z, Liao C, Li X, Hu H, Xie H, Huang Y. CD69 Expression is Negatively Associated With T-Cell Immunity and Predicts Antiviral Therapy Response in Chronic Hepatitis B. Ann Lab Med 2025; 45:185-198. [PMID: 39703148 PMCID: PMC11788699 DOI: 10.3343/alm.2024.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/04/2024] [Accepted: 10/23/2024] [Indexed: 12/21/2024] Open
Abstract
Background The function of CD69 expressed on T cells in chronic hepatitis B (CHB) remains unclear. We aimed to elucidate the roles of CD69 on T cells in the disease process and in antiviral therapy for CHB. Methods We enrolled 335 treatment-naive patients with CHB and 93 patients with CHB on antiviral therapy. CD69, antiviral cytokine production by T cells, T-helper (Th) cells, and inhibitory molecules of T cells were measured using flow cytometry, and clinical-virological characteristics were examined dynamically during antiviral therapy. Results CD69 expression on CD3+, CD4+, and CD8+ T cells was the lowest in the immune-active phase and was negatively correlated with liver transaminase activity, fibrosis features, inflammatory cytokine production by T cells, and Th-cell frequencies but positively with inhibitory molecules on T cells. CD69 expression on CD3+, CD4+, and CD8+ T cells decreased after 48 weeks of antiviral therapy, and patients with hepatitis B e antigen (HBeAg) seroconversion in week 48 showed lower CD69 expression on T cells at baseline and week 48. The area under the ROC curve of CD69 expression on T cells at baseline for predicting HBeAg seroconversion in week 48 was 0.870, the sensitivity was 0.909, and the specificity was 0.714 (P =0.002). Conclusions CD69 negatively regulates T-cell immunity during CHB, and its expression decreases with antiviral therapy. CD69 expression predicts HBeAg seroconversion in week 48. CD69 may play an important negative role in regulating T cells and affect the efficacy of antiviral therapy.
Collapse
Affiliation(s)
- Yurong Gu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanhua Bi
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zexuan Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunhong Liao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Li
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Hu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huaping Xie
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuehua Huang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Sugimoto C, Wakao H. The Role of Mucosal-Associated Invariant T Cells in Viral Infections and Their Function in Vaccine Development. Vaccines (Basel) 2025; 13:155. [PMID: 40006702 PMCID: PMC11860804 DOI: 10.3390/vaccines13020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Mucosal-Associated Invariant T (MAIT) cells, which bridge innate and adaptive immunity, have emerged as an important player in viral infections despite their inability to directly recognize viral antigens. This review provides a comprehensive analysis of MAIT cell responses across different viral infections, revealing consistent patterns in their behavior and function. We discuss the dynamics of MAIT cells during various viral infections, including changes in their frequency, activation status, and functional characteristics. Particular attention is given to emerging strategies for MAIT-cell-targeted vaccine development, including the use of MR1 ligands as mucosal adjuvants and the activation of MAIT cells through viral vectors and mRNA vaccines. Current knowledge of MAIT cell biology in viral infections provides promising approaches for harnessing their functions in vaccine development.
Collapse
Affiliation(s)
- Chie Sugimoto
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu 321-0293, Japan;
| | | |
Collapse
|
3
|
Yang AYP, Wistuba-Hamprecht K, Greten TF, Ruf B. Innate-like T cells in liver disease. Trends Immunol 2024; 45:535-548. [PMID: 38879436 DOI: 10.1016/j.it.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 07/14/2024]
Abstract
Mammalian innate-like T cells (ILTCs), including mucosal-associated invariant T (MAIT), natural killer T (NKT), and γδ T cells, are abundant tissue-resident lymphocytes that have recently emerged as orchestrators of hepatic inflammation, tissue repair, and immune homeostasis. This review explores the involvement of different ILTC subsets in liver diseases. We explore the mechanisms underlying the pro- and anti-inflammatory effector functions of ILTCs in a context-dependent manner. We highlight latest findings regarding the dynamic interplay between ILTC functional subsets and other immune and parenchymal cells which may inform candidate immunomodulatory strategies to achieve improved clinical outcomes in liver diseases. We present new insights into how distinct gene expression programs in hepatic ILTCs are induced, maintained, and reprogrammed in a context- and disease stage-dependent manner.
Collapse
Affiliation(s)
- Albert Ying-Po Yang
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) - Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany; Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology, and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Center for Cancer Research (CCR) Liver Cancer Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Ruf
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) - Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Wang L, Liao F, Yang L, Jiang L, Duan L, Wang B, Mu D, Chen J, Huang Y, Hu Q, Chen W. KLRG1-expressing CD8+ T cells are exhausted and polyfunctional in patients with chronic hepatitis B. PLoS One 2024; 19:e0303945. [PMID: 38776335 PMCID: PMC11111010 DOI: 10.1371/journal.pone.0303945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Killer cell lectin-like receptor G1 (KLRG1) has traditionally been regarded as an inhibitory receptor of T cell exhaustion in chronic infection and inflammation. However, its exact role in hepatitis B virus (HBV) infection remains elusive. CD8+ T cells from 190 patients with chronic hepatitis B were analyzed ex vivo for checkpoint and apoptosis markers, transcription factors, cytokines and subtypes in 190 patients with chronic hepatitis B. KLRG1+ and KLRG1- CD8+ T cells were sorted for transcriptome analysis. The impact of the KLRG1-E-cadherin pathway on the suppression of HBV replication mediated by virus-specific T cells was validated in vitro. As expected, HBV-specific CD8+ T cells expressed higher levels of KLRG1 and showed an exhausted molecular phenotype and function. However, despite being enriched for the inhibitory molecules, thymocyte selection-associated high mobility group box protein (TOX), eomesodermin (EOMES), and Helios, CD8+ T cells expressing KLRG1 produced significant levels of tumour necrosis factor (TNF)-α, interferon (IFN)-γ, perforin, and granzyme B, demonstrating not exhausted but active function. Consistent with the in vitro phenotypic assay results, RNA sequencing (RNA-seq) data showed that signature effector T cell and exhausted T cell genes were enriched in KLRG1+ CD8+ T cells. Furthermore, in vitro testing confirmed that KLRG1-E-cadherin binding inhibits the antiviral efficacy of HBV-specific CD8+ T cells. Based on these findings, we concluded that KLRG1+ CD8+ T cells are not only a terminally exhausted subgroup but also exhibit functional diversity, despite inhibitory signs in HBV infection.
