1
|
Williams ZJ, Pezzanite LM, Chow L, Rockow M, Dow SW. Evaluation of stem-cell therapies in companion animal disease models: a concise review (2015-2023). Stem Cells 2024; 42:677-705. [PMID: 38795363 DOI: 10.1093/stmcls/sxae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/25/2024] [Indexed: 05/27/2024]
Abstract
Companion animals in veterinary medicine develop multiple naturally occurring diseases analogous to human conditions. We previously reported a comprehensive review on the feasibility, safety, and biologic activity of using novel stem cell therapies to treat a variety of inflammatory conditions in dogs and cats (2008-2015) [Hoffman AM, Dow SW. Concise review: stem cell trials using companion animal disease models. Stem Cells. 2016;34(7):1709-1729. https://doi.org/10.1002/stem.2377]. The purpose of this review is to provide an updated summary of current studies in companion animal disease models that have evaluated stem cell therapeutics that are relevant to human disease. Here we have reviewed the literature from 2015 to 2023 for publications on stem cell therapies that have been evaluated in companion animals, including dogs, cats, and horses. The review excluded case reports or studies performed in experimentally induced models of disease, studies involving cancer, or studies in purpose-bred laboratory species such as rodents. We identified 45 manuscripts meeting these criteria, an increase from 19 that were described in the previous review [Hoffman AM, Dow SW. Concise review: stem cell trials using companion animal disease models. Stem Cells. 2016;34(7):1709-1729. https://doi.org/10.1002/stem.2377]. The majority of studies were performed in dogs (n = 28), with additional studies in horses (n = 9) and cats (n = 8). Disease models included those related to musculoskeletal disease (osteoarthritis and tendon/ligament injury), neurologic disease (canine cognitive dysfunction, intervertebral disc disease, spinal cord injury) gingival/dental disease (gingivostomatitis), dermatologic disease (atopic dermatitis), chronic multi-drug resistant infections, ophthalmic disease (keratoconjunctivitis sicca, eosinophilic keratitis, immune-mediated keratitis), cardiopulmonary disease (asthma, degenerative valve disease, dilated cardiomyopathy), gastrointestinal disease (inflammatory bowel disease, chronic enteropathy), and renal disease (chronic kidney disease). The majority of studies reported beneficial responses to stem cell treatment, with the exception of those related to more chronic processes such as spinal cord injury and chronic kidney disease. However, it should also be noted that 22 studies were open-label, baseline-controlled trials and only 12 studies were randomized and controlled, making overall study interpretation difficult. As noted in the previous review, improved regulatory oversight and consistency in manufacturing of stem cell therapies are needed. Enhanced understanding of the temporal course of disease processes using advanced-omics approaches may further inform mechanisms of action and help define appropriate timing of interventions. Future directions of stem-cell-based therapies could include use of stem-cell-derived extracellular vesicles, or cell conditioning approaches to direct cells to specific pathways that are tailored to individual disease processes and stages of illness.
Collapse
Affiliation(s)
- Zoë J Williams
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Lynn M Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Meagan Rockow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| | - Steven W Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
2
|
Morawska-Kozłowska M, Wilkosz A, Zhalniarovich Y. The Omentum-A Forgotten Structure in Veterinary Surgery in Small Animals' Surgery. Animals (Basel) 2024; 14:1848. [PMID: 38997960 PMCID: PMC11240631 DOI: 10.3390/ani14131848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
The greater and lesser omentum are derived from embryonic mesogastrium. The expansive greater omentum in dogs covers intestinal coils, while in cats, it is smaller. Comprising distinct portions, the greater omentum is rich in lymphatics and blood vessels. Conversely, the lesser omentum spans the liver, stomach, and duodenum. Studies on canine omentum reveal unique immune cell composition and regenerative potential attributed to adipose tissue-derived stromal cells (ADSCs). These cells hold promise in regenerative medicine, showing enhanced abilities compared with ADSCs from other sources. The omentum is critical in tissue repair and pathology, making it invaluable in veterinary surgery across various medical fields. The aim of this article was to research current knowledge about the applications of the omentum in veterinary surgery and the possibilities of using this structure in the future.
