1