Collapse
Affiliation(s)
- Li Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangli Liao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linshan Jiang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Mu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ying Huang
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qin Hu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Bengtsson B, Maucourant C, Sandberg JK, Björkström NK, Hagström H. Evaluation of mucosal-associated invariant T-cells as a potential biomarker to predict infection risk in liver cirrhosis. PLoS One 2024; 19:e0294695. [PMID: 38691552 PMCID: PMC11062522 DOI: 10.1371/journal.pone.0294695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/07/2023] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND AND AIMS Infection is a serious complication in patients with cirrhosis. Mucosal-associated invariant T (MAIT) cells are involved in the immune defense against infections and known to be impaired in several chronic conditions, including cirrhosis. Here, we evaluated if MAIT cell levels in peripheral blood are associated with risk of bacterial infections in patients with cirrhosis. METHODS Patients with cirrhosis seen at the Karolinska University Hospital, Stockholm, Sweden, between 2016 and 2019 were included. Levels of MAIT cells in peripheral blood were determined using flow cytometry. Baseline and follow-up data after at least two years of follow-up were collected by chart review for the primary outcome (bacterial infection) and secondary outcomes (decompensation and death). Competing risk and Cox regression were performed. RESULTS We included 106 patients with cirrhosis. The median MAIT cells fraction in the circulation was 0.8% in cirrhosis compared to 6.1% in healthy controls. In contrast to our hypothesis, we found an association in the adjusted analysis between relatively preserved MAIT cell levels, and a slightly higher risk to develop bacterial infections (adjusted subdistribution hazard ratio (aSHR) 1.15 (95%CI = 1.01-1.31). However, MAIT cell levels were not associated with the risk of hepatic decompensation (aSHR 1.19 (95%CI = 0.91-1.56)) nor with death (adjusted hazard ratio 1.10 (95%CI = 0.97-1.22)). CONCLUSIONS Relatively preserved MAIT cell levels in blood of patients with cirrhosis were associated with a somewhat higher risk of bacterial infections. The clinical relevance of this might not be strong. MAIT cells might however be an interesting biomarker to explore in future studies.
Collapse
Affiliation(s)
- Bonnie Bengtsson
- Department of Internal Medicine, Section of Gastroenterology, Södersjukhuset, Stockholm, Sweden
- Unit of Gastroenterology and Rheumatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Maucourant
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Hagström
- Department of Internal Medicine, Section of Gastroenterology, Södersjukhuset, Stockholm, Sweden
- Unit of Gastroenterology and Rheumatology, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Li J, Zhao H, Lv G, Aimulajiang K, Li L, Lin R, Aji T. Phenotype and function of MAIT cells in patients with alveolar echinococcosis. Front Immunol 2024; 15:1343567. [PMID: 38550591 PMCID: PMC10973110 DOI: 10.3389/fimmu.2024.1343567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subpopulation of unconventional T cells widely involved in chronic liver diseases. However, the potential role and regulating factors of MAIT cells in alveolar echinococcosis (AE), a zoonotic parasitic disease by Echinococcus multilocularis (E. multilocularis) larvae chronically parasitizing liver organs, has not yet been studied. Blood samples (n=29) and liver specimens (n=10) from AE patients were enrolled. The frequency, phenotype, and function of MAIT cells in peripheral blood and liver tissues of AE patients were detected by flow cytometry. The morphology and fibrosis of liver tissue were examined by histopathology and immunohistochemistry. The correlation between peripheral MAIT cell frequency and serologic markers was assessed by collecting clinicopathologic characteristics of AE patients. And the effect of in vitro stimulation with E. multilocularis antigen (Emp) on MAIT cells. In this study, MAIT cells are decreased in peripheral blood and increased in the close-to-lesion liver tissues, especially in areas of fibrosis. Circulating MAIT exhibited activation and exhaustion phenotypes, and intrahepatic MAIT cells showed increased activation phenotypes with increased IFN-γ and IL-17A, and high expression of CXCR5 chemokine receptor. Furthermore, the frequency of circulating MAIT cells was correlated with the size of the lesions and liver function in patients with AE. After excision of the lesion site, circulating MAIT cells returned to normal levels, and the serum cytokines IL-8, IL-12, and IL-18, associated with MAIT cell activation and apoptosis, were altered. Our results demonstrate the status of MAIT cell distribution, functional phenotype, and migration in peripheral blood and tissues of AE patients, highlighting their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jintian Li
- School of Public Healthy, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hanyue Zhao
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Hepatobiliary & Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guodong Lv
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Liang Li
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Renyong Lin
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Hepatobiliary & Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tuerganaili Aji
- School of Public Healthy, Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Hepatobiliary & Hydatid Disease, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
7
|
Yigit M, Basoglu OF, Unutmaz D. Mucosal-associated invariant T cells in cancer: dual roles, complex interactions and therapeutic potential. Front Immunol 2024; 15:1369236. [PMID: 38545100 PMCID: PMC10965779 DOI: 10.3389/fimmu.2024.1369236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 04/17/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells play diverse roles in cancer, infectious diseases, and immunotherapy. This review explores their intricate involvement in cancer, from early detection to their dual functions in promoting inflammation and mediating anti-tumor responses. Within the solid tumor microenvironment (TME), MAIT cells can acquire an 'exhausted' state and secrete tumor-promoting cytokines. On the other hand, MAIT cells are highly cytotoxic, and there is evidence that they may have an anti-tumor immune response. The frequency of MAIT cells and their subsets has also been shown to have prognostic value in several cancer types. Recent innovative approaches, such as programming MAIT cells with chimeric antigen receptors (CARs), provide a novel and exciting approach to utilizing these cells in cell-based cancer immunotherapy. Because MAIT cells have a restricted T cell receptor (TCR) and recognize a common antigen, this also mitigates potential graft-versus-host disease (GVHD) and opens the possibility of using allogeneic MAIT cells as off-the-shelf cell therapies in cancer. Additionally, we outline the interactions of MAIT cells with the microbiome and their critical role in infectious diseases and how this may impact the tumor responses of these cells. Understanding these complex roles can lead to novel therapeutic strategies harnessing the targeting capabilities of MAIT cells.