Collapse
Affiliation(s)
- Magdalena Morawska-Kozłowska
- Department of Surgery and Radiology with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Aleksandra Wilkosz
- Department of Surgery and Radiology with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Yauheni Zhalniarovich
- Department of Surgery and Radiology with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
3
|
Ferreira-Baptista C, Ferreira R, Fernandes MH, Gomes PS, Colaço B. Influence of the Anatomical Site on Adipose Tissue-Derived Stromal Cells' Biological Profile and Osteogenic Potential in Companion Animals. Vet Sci 2023; 10:673. [PMID: 38133224 PMCID: PMC10747344 DOI: 10.3390/vetsci10120673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adipose tissue-derived stromal cells (ADSCs) have generated considerable interest in the field of veterinary medicine, particularly for their potential in therapeutic strategies focused on bone regeneration. These cells possess unique biological characteristics, including their regenerative capacity and their ability to produce bioactive molecules. However, it is crucial to recognize that the characteristics of ADSCs can vary depending on the animal species and the site from which they are derived, such as the subcutaneous and visceral regions (SCAT and VAT, respectively). Thus, the present work aimed to comprehensively review the different traits of ADSCs isolated from diverse anatomical sites in companion animals, i.e., dogs, cats, and horses, in terms of immunophenotype, morphology, proliferation, and osteogenic differentiation potential. The findings indicate that the immunophenotype, proliferation, and osteogenic potential of ADSCs differ according to tissue origin and species. Generally, the proliferation rate is higher in VAT-derived ADSCs in dogs and horses, whereas in cats, the proliferation rate appears to be similar in both cells isolated from SCAT and VAT regions. In terms of osteogenic differentiation potential, VAT-derived ADSCs demonstrate the highest capability in cats, whereas SCAT-derived ADSCs exhibit superior potential in horses. Interestingly, in dogs, VAT-derived cells appear to have greater potential than those isolated from SCAT. Within the VAT, ADSCs derived from the falciform ligament and omentum show increased osteogenic potential, compared to cells isolated from other anatomical locations. Consequently, considering these disparities, optimizing isolation protocols becomes pivotal, tailoring them to the specific target species and therapeutic aims, and judiciously selecting the anatomical site for ADSC isolation. This approach holds promise to enhance the efficacy of ADSCs-based bone regenerative therapies.
Collapse
Affiliation(s)
- Carla Ferreira-Baptista
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
- REQUIMTE/LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Rita Ferreira
- REQUIMTE/LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Maria Helena Fernandes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
| | - Pedro Sousa Gomes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (M.H.F.); (P.S.G.)
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
| | - Bruno Colaço
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- REQUIMTE/LAQV, University of Porto, 4100-007 Porto, Portugal
- CECAV—Animal and Veterinary Research Centre UTAD, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Kanetkar NS, Ekenseair AK. Thiolated Thermoresponsive Polymer Scaffolds with Tunable Mucoadhesivity for Intestinal Applications. Biomacromolecules 2020; 21:4761-4770. [PMID: 32960594 DOI: 10.1021/acs.biomac.0c00932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Treatments for inflammatory bowel disease largely involve lifelong drug prescriptions or surgical intervention that can lead to poor quality of life for patients. Regenerative therapies involving stem cells have been shown to induce tissue regeneration but are limited in their efficacy by inefficient delivery mechanisms. Scaffold-based delivery of cells has been a key research focus of tissue engineers seeking to translate advances in stem cell research into clinical solutions. Biomaterial scaffolds that are delivered noninvasively to form in situ solid structures around the cells are preferable over surgically delivered monolithic scaffolds. We synthesized a novel biomaterial for in situ-forming, thermoresponsive intestinal scaffolds by thiolation of poly (N-isopropylacrylamide-co-glycidyl methacrylate) by conjugation of cysteine. Thiolation of the polymer enables chemical crosslinking with the intestinal mucus, enhancing mucoadhesion and permitting control of scaffold retention time in the intestinal environment. This study reports the synthesis and characterization of the thiolated polymer and investigates its crosslinking behavior, mucoadhesive properties, and cytocompatibility for potential tissue engineering applications in the intestine.
Collapse
Affiliation(s)
- Ninad S Kanetkar
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Adam K Ekenseair
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Melatonin and Mesenchymal Stem Cells as a Key for Functional Integrity for Liver Cancer Treatment. Int J Mol Sci 2020; 21:ijms21124521. [PMID: 32630505 PMCID: PMC7350224 DOI: 10.3390/ijms21124521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common hepatobiliary malignancy with limited therapeutic options. On the other hand, melatonin is an indoleamine that modulates a variety of potential therapeutic effects. In addition to its important role in the regulation of sleep–wake rhythms, several previous studies linked the biologic effects of melatonin to various substantial endocrine, neural, immune and antioxidant functions, among others. Furthermore, the effects of melatonin could be influenced through receptor dependent and receptor independent manner. Among the other numerous physiological and therapeutic effects of melatonin, controlling the survival and differentiation of mesenchymal stem cells (MSCs) has been recently discussed. Given its controversial interaction, several previous reports revealed the therapeutic potential of MSCs in controlling the hepatocellular carcinoma (HCC). Taken together, the intention of the present review is to highlight the effects of melatonin and mesenchymal stem cells as a key for functional integrity for liver cancer treatment. We hope to provide solid piece of information that may be helpful in designing novel drug targets to control HCC.
Collapse
|
6
|
Voga M, Adamic N, Vengust M, Majdic G. Stem Cells in Veterinary Medicine-Current State and Treatment Options. Front Vet Sci 2020; 7:278. [PMID: 32656249 PMCID: PMC7326035 DOI: 10.3389/fvets.2020.00278] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine is a branch of medicine that develops methods to grow, repair, or replace damaged or diseased cells, organs or tissues. It has gained significant momentum in recent years. Stem cells are undifferentiated cells with the capability to self—renew and differentiate into tissue cells with specialized functions. Stem cell therapies are therefore used to overcome the body's inability to regenerate damaged tissues and metabolic processes after acute or chronic insult. The concept of stem cell therapy was first introduced in 1991 by Caplan, who proposed that massive differentiation of cells into the desired tissue could be achieved by isolation, cultivation, and expansion of stem cells in in vitro conditions. Among different stem cell types, mesenchymal stem cells (MSC) currently seem to be the most suitable for therapeutic purposes, based on their simple isolation and culturing techniques, and lack of ethical issues regarding their usage. Because of their remarkable immunomodulatory abilities, MSCs are increasingly gaining recognition in veterinary medicine. Developments are primarily driven by the limitations of current treatment options for various medical problems in different animal species. MSCs represent a possible therapeutic option for many animal diseases, such as orthopedic, orodental and digestive tract diseases, liver, renal, cardiac, respiratory, neuromuscular, dermal, olfactory, and reproductive system diseases. Although we are progressively gaining an understanding of MSC behavior and their mechanisms of action, some of the issues considering their use for therapy are yet to be resolved. The aim of this review is first to summarize the current knowledge and stress out major issues in stem cell based therapies in veterinary medicine and, secondly, to present results of clinical usage of stem cells in veterinary patients.