Collapse
Affiliation(s)
- Mesut Yigit
- Human Immunology Laboratory, Acibadem University School of Medicine, Istanbul, Türkiye
| | - Omer Faruk Basoglu
- Human Immunology Laboratory, Acibadem University School of Medicine, Istanbul, Türkiye
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| |
Collapse
|
8
|
Samer C, McWilliam HE, McSharry BP, Velusamy T, Burchfield JG, Stanton RJ, Tscharke DC, Rossjohn J, Villadangos JA, Abendroth A, Slobedman B. Multi-targeted loss of the antigen presentation molecule MR1 during HSV-1 and HSV-2 infection. iScience 2024; 27:108801. [PMID: 38303725 PMCID: PMC10831258 DOI: 10.1016/j.isci.2024.108801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
The major histocompatibility complex (MHC), Class-I-related (MR1) molecule presents microbiome-synthesized metabolites to Mucosal-associated invariant T (MAIT) cells, present at sites of herpes simplex virus (HSV) infection. During HSV type 1 (HSV-1) infection there is a profound and rapid loss of MR1, in part due to expression of unique short 3 protein. Here we show that virion host shutoff RNase protein downregulates MR1 protein, through loss of MR1 transcripts. Furthermore, a third viral protein, infected cell protein 22, also downregulates MR1, but not classical MHC-I molecules. This occurs early in the MR1 trafficking pathway through proteasomal degradation. Finally, HSV-2 infection results in the loss of MR1 transcripts, and intracellular and surface MR1 protein, comparable to that seen during HSV-1 infection. Thus HSV coordinates a multifaceted attack on the MR1 antigen presentation pathway, potentially protecting infected cells from MAIT cell T cell receptor-mediated detection at sites of primary infection and reactivation.
Collapse
Affiliation(s)
- Carolyn Samer
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Hamish E.G. McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Brian P. McSharry
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Thilaga Velusamy
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - James G. Burchfield
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Richard J. Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales
| | - David C. Tscharke
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Jamie Rossjohn
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jose A. Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
9
|
Lopez-Scarim J, Nambiar SM, Billerbeck E. Studying T Cell Responses to Hepatotropic Viruses in the Liver Microenvironment. Vaccines (Basel) 2023; 11:681. [PMID: 36992265 PMCID: PMC10056334 DOI: 10.3390/vaccines11030681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
T cells play an important role in the clearance of hepatotropic viruses but may also cause liver injury and contribute to disease progression in chronic hepatitis B and C virus infections which affect millions of people worldwide. The liver provides a unique microenvironment of immunological tolerance and hepatic immune regulation can modulate the functional properties of T cell subsets and influence the outcome of a virus infection. Extensive research over the last years has advanced our understanding of hepatic conventional CD4+ and CD8+ T cells and unconventional T cell subsets and their functions in the liver environment during acute and chronic viral infections. The recent development of new small animal models and technological advances should further increase our knowledge of hepatic immunological mechanisms. Here we provide an overview of the existing models to study hepatic T cells and review the current knowledge about the distinct roles of heterogeneous T cell populations during acute and chronic viral hepatitis.
Collapse
Affiliation(s)
| | | | - Eva Billerbeck
- Division of Hepatology, Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
10
|
Papanastasatou M, Verykokakis M. Innate-like T lymphocytes in chronic liver disease. Front Immunol 2023; 14:1114605. [PMID: 37006304 PMCID: PMC10050337 DOI: 10.3389/fimmu.2023.1114605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
In addition to its metabolic activities, it is now clear that the liver hosts a number of diverse immune cell types that control tissue homeostasis. Foremost among these are innate-like T lymphocytes, including natural killer T (NKT) and mucosal-associated innate T (MAIT) cells, which are a population of specialized T cells with innate characteristics that express semi-invariant T cell receptors with non-peptide antigen specificity. As primary liver residents, innate-like T cells have been associated with immune tolerance in the liver, but also with a number of hepatic diseases. Here, we focus on the biology of NKT and MAIT cells and how they operate during the course of chronic inflammatory diseases that eventually lead to hepatocellular carcinoma.
Collapse
|
11
|
Zhang Y, Wang M, Zhang X, Tang K, Zhang C, Jia X, Hu H, Liu H, Li N, Zhuang R, Jin B, Ma Y, Zhang Y. HTNV infection induces activation and deficiency of CD8+MAIT cells in HFRS patients. Clin Exp Immunol 2023; 211:1-14. [PMID: 36480318 PMCID: PMC9993462 DOI: 10.1093/cei/uxac111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Hantaan virus (HTNV) infection causes an epidemic of hemorrhagic fever with renal syndrome (HFRS) mainly in Asia. Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes known to play an important role in innate host defense during virus infection. However, their roles and phenotypes during HTNV infection have not yet been explored. We characterized CD8+MAIT cells from HFRS patients based on scRNA-seq data combined with flow cytometry data. We showed that HTNV infection caused the loss and activation of CD8+MAIT cells in the peripheral blood, which were correlated with disease severity. The production of granzyme B and IFN-γ from CD8+MAIT cells and the limitation of HTNV replication in endothelia cells indicated the anti-viral property of CD8+MAIT cells. In addition, in vitro infection of MAIT cells by HTNV or HTNV-exposed monocytes showed that the activation of MAIT cells was IL-18 mediated. In conclusion, this study identified, for the first time, gene expression profiles of MAIT cells, provided underlying molecular mechanisms for activation of MAIT cells during HTNV infection, and suggested a potential anti-viral role of MAIT cells in HFRS.