Collapse
Affiliation(s)
- Metka Voga
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neza Adamic
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Modest Vengust
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
7
|
Therapeutic Effects of Mesenchymal Stem Cells Derived From Bone Marrow, Umbilical Cord Blood, and Pluripotent Stem Cells in a Mouse Model of Chemically Induced Inflammatory Bowel Disease. Inflammation 2020; 42:1730-1740. [PMID: 31227956 DOI: 10.1007/s10753-019-01033-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acute inflammatory bowel disease (AIBD) is a wide clinical entity including severe gastrointestinal pathologies with common histopathological basis. Epidemiologically increasing diseases, such as necrotizing enterocolitis (NEC), gastrointestinal graft versus host disease (GVHD), and the primary acute phase of chronic inflammatory bowel disease (CIBD), exhibit a high necessity for new therapeutic strategies. Mesenchymal stem cell (MSC) cellular therapy represents a promising option for the treatment of these diseases. In our study, we comparatively assess the efficacy of human MSCs derived from bone marrow (BM), umbilical cord blood (UCB), human embryonic stem cells (ESCs), or human-induced pluripotent stem cells (iPSCs) in a mouse model of chemically induced acute enterocolitis. The laboratory animals were provided ad libitum potable dextrane sulfate sodium solution (DSS) in order to reproduce an AIBD model and then individually exposed intraperitoneally to MSCs derived from BM (BM-MSCs), UCB (UCB-MSCs), ESCs (ESC-MSCs), or iPSCs (iPSC-MSCs). The parameters used to evaluate the cellular treatment efficacy were the animal survival prolongation and the histopathological-macroscopic picture of bowel sections. Although all categories of mesenchymal stem cells led to statistically significant survival prolongation compared to the control group, significant clinical and histopathological improvement was observed only in mice receiving BM-MSCs and UCB-MSCs. Our results demonstrated that the in vivo anti-inflammatory effect of ESC-MSCs and iPSC-MSCs was inferior to that of UCB-MSCs and BM-MSCs. Further investigation will clarify the potential of ESCs and iPSC-derived MSCs in AIBD treatment.
Collapse
|
8
|
Wang F, Tang H, Zhu J, Zhang JH. Transplanting Mesenchymal Stem Cells for Treatment of Ischemic Stroke. Cell Transplant 2018; 27:1825-1834. [PMID: 30251564 PMCID: PMC6300770 DOI: 10.1177/0963689718795424] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stroke is a major disease that leads to high mortality and morbidity. Given the ageing population and the potential risk factors, the prevalence of stroke and socioeconomic burden associated with stroke are expected to increase. During the past decade, both prophylactic and therapeutic strategies for stroke have made significant progress. However, current therapies still cannot adequately improve the outcomes of stroke and may not apply to all patients. One of the significant advances in modern medicine is cell-derived neurovascular regeneration and neuronal repair. Progress in stem cell biology has greatly contributed to ameliorating stroke-related brain injuries in preclinical studies and demonstrated clinical potential in stroke treatment. Mesenchymal stem cells (MSCs) have the differentiating potential of chondrocytes, adipocytes, and osteoblasts, and they have the ability to transdifferentiate into endothelial cells, glial cells, and neurons. Due to their great plasticity, MSCs have drawn much attention from the scientific community. This review will focus on MSCs, stem cells widely utilized in current medical research, and evaluate their effect and potential of improving outcomes in ischemic stroke.
Collapse
Affiliation(s)
- Fan Wang
- 1 Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.,2 Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Hailiang Tang
- 1 Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianhong Zhu
- 1 Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, the Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - John H Zhang
- 3 Center for Neuroscience Research, Loma Linda University School of Medicine, CA, USA
| |
Collapse
|
9
|
Transplantation of bone-marrow-derived mesenchymal stem cells into a murine model of immune thrombocytopenia. Blood Coagul Fibrinolysis 2018; 28:596-601. [PMID: 28562430 DOI: 10.1097/mbc.0000000000000642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
: Several reports have demonstrated T regulatory cells may play an important role in the pathophysiology of immune thrombocytopenia (ITP). As the immunomodulator, bone-marrow-derived mesenchymal stem cells (MSCs) (BM-MSCs) regulate T regulatory cells and show therapeutic effects on autoimmune diseases. However, it is not clear how BM-MSCs affect ITP. In this study, we explored the specific effects of BM-MSCs on ITP in mice. Using a murine model of ITP, mice were randomly divided into three groups: normal control group, ITP control group and ITP and BM-MSCs group. Platelet (PLT) levels were monitored by an automatic blood cell counter, and T regulatory cells were analyzed by flow cytometry. Compared with the untreated ITP mice, the PLT level of the ITP mice was significantly increased after BM-MSCs treatment. In the BM-MSCs group, T regulatory cells were significantly decreased. These findings demonstrate that bone-marrow-derived MSCs are effective in improving PLT levels and reducing the T regulatory cells mediating proinflammatory response in ITP mice.
Collapse
|
10
|
Jiang J, Wang Y, Liu B, Chen X, Zhang S. Challenges and research progress of the use of mesenchymal stem cells in the treatment of ischemic stroke. Brain Dev 2018; 40:612-626. [PMID: 29661589 DOI: 10.1016/j.braindev.2018.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
Abstract
Cerebral Ischemic Stroke (CIS) has become a hot issue in medical research because of the diversity of risk factors and the uncertainty of prognosis. In the field of regenerative medicine, mesenchymal stem cells (MSCs) have an increasingly prominent position due to their advantages of multiple differentiation, low immunogenicity and wide application. In the basic and clinical research of CIS, there are still some problems to be solved in the treatment of CIS. This paper will discuss the progresses and some obstacles of current MSCs for the treatment of CIS.
Collapse
Affiliation(s)
- Jipeng Jiang
- Institution of Brain Trauma and Neurology Disease of Affiliated Hospital of Logistics University of People's Armed Police Forces, Chenglin Road No. 220, Tianjin 300162, China.
| | - Yuting Wang
- Tianjin Medical University, Qixiangtai Road No. 22, Tianjin 300070, China
| | - Baohu Liu
- Tianjin University of Traditional Chinese Medicine, Yuquan Road No. 88, Tianjin 300193, China
| | - Xuyi Chen
- Institution of Brain Trauma and Neurology Disease of Affiliated Hospital of Logistics University of People's Armed Police Forces, Chenglin Road No. 220, Tianjin 300162, China
| | - Sai Zhang
- Institution of Brain Trauma and Neurology Disease of Affiliated Hospital of Logistics University of People's Armed Police Forces, Chenglin Road No. 220, Tianjin 300162, China.
| |
Collapse
|
11
|
Lee BY, Li Q, Song WJ, Chae HK, Kweon K, Ahn JO, Youn HY. Altered properties of feline adipose-derived mesenchymal stem cells during continuous in vitro cultivation. J Vet Med Sci 2018; 80:930-938. [PMID: 29669964 PMCID: PMC6021870 DOI: 10.1292/jvms.17-0563] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cytotherapy with mesenchymal stem cells (MSCs) has been studied in many species, and
often requires in vitro cell expansion to obtain therapeutic doses of
stem cells. Because the characteristics of MSCs, such as self-renewal and multi-lineage
differentiation, can be altered by long-term culture, it is important to maintain stemness
during cultivation. This study assessed the changes in the characteristics of feline
adipose tissue-derived (fAT)-MSCs during in vitro passaging. Stem cells
isolated from the adipose tissue of donor cats were cultured for seven sub-passages.
Proliferation capacity was analyzed by calculating the cell doubling time and by
colorimetric assay. Expression of stem cell-specific markers was evaluated by quantitative
reverse transcription (qRT)-PCR and immunophenotyping. Expression of adipogenic and
osteogenic differentiation markers was also measured by qRT-PCR. Histochemical staining
and measurement of β-galactosidase activity were conducted to detect cellular senescence.
The cell proliferation rate decreased significantly at passage 5 (P5). Gene expression
levels of pluripotency markers (Sox2, Nanog and
Klf4) and stem cell surface markers (CD9,
CD44, CD90 and CD105) decreased
during continuous culture; in most assays, statistically significant changes were observed
at P5. The ability of cells to undergo adipogenic or osteogenic differentiation was
inversely proportional to the number of passages. The proportion of senescent cells
increased with the number of passages. These results suggest that repeated passages alter
the proliferation and multipotency of fAT-MSCs. In clinical trials, early-passage cells
should be used to achieve the maximum therapeutic effect.