Collapse
Affiliation(s)
- Yusi Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Meng Wang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Department of Immunology, School of Basic Medical Sciences, Yan’an university, Yan’an 716000, China
| | - Xiyue Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Yan’an university, Yan’an 716000, China
| | - Kang Tang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Chunmei Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | | | - Haifeng Hu
- Center for Infectious Diseases, Second Affiliated Hospital of Air Force Medical University (Fourth Military Medical University), Xi’an 710038, China
| | - He Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi΄an 710032, China
| | - Na Li
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi, China
| | - Ran Zhuang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Boquan Jin
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Ying Ma
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Yun Zhang
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
12
|
Treiner E. Mucosal-associated invariant T cells in hematological malignancies: Current knowledge, pending questions. Front Immunol 2023; 14:1160943. [PMID: 37020559 PMCID: PMC10067713 DOI: 10.3389/fimmu.2023.1160943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Non-classical HLA restricted T cell subsets such as γδ T and NK-T cells are showing promises for immune-based therapy of hematological malignancies. Mucosal-Associated Invariant T cells (MAIT) belong to this family of innate-like T cell subsets and are the focus of many studies on infectious diseases, owing to their unusual recognition of bacterial/fungal metabolites. Their ability to produce type 1 cytokines (IFNγ, TNFα) as well as cytotoxic effector molecules endows them with potential anti-tumor functions. However, their contribution to tumor surveillance in solid cancers is unclear, and only few studies have specifically focused on MAIT cells in blood cancers. In this review, we wish to recapitulate our current knowledge on MAIT cells biology in hematological neoplasms, at diagnosis and/or during treatment, as well as tentative approaches to target them as therapeutic tools. We also wish to take this opportunity to briefly elaborate on what we think are important question to address in this field, as well as potential limitations to overcome in order to make MAIT cells the basis of future, novel therapies for hematological cancers.
Collapse
Affiliation(s)
- Emmanuel Treiner
- Infinity, Inserm UMR1291, Toulouse, France
- University Toulouse 3, Toulouse, France
- Laboratory of Immunology, Toulouse University Hospital, Toulouse, France
- *Correspondence: Emmanuel Treiner,
| |
Collapse
|
13
|
Zhang H, Shen H, Zhou L, Xie L, Kong D, Wang H. Mucosal-Associated Invariant T Cells in the Digestive System: Defender or Destroyer? Cell Mol Gastroenterol Hepatol 2023; 15:809-819. [PMID: 36584816 PMCID: PMC9971522 DOI: 10.1016/j.jcmgh.2022.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate T lymphocytes that express the semi-invariant T cell receptor and recognize riboflavin metabolites via the major histocompatibility complex class I-related protein. Given the abundance of MAIT cells in the human body, their role in human diseases has been increasingly studied in recent years. MAIT cells may serve as targets for clinical therapy. Specifically, this review discusses how MAIT cells are altered in gastric, esophageal, intestinal, and hepatobiliary diseases and describes their protective or pathogenic roles. A greater understanding of MAIT cells will provide a more favorable therapeutic approach for digestive diseases in the clinical field.
Collapse
Affiliation(s)
- Hejiao Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Liangliang Zhou
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
14
|
Hackstein CP, Klenerman P. Emerging features of MAIT cells and other unconventional T cell populations in human viral disease and vaccination. Semin Immunol 2022; 61-64:101661. [PMID: 36374780 PMCID: PMC10933818 DOI: 10.1016/j.smim.2022.101661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
MAIT cells are one representative of a group of related unconventional or pre-set T cells, and are particularly abundant in humans. While these unconventional T cell types, which also include populations of Vδ2 cells and iNKT cells, recognise quite distinct ligands, they share functional features including the ability to sense "danger" by integration of cytokine signals. Since such signals are common to many human pathologies, activation of MAIT cells in particular has been widely observed. In this review we will discuss recent trends in these data, for example the findings from patients with Covid-19 and responses to novel vaccines. Covid-19 is an example where MAIT cell activation has been correlated with disease severity by several groups, and the pathways leading to activation are being clarified, but the overall role of the cells in vivo requires further exploration. Given the potential wide functional responsiveness of these cells, which ranges from tissue repair to cytotoxicity, and likely impacts on the activity of many other cell populations, defining the role of these cells - not only as sensitive biomarkers but also as mediators - across human disease remains an important task.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Dept of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Dept of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
15
|
Wang Z, Zhang S, Zhang X, Liu L, Zhou L, Shen Y, Zhang R, He Y, Yang D, Jiang E, Feng X, Zhou J, Cheng T, Han M, Feng S. Mucosal-associated invariant T cells predict increased acute graft-versus-host-disease incidence in patients receiving allogeneic hematopoietic stem cell transplantation. Cancer Cell Int 2022; 22:297. [PMID: 36180885 PMCID: PMC9526319 DOI: 10.1186/s12935-022-02703-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mucosal-associated invariant T (MAIT) cells are innate-like T cells, some studies have reported that the number of circulating MAIT cells reduced in patients with acute graft-versus-host-disease (aGVHD) development. However, the role of donor MAIT cells on aGVHD development and subsequent functional change still remain unclear. METHODS The study recruited 86 patients with hematological malignancies who underwent allogeneic hematopoietic cell transplantation (HCT) from May 1, 2018 to June 30, 2019. MAIT cells, their subset, and cytokine levels were measured by flow cytometry. Gray's test was used to assess the impact of graft MAIT cell proportion and number on aGVHD incidence. The Cox proportional hazard model was used in the multivariate analysis. The comparison for continuous variables was assessed using Mann-Whitney analysis. RNA-sequencing was performed to investigate the possible molecular pathway changes. RESULTS Our study showed that the proportion of MAIT cells in grafts was not different from normal controls, but the CD4/8 subsets were altered. Taking the median of the proportion and number of MAIT cells in the graft as the threshold, the results showed that the incidence of grade B-D aGVHD in patients with MAIT cell proportion ≥ 3.03% was significantly higher than that in patients with MAIT cell proportion < 3.03% (56.3%, 95% CI 37.1-71.2 versus 23.1%, 95% CI 13.8-46.2; P = 0.038).The number of MAIT cells in the graft was not associated with aGVHD development (P = 0.173), however, when the graft contained more CD4 positive, CD8 positive, and CD4/CD8 double-positive MAIT cells, the incidence of aGVHD was significantly increased (P = 0.019, P = 0.035 and P = 0.027, respectively). Besides, reduced frequencies and counts of circulating MAIT cells were observed in patients with aGVHD when compared to patients without aGVHD, accompanied by enhanced production of Tumor necrosis factor-α, Interferon-γ and upregulated programmed death-1, CXC Chemokine Receptor-6 (CXCR6) and CD38 expression. Gene set enrichment analysis of MAIT cell RNA-seq data showed interferon-α response pathway upregulated in aGVHD patients when compared with patients without aGVHD and healthy controls. CONCLUSIONS Our study shows that MAIT cells in grafts and peripheral blood are both closely related to the aGVHD development post allogeneic HCT. Interferon-α response pathway perhaps is a critical regulation mechanism for the MAIT cell involvement in aGVHD development.