Collapse
Affiliation(s)
- Bo-Yeon Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Qiang Li
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo-Jin Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Kyu Chae
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyeong Kweon
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Ok Ahn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwa-Young Youn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Villatoro AJ, Claros S, Fernández V, Alcoholado C, Fariñas F, Moreno A, Becerra J, Andrades JA. Safety and efficacy of the mesenchymal stem cell in feline eosinophilic keratitis treatment. BMC Vet Res 2018; 14:116. [PMID: 29587744 PMCID: PMC5870249 DOI: 10.1186/s12917-018-1413-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
Background Feline eosinophilic keratitis (FEK) is a chronic keratopathy caused by a suspected immune mediated response to an unknown antigenic stimulus. The purpose of this study was to investigate the safety and therapeutic effects of allogeneic feline adipose-derived mesenchymal stromal cells (fAd-MSCs) implanted subconjunctival around the ocular surface lesion in five cats with FEK refractory to current available treatments. Results FEK was diagnosed by clinical appearance and evidence of eosinophil and/or mast cells in corneal cytology. Each animal was treated with two applications of 2 × 106 million of fAd-MSCs 2 months apart. Ocular surface integrity was assessed before treatment and at 1, 3, 6 and 11 months after treatment. Clinical signs showed a significant change during the follow-up with resolution of the corneal and conjunctiva lesions and there were no signs of regression or worsening. Conclusions Implanted cells were well-tolerated and effective reducing clinical signs of FEK with a sustained effect during the study period. None of the animals showed systemic or local complications during the study. To our knowledge, this is the first time in literature that local implantation of allogeneic fAd-MSCs has been found as an effective therapeutic alternative to treat cats with FEK.
Collapse
Affiliation(s)
- Antonio J Villatoro
- ImmuneStem, Instituto de Inmunología Clínica y Terapia Celular, 29018, Málaga, Spain.,Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Biomedicine Research Institute of Malaga (IBIMA), Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - Silvia Claros
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Biomedicine Research Institute of Malaga (IBIMA), Campus Universitario de Teatinos, 29071, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - Viviana Fernández
- ImmuneStem, Instituto de Inmunología Clínica y Terapia Celular, 29018, Málaga, Spain.,Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Biomedicine Research Institute of Malaga (IBIMA), Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - Cristina Alcoholado
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Biomedicine Research Institute of Malaga (IBIMA), Campus Universitario de Teatinos, 29071, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - Fernando Fariñas
- ImmuneStem, Instituto de Inmunología Clínica y Terapia Celular, 29018, Málaga, Spain.,Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Biomedicine Research Institute of Malaga (IBIMA), Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - Antonio Moreno
- Hospital veterinario Alhaurín el Grande. Alhaurín el Grande, 29120, Málaga, Spain
| | - José Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Biomedicine Research Institute of Malaga (IBIMA), Campus Universitario de Teatinos, 29071, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain.,Laboratory of Bioengineering and Tissue Regeneration, Andalusian Center for Nanomedicine and Biotechnology-BIONAND, 29590, Málaga, Spain
| | - José A Andrades
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Biomedicine Research Institute of Malaga (IBIMA), Campus Universitario de Teatinos, 29071, Málaga, Spain. .,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain.
| |
Collapse
|
13
|
Quimby JM, Borjesson DL. Mesenchymal stem cell therapy in cats: Current knowledge and future potential. J Feline Med Surg 2018; 20:208-216. [PMID: 29478398 PMCID: PMC10816289 DOI: 10.1177/1098612x18758590] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Practical relevance: Stem cell therapy is an innovative field of scientific investigation with tremendous potential for clinical application in veterinary medicine. Based on the known desirable immunomodulatory properties of mesenchymal stem cells, this therapy holds promise for the treatment of a variety of inflammatory diseases in cats. AIMS This review details our current understanding of feline stem cell biology and proposed mechanism of action. Studies performed in feline clinical trials for diseases including gingivostomatitis, chronic enteropathy, asthma and kidney disease are summarized, with the goal of providing an overview of the current status of this treatment modality and its potential for the future.