Collapse
Affiliation(s)
- Zhao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.,Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, China
| | - Sudong Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaoyu Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Li Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Lukun Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yuyan Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
| |
Collapse
|
16
|
Cheng TC, Xue H, Li H, Liu YC, Tian LJ, Bian ZL, Chen FS. MAIT cells predict long-term prognosis in liver failure patients. Medicine (Baltimore) 2022; 101:e29809. [PMID: 36042623 PMCID: PMC9410595 DOI: 10.1097/md.0000000000029809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Liver failure (LF) is a life-threatening clinical syndrome characterized by intense systemic inflammation and organ failure(s), leading to a high mortality rate. The pathogenesis of LF is multifactorial, immune response, and gut bacterial translocation are thought to be major contributing factors. Mucosal-associated invariant T (MAIT) cells play a critical role in immune response and gut bacterial translocation. We aimed to investigate changes of the MAIT cell ratio in patients with LF and to explore the predictive value for long-term prognosis in patients with LF. MATERIAL AND METHOD We recruited 75 patients with LF from Nantong Third People's Hospital, isolated peripheral blood mononuclear cells, and detected the proportion of circulating MAIT cells by flow cytometry. Statistical analyses were performed using the GraphPad Prism software. RESULTS Our data showed that the proportion of MAIT cells alterations was independent of the cause of viral infection in patients with LF. Kaplan-Meier survival analysis showed that LF patients with low level of MAIT cells had poor long-term prognosis. The area under the receiver operating characteristic curve of the MAIT cell proportion was larger than that of the Model for End-Stage Liver Disease (MELD) score. More importantly, the combination of MAIT cell proportion and MELD score had a better effect in predicting long-term prognosis of LF patients than any single index (AUC = 0.91, 95% CI:0.84-0.97), and multivariate logistic regression analysis indicated that the circulating MAIT cell proportion was an independent risk factor for LF. CONCLUSION The proportion of MAIT cells in PBMC is an outstanding predictor for the long-term prognosis in patients with LF.
Collapse
Affiliation(s)
- Tiao-Chun Cheng
- Medical School of Nantong University, Nantong 226006, Jiangsu Province, China
| | - Hong Xue
- Department of Liver Diseases, Nantong Third People’s Hospital, Nantong University, Nantong 226006, Jiangsu Province, China
| | - Han Li
- Medical School of Nantong University, Nantong 226006, Jiangsu Province, China
| | - Yi-Cun Liu
- Medical School of Nantong University, Nantong 226006, Jiangsu Province, China
| | - Li-Jun Tian
- Department of Critical Care Medicine, Nantong Third People’s Hospital, Nantong University, Nantong 226006, Jiangsu Province, China
| | - Zhao-Lian Bian
- Department of Gastroenterology and Hepatology, Nantong Third People’s Hospital, Nantong University, Nantong 226006, Jiangsu Province, China
- *Correspondence: Zhao-Lian Bian, Department of Gastroenterology and Hepatology, Nantong Third People’s Hospital, Nantong University, 60 Middle Qingnian Road, Nantong 226006, Jiangsu Province, China (e-mail: )
| | - Feng-Song Chen
- Department of Gastroenterology, Haimen People’s Hospital, Nantong 226100, Jiangsu Province, China
- *Correspondence: Zhao-Lian Bian, Department of Gastroenterology and Hepatology, Nantong Third People’s Hospital, Nantong University, 60 Middle Qingnian Road, Nantong 226006, Jiangsu Province, China (e-mail: )
| |
Collapse
|
17
|
Mehta H, Lett MJ, Klenerman P, Filipowicz Sinnreich M. MAIT cells in liver inflammation and fibrosis. Semin Immunopathol 2022; 44:429-444. [PMID: 35641678 PMCID: PMC9256577 DOI: 10.1007/s00281-022-00949-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/06/2022] [Indexed: 02/07/2023]
Abstract
Mucosal-associated invariant T cells or MAIT cells are an abundant cell type in humans and especially so in the liver. MAIT cells are a subset of T lymphocytes that sit at a bridge between innate and adaptive immunity, so-called innate-like or "unconventional" T cells. The specificity of their antigen receptor (T cell receptor or TCR) is for the conserved major histocompatibility complex (MHC)-related molecule MR1, which presents a modified bacterial metabolite from the vitamin B2 biosynthesis pathway - this allows them to respond in the presence of many bacteria or yeast. MAIT cells also possess an array of cytokine receptors, which allows triggering independently of the TCR. The combination of such signals drives their functionality - this means they can respond to a range of stimuli and likely play a role not only in infection or inflammation, but also under homeostatic conditions.In this review, we will look at the question of what MAIT cells are doing in the normal liver and how they behave in the setting of disease. These questions are of relevance because MAIT cells are such a distinctive cell type enriched in the liver under normal conditions, and their modulation could be of therapeutic benefit. The recent discovery that they appear to be involved in liver fibrosis is particularly of interest in this context.
Collapse
Affiliation(s)
- Hema Mehta
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, South Parks Rd, Oxford, OX1 3SY, UK
| | - Martin Joseph Lett
- Liver Immunology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, South Parks Rd, Oxford, OX1 3SY, UK.