Collapse
Affiliation(s)
- Jessica M Quimby
- The Ohio State University, Department of Veterinary Clinical Sciences, Columbus, OH 43210, USA
| | - Dori L Borjesson
- University of California–Davis, Veterinary Institute for Regenerative Cures, and Department of Pathology, Microbiology and Immunology, Davis, CA 95616, USA
| |
Collapse
|
14
|
Packthongsuk K, Rathbun T, Troyer D, Davis DL. Porcine Wharton's jelly cells distribute throughout the body after intraperitoneal injection. Stem Cell Res Ther 2018; 9:38. [PMID: 29444715 PMCID: PMC5813394 DOI: 10.1186/s13287-018-0775-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
Background Wharton's jelly cells (WJCs) have multiple differentiation potentials and are easily harvested in large numbers. WJCs are well tolerated in allogeneic environments and there is a growing list of their therapeutic effects. Most therapies require administering large numbers of cells and this is generally accomplished by intravenous injection. Here, we studied the locations of porcine WJCs in immune-competent, allogeneic hosts after intraperitoneal (IP) injection. Methods Male porcine WJCs were administered to female neonatal piglets by IP injection. The location of transplanted cells was examined at 6 h, 24 h, and 7 days after administration using confocal microscopy and polymerase chain reaction (PCR). Transplanted cells were also retrieved from the intestines of recipients and were cultured. Previously transplanted cells were identified by fluorescence in-situ hybridization (FISH) using a Y-chromosome probe. Results Allogeneic cells were identified in the small and large intestine, stomach, liver, spleen, diaphragm, omentum, kidney, pancreas, mesenteric lymph nodes, heart, lungs, uterus, bladder, and skeletal muscle. Male cells (SRY positive) were found in cultures of cells harvested from the intestinal mucosa 1 week after administration of male porcine WJCs. Conclusions Our results show that porcine WJCs distribute widely to the organs in immunocompetent allogeneic hosts after IP administration. They may distribute through the lymphatics initially, and a prominent site of incorporation is the mucosa of the gastrointestinal tract. In that location they could function in the niche of endogenous stem cells and provide secretory products to cells in the tissue damaged by intestinal disease. Electronic supplementary material The online version of this article (10.1186/s13287-018-0775-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kreeson Packthongsuk
- National Institute of Animal Health (NIAH) 50/2 Kasetklang, Pahonyothin Rd., Jatujak, Ladyao, Bangkok, 10900, Thailand
| | - Theresa Rathbun
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, 66506, KS, USA
| | - Deryl Troyer
- Department of Anatomy and Physiology, Kansas State University, Manhattan, 66506, KS, USA
| | - Duane L Davis
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, 66506, KS, USA.
| |
Collapse
|
15
|
Uder C, Brückner S, Winkler S, Tautenhahn HM, Christ B. Mammalian MSC from selected species: Features and applications. Cytometry A 2017; 93:32-49. [PMID: 28906582 DOI: 10.1002/cyto.a.23239] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal/stem cells (MSC) are promising candidates for cellular therapy of different diseases in humans and in animals. Following the guidelines of the International Society for Cell Therapy, human MSC may be identified by expression of a specific panel of cell surface markers (CD105+, CD73+, CD90+, CD34-, CD14-, or CD11b-, CD79- or CD19-, HLA-DR-). In addition, multiple differentiation potential into at least the osteogenic, adipogenic, and chondrogenic lineage is a main criterion for MSC definition. Human MSC and MSC of a variety of mammals isolated from different tissues meet these criteria. In addition to the abovementioned, they express many more cell surface markers. Yet, these are not uniquely expressed by MSC. The gross phenotypic appearance like marker expression and differentiation potential is similar albeit not identical for MSC from different tissues and species. Similarly, MSC may feature different biological characteristics depending on the tissue source and the isolation and culture procedures. Their versatile biological qualities comprising immunomodulatory, anti-inflammatory, and proregenerative capacities rely largely on the migratory and secretory capabilities of MSC. They are attracted to sites of tissue lesion and secrete factors to promote self-repair of the injured tissue. This is a big perspective for clinical MSC applications in both veterinary and human medicine. Phase I/II clinical trials have been initiated to assess safety and feasibility of MSC therapies in acute and chronic disease settings. Yet, since the mode of MSC action in a specific disease environment is still unknown at large, it is mandatory to unravel the response of MSC from a given source onto a specific disease environment in suitable animal models prior to clinical applications. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Christiane Uder
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Sandra Brückner