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Magdalena Filipowicz Sinnreich
- Liver Immunology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, Basel University Medical Clinic, Cantonal Hospital Baselland, Liestal, Switzerland
| |
Collapse
|
18
|
Pincikova T, Parrot T, Hjelte L, Högman M, Lisspers K, Ställberg B, Janson C, Malinovschi A, Sandberg JK. MAIT cell counts are associated with the risk of hospitalization in COPD. Respir Res 2022; 23:127. [PMID: 35585629 PMCID: PMC9114286 DOI: 10.1186/s12931-022-02045-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by persistent airflow limitation associated with chronic inflammation in the airways. Mucosal-associated invariant T (MAIT) cells are unconventional, innate-like T cells highly abundant in mucosal tissues including the lung. We hypothesized that the characteristics of MAIT cells in circulation may be prospectively associated with COPD morbidity. METHODS COPD subjects (n = 61) from the Tools for Identifying Exacerbations (TIE) study were recruited when in stable condition. At study entry, forced expiratory volume in 1 s (FEV1) was measured and peripheral blood mononuclear cells were cryopreserved for later analysis by flow cytometry. Patients were followed for 3 years to record clinically meaningful outcomes. RESULTS Patients who required hospitalization at one or more occasions during the 3-year follow-up (n = 21) had lower MAIT cell counts in peripheral blood at study inclusion, compared with patients who did not get hospitalized (p = 0.036). In contrast, hospitalized and never hospitalized patients did not differ in CD8 or CD4 T cell counts (p = 0.482 and p = 0.221, respectively). Moreover, MAIT cells in hospitalized subjects showed a more activated phenotype with higher CD38 expression (p = 0.014), and there was a trend towards higher LAG-3 expression (p = 0.052). Conventional CD4 and CD8 T cells were similar between the groups. Next we performed multi-variable logistic regression analysis with hospitalizations as dependent variable, and FEV1, GOLD 2017 group, and quantity or activation of MAIT and conventional T cells as independent variables. MAIT cell count, CD38 expression on MAIT cells, and LAG-3 expression on both MAIT and CD8 T cells were all independently associated with the risk of hospitalization. CONCLUSIONS These findings suggest that MAIT cells might reflect a novel, FEV1-independent immunological dimension in the complexity of COPD. The potential implication of MAIT cells in COPD pathogenesis and MAIT cells' prognostic potential deserve further investigation.
Collapse
Affiliation(s)
- Terezia Pincikova
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden. .,Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden. .,Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden. .,Department of Respiratory Medicine and Allergy, K85, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.
| | - Tiphaine Parrot
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lena Hjelte
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Stockholm CF Center, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Marieann Högman
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Karin Lisspers
- Department of Public Health and Caring Sciences, Family Medicine and Preventive Medicine, Uppsala University, Uppsala, Sweden
| | - Björn Ställberg
- Department of Public Health and Caring Sciences, Family Medicine and Preventive Medicine, Uppsala University, Uppsala, Sweden
| | - Christer Janson
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Andrei Malinovschi
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Huang W, Ye D, He W, He X, Shi X, Gao Y. Activated but impaired IFN-γ production of mucosal-associated invariant T cells in patients with hepatocellular carcinoma. J Immunother Cancer 2021; 9:jitc-2021-003685. [PMID: 34789552 PMCID: PMC8601081 DOI: 10.1136/jitc-2021-003685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
Objective Mucosal-associated invariant T (MAIT) cells are innate T cells with immunoregulatory activity and were recently found to be associated with various tumor types. The role of intrasinusoidal MAIT cells in hepatocellular carcinoma (HCC) has not been fully characterized. Design Peripheral blood samples were obtained from patients with HCC and healthy controls. Liver-associated mononuclear cells (LMCs) were collected from liver perfusions of donors and patients with HCC undergoing liver transplantation. Blood and liver perfusates from patients with HCC were analyzed by flow cytometry for CD3 +CD161+Vα7.2+MAIT cell frequency, phenotype, and function. Results There were fewer MAIT cells in the peripheral blood and liver of patients with HCC than in the healthy controls. Interferon-γ (IFN-γ) production by these cells was also reduced. Peripheral MAIT cells showed upregulation of HLA-DR (Human Leukocyte Antigen DR) and the inhibitory molecule PD-1 (Programmed Cell Death Protein 1), but no significant differences in upregulation were found in intrasinusoidal MAIT cells. MAIT cells were significantly enriched in the liver relative to that in the peripheral blood of patients with HCC. High levels of activation markers and exhaustion markers including HLA-DR, CD69, and PD-1 were observed in LMCs of patients with HCC but not in the peripheral blood. Single-cell RNA sequencing revealed that intrasinusoidal MAIT cells exhibited distinct features in patients with HCC and the controls. Conclusion Our study showed that alterations in MAIT cells are associated with HCC. The distinct activity and function of MAIT cells in the peripheral blood and liver of patients with HCC might suggest a potential role of these cells in disease pathogenesis.
Collapse
Affiliation(s)
- Wenyong Huang
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Dongmei Ye
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenjing He
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaoshun He
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaomin Shi
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yifang Gao
- Organ Transplantation Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China .,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
20
|
Abstract
To resolve the growing problem of drug resistance in the treatment of bacterial and fungal pathogens, specific cellular targets and pathways can be used as targets for new antimicrobial agents. Endogenous riboflavin biosynthesis is a conserved pathway that exists in most bacteria and fungi. In this review, the roles of endogenous and exogenous riboflavin in infectious disease as well as several antibacterial agents, which act as analogues of the riboflavin biosynthesis pathway, are summarized. In addition, the effects of exogenous riboflavin on immune cells, cytokines, and heat shock proteins are described. Moreover, the immune response of endogenous riboflavin metabolites in infectious diseases, recognized by MHC-related protein-1, and then presented to mucosal associated invariant T cells, is highlighted. This information will provide a strategy to identify novel drug targets as well as highlight the possible clinical use of riboflavin.