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Sandra Winkler
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Hans-Michael Tautenhahn
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | | |
Collapse
|
16
|
Parys M, Kruger JM, Yuzbasiyan-Gurkan V. Evaluation of Immunomodulatory Properties of Feline Mesenchymal Stem Cells. Stem Cells Dev 2017; 26:776-785. [DOI: 10.1089/scd.2016.0041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Maciej Parys
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - John M. Kruger
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Vilma Yuzbasiyan-Gurkan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| |
Collapse
|
17
|
Clark KC, Fierro FA, Ko EM, Walker NJ, Arzi B, Tepper CG, Dahlenburg H, Cicchetto A, Kol A, Marsh L, Murphy WJ, Fazel N, Borjesson DL. Human and feline adipose-derived mesenchymal stem cells have comparable phenotype, immunomodulatory functions, and transcriptome. Stem Cell Res Ther 2017; 8:69. [PMID: 28320483 PMCID: PMC5360077 DOI: 10.1186/s13287-017-0528-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/10/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022] Open
Abstract
Background Adipose-derived mesenchymal stem cells (ASCs) are a promising cell therapy to treat inflammatory and immune-mediated diseases. Development of appropriate pre-clinical animal models is critical to determine safety and attain early efficacy data for the most promising therapeutic candidates. Naturally occurring diseases in cats already serve as valuable models to inform human clinical trials in oncologic, cardiovascular, and genetic diseases. The objective of this study was to complete a comprehensive side-by-side comparison of human and feline ASCs, with an emphasis on their immunomodulatory capacity and transcriptome. Methods Human and feline ASCs were evaluated for phenotype, immunomodulatory profile, and transcriptome. Additionally, transwells were used to determine the role of cell-cell contact in ASC-mediated inhibition of lymphocyte proliferation in both humans and cats. Results Similar to human ASCs, feline ASCs were highly proliferative at low passages and fit the minimal criteria of multipotent stem cells including a compatible surface protein phenotype, osteogenic capacity, and normal karyotype. Like ASCs from all species, feline ASCs inhibited mitogen-activated lymphocyte proliferation in vitro, with or without direct ASC-lymphocyte contact. Feline ASCs mimic human ASCs in their mediator secretion pattern, including prostaglandin E2, indoleamine 2,3 dioxygenase, transforming growth factor beta, and interleukin-6, all augmented by interferon gamma secretion by lymphocytes. The transcriptome of three unactivated feline ASC lines were highly similar. Functional analysis of the most highly expressed genes highlighted processes including: 1) the regulation of apoptosis; 2) cell adhesion; 3) response to oxidative stress; and 4) regulation of cell differentiation. Finally, feline ASCs had a similar gene expression profile to noninduced human ASCs. Conclusions Findings suggest that feline ASCs modulate lymphocyte proliferation using soluble mediators that mirror the human ASC secretion pattern. Uninduced feline ASCs have similar gene expression profiles to uninduced human ASCs, as revealed by transcriptome analysis. These data will help inform clinical trials using cats with naturally occurring diseases as surrogate models for human clinical trials in the regenerative medicine arena. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0528-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaitlin C Clark
- Veterinary Institute for Regenerative Cures and Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, 95816, USA
| | - Fernando A Fierro
- Institute for Regenerative Cures and Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95816, USA
| | - Emily Mills Ko
- Veterinary Institute for Regenerative Cures and Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, 95816, USA
| | - Naomi J Walker
- Veterinary Institute for Regenerative Cures and Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, 95816, USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95816, USA
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, 95816, USA
| | - Heather Dahlenburg
- Institute for Regenerative Cures and Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95816, USA
| | - Andrew Cicchetto
- Institute for Regenerative Cures and Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95816, USA
| | - Amir Kol
- Veterinary Institute for Regenerative Cures and Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, 95816, USA
| | - Lyndsey Marsh
- Veterinary Institute for Regenerative Cures and Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, 95816, USA
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, CA, 95816, USA
| | - Nasim Fazel
- Department of Dermatology, School of Medicine, University of California, Davis, CA, 95816, USA
| | - Dori L Borjesson
- Veterinary Institute for Regenerative Cures and Department of Pathology, Microbiology and Immunology, University of California, Davis, CA, 95816, USA.
| |
Collapse
|