Collapse
Affiliation(s)
- Junwen Lei
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Caiyan Xin
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Wei Xiao
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Wenbi Chen
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| | - Zhangyong Song
- Molecular Biotechnology Platform, Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou People's Republic of China
| |
Collapse
|
21
|
Czaja AJ. Incorporating mucosal-associated invariant T cells into the pathogenesis of chronic liver disease. World J Gastroenterol 2021; 27:3705-3733. [PMID: 34321839 PMCID: PMC8291028 DOI: 10.3748/wjg.v27.i25.3705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/22/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells have been described in liver and non-liver diseases, and they have been ascribed antimicrobial, immune regulatory, protective, and pathogenic roles. The goals of this review are to describe their biological properties, indicate their involvement in chronic liver disease, and encourage investigations that clarify their actions and therapeutic implications. English abstracts were identified in PubMed by multiple search terms, and bibliographies were developed. MAIT cells are activated by restricted non-peptides of limited diversity and by multiple inflammatory cytokines. Diverse pro-inflammatory, anti-inflammatory, and immune regulatory cytokines are released; infected cells are eliminated; and memory cells emerge. Circulating MAIT cells are hyper-activated, immune exhausted, dysfunctional, and depleted in chronic liver disease. This phenotype lacks disease-specificity, and it does not predict the biological effects. MAIT cells have presumed protective actions in chronic viral hepatitis, alcoholic hepatitis, non-alcoholic fatty liver disease, primary sclerosing cholangitis, and decompensated cirrhosis. They have pathogenic and pro-fibrotic actions in autoimmune hepatitis and mixed actions in primary biliary cholangitis. Local factors in the hepatic microenvironment (cytokines, bile acids, gut-derived bacterial antigens, and metabolic by-products) may modulate their response in individual diseases. Investigational manipulations of function are warranted to establish an association with disease severity and outcome. In conclusion, MAIT cells constitute a disease-nonspecific, immune response to chronic liver inflammation and infection. Their pathological role has been deduced from their deficiencies during active liver disease, and future investigations must clarify this role, link it to outcome, and explore therapeutic interventions.
Collapse
Affiliation(s)
- Albert J Czaja
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
| |
Collapse
|
22
|
Harms RZ, Ostlund KR, Cabrera M, Edwards E, Smith VB, Smith LM, Sarvetnick N. Frequencies of CD8 and DN MAIT Cells Among Children Diagnosed With Type 1 Diabetes Are Similar to Age-Matched Controls. Front Immunol 2021; 12:604157. [PMID: 33708202 PMCID: PMC7940386 DOI: 10.3389/fimmu.2021.604157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells have been implicated in various forms of autoimmunity, including type 1 diabetes (T1D). Here, we tested the hypothesis that CD8 and double negative (DN) MAIT cell frequencies were altered among diagnosed T1D subjects compared to controls. To do this, we analyzed cryopreserved peripheral blood mononuclear cells (PBMCs) from age-matched T1D and control children using flow cytometry. We observed that CD8 and DN MAIT cell frequencies were similarly abundant between the two groups. We tested for associations between MAIT cell frequency and T1D-associated parameters, which could reveal a pathogenic role for MAIT cells in the absence of changes in frequency. We found no significant associations between CD8 and DN MAIT cell frequency and levels of islet cell autoantibodies (ICA), glutamate decarboxylase 65 (GAD65) autoantibodies, zinc transporter 8 (ZNT8) autoantibodies, and insulinoma antigen 2 (IA-2) autoantibodies. Furthermore, CD8 and DN MAIT cell frequencies were not significantly associated with time since diagnosis, c-peptide levels, HbA1c, and BMI. As we have examined this cohort for multiple soluble factors previously, we tested for associations between relevant factors and MAIT cell frequency. These could help to explain the broad range of MAIT frequencies we observed and/or indicate disease-associated processes. Although we found nothing disease-specific, we observed that levels of IL-7, IL-18, 25 (OH) vitamin D, and the ratio of vitamin D binding protein to 25 (OH) vitamin D were all associated with MAIT cell frequency. Finally, previous cytomegalovirus infection was associated with reduced CD8 and DN MAIT cells. From this evaluation, we found no connections between CD8 and DN MAIT cells and children with T1D. However, we did observe several intrinsic and extrinsic factors that could influence peripheral MAIT cell abundance among all children. These factors may be worth consideration in future experimental design.
Collapse
Affiliation(s)
- Robert Z Harms
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
| | - Katie R Ostlund
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
| | - Monina Cabrera
- Pediatric Endocrinology, University of Nebraska Center, Omaha, NE, United States.,Children's Pediatric Endocrinology, Children's Hospital and Medical Center, Omaha, NE, United States
| | - Earline Edwards
- Pediatric Endocrinology, University of Nebraska Center, Omaha, NE, United States.,Children's Pediatric Endocrinology, Children's Hospital and Medical Center, Omaha, NE, United States
| | - Victoria B Smith
- Office of the Vice Chancellor of Research, University of Nebraska Medical Center, Omaha, NE, United States
| | - Lynette M Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, United States
| | - Nora Sarvetnick
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States.,Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
23
|
Sakai S, Lora NE, Kauffman KD, Dorosky DE, Oh S, Namasivayam S, Gomez F, Fleegle JD, Arlehamn CSL, Sette A, Sher A, Freeman GJ, Via LE, Barry III CE, Barber DL. Functional inactivation of pulmonary MAIT cells following 5-OP-RU treatment of non-human primates. Mucosal Immunol 2021; 14:1055-1066. [PMID: 34158594 PMCID: PMC8217205 DOI: 10.1038/s41385-021-00425-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 02/04/2023]
Abstract
Targeting MAIT cells holds promise for the treatment of different diseases and infections. We previously showed that treatment of Mycobacterium tuberculosis infected mice with 5-OP-RU, a major antigen for MAIT cells, expands MAIT cells and enhances bacterial control. Here we treated M. tuberculosis infected rhesus macaques with 5-OP-RU intratracheally but found no clinical or microbiological benefit. In fact, after 5-OP-RU treatment MAIT cells did not expand, but rather upregulated PD-1 and lost the ability to produce multiple cytokines, a phenotype resembling T cell exhaustion. Furthermore, we show that vaccination of uninfected macaques with 5-OP-RU+CpG instillation into the lungs also drives MAIT cell dysfunction, and PD-1 blockade during vaccination partly prevents the loss of MAIT cell function without facilitating their expansion. Thus, in rhesus macaques MAIT cells are prone to the loss of effector functions rather than expansion after TCR stimulation in vivo, representing a significant barrier to therapeutically targeting these cells.
Collapse
Affiliation(s)
- Shunsuke Sakai
- grid.419681.30000 0001 2164 9667T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD USA
| | - Nickiana E. Lora
- grid.419681.30000 0001 2164 9667T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD USA
| | - Keith D. Kauffman
- grid.419681.30000 0001 2164 9667T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD USA
| | - Danielle E. Dorosky
- grid.419681.30000 0001 2164 9667T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD USA
| | - Sangmi Oh
- grid.419681.30000 0001 2164 9667Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD USA
| | - Sivaranjani Namasivayam
- grid.419681.30000 0001 2164 9667Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD USA
| | - Felipe Gomez
- grid.419681.30000 0001 2164 9667Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Joel D. Fleegle
- grid.419681.30000 0001 2164 9667Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | | | | | - Alessandro Sette
- grid.185006.a0000 0004 0461 3162Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Alan Sher
- grid.419681.30000 0001 2164 9667Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD USA
| | - Gordon J. Freeman
- grid.38142.3c000000041936754XDepartment of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA USA
| | - Laura E. Via
- grid.419681.30000 0001 2164 9667Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD USA ,grid.419681.30000 0001 2164 9667Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA ,grid.7836.a0000 0004 1937 1151Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Clifton E. Barry III
- grid.419681.30000 0001 2164 9667Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD USA ,grid.7836.a0000 0004 1937 1151Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Daniel L. Barber
- grid.419681.30000 0001 2164 9667T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD USA
| |
Collapse
|
24
|
Khlaiphuengsin A, Chuaypen N, Sodsai P, Reantragoon R, Han WM, Avihingsanon A, Tangkijvanich P. Successful direct-acting antiviral therapy improves circulating mucosal-associated invariant T cells in patients with chronic HCV infection. PLoS One 2020; 15:e0244112. [PMID: 33382729 PMCID: PMC7775079 DOI: 10.1371/journal.pone.0244112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Mucosal-associated invariant T (MAIT) cells have been shown to contribute in the pathogenesis of various liver diseases, including chronic hepatitis C virus (HCV) infection. This study was aimed at investigating the frequency, phenotype, and function of circulating MAIT cells, as well as their alterations after successful direct-acting antivirals (DAAs) in HCV-infected patients with or without HIV infection. METHODS A total 85 patients (51 HCV-monoinfection and 34 HCV/HIV-coinfection), who received elbasvir/grazoprevir from a clinical trial and 20 healthy controls were included. MAIT cells in blood were characterized using flow cytometry at baseline and 24 weeks post-treatment. RESULTS HCV-monoinfected and HCV/HIV-coinfected patients achieved similar sustained virological response rates (SVR24, 94.1% vs. 97.1%). Circulating MAIT cells in the monoinfection and coinfection groups were presented at low frequencies in comparison with healthy controls (median, 1.1% vs. 1.1% vs. 2.4%, P<0.001) and exhibited features of chronic activation and impaired functional capacity. A negative correlation between circulating MAIT cell frequency and liver stiffness assessed by magnetic resonance elastography was observed. Compared with baseline, increased in circulating MAIT cells after successful DAA therapy was mainly detected in HCV-monoinfected patients compared with HCV/HIV-coinfected individuals. Moreover, MAIT cell restoration was predominantly observed among patients with significant fibrosis to cirrhosis (F2-F4). CONCLUSIONS These data indicated that dysregulation of MAIT cells might play a role in the progression of chronic HCV infection. Partial restoration of MAIT cell frequency and function was observed after successful DAA therapy, particularly in HCV-monoinfected patients.
Collapse
Affiliation(s)
- Apichaya Khlaiphuengsin
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pimpayao Sodsai
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rangsima Reantragoon
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Win Min Han
- HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), The Thai Red Cross AIDS Research Center, Bangkok, Thailand
| | - Anchalee Avihingsanon
- HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), The Thai Red Cross AIDS Research Center, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
25
|
Yao T, Shooshtari P, Haeryfar SMM. Leveraging Public Single-Cell and Bulk Transcriptomic Datasets to Delineate MAIT Cell Roles and Phenotypic Characteristics in Human Malignancies. Front Immunol 2020; 11:1691. [PMID: 32849590 PMCID: PMC7413026 DOI: 10.3389/fimmu.2020.01691] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are unconventional, innate-like T lymphocytes that recognize vitamin B metabolites of microbial origin among other antigens displayed by the monomorphic molecule MHC class I-related protein 1 (MR1). Abundant in human tissues, reactive to local inflammatory cues, and endowed with immunomodulatory and cytolytic functions, MAIT cells are likely to play key roles in human malignancies. They accumulate in various tumor microenvironments (TMEs) where they often lose some of their functional capacities. However, the potential roles of MAIT cells in anticancer immunity or cancer progression and their significance in shaping clinical outcomes remain largely unknown. In this study, we analyzed publicly available bulk and single-cell tumor transcriptomic datasets to investigate the tissue distribution, phenotype, and prognostic significance of MAIT cells across several human cancers. We found that expanded MAIT cell clonotypes were often shared between the blood, tumor tissue and adjacent healthy tissue of patients with colorectal, hepatocellular, and non-small cell lung carcinomas. Gene expression comparisons between tumor-infiltrating and healthy tissue MAIT cells revealed the presence of activation and/or exhaustion programs within the TMEs of primary hepatocellular and colorectal carcinomas. Interestingly, in basal and squamous cell carcinomas of the skin, programmed cell death-1 (PD-1) blockade upregulated the expression of several effector genes in tumor-infiltrating MAIT cells. We derived a signature comprising stable and specific MAIT cell gene markers across several tissue compartments and cancer types. By applying this signature to estimate MAIT cell abundance in pan-cancer gene expression data, we demonstrate that a heavier intratumoral MAIT cell presence is positively correlated with a favorable prognosis in esophageal carcinoma but predicts poor overall survival in colorectal and squamous cell lung carcinomas. Finally, in colorectal carcinoma and four other cancer types, we found a positive correlation between MR1 expression and estimated MAIT cell abundance. Collectively, our findings indicate that MAIT cells serve important but diverse roles in human cancers. Our work provides useful models and resources that employ gene expression data platforms to enable future studies in the realm of MAIT cell biology.
Collapse
Affiliation(s)
- Tony Yao
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Parisa Shooshtari
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.,Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, ON, Canada.,Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada.,Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, ON, Canada.,Division of General Surgery, Department of Surgery, Western University, London, ON, Canada.,Centre for Human Immunology, Western University, London, ON, Canada
| |
Collapse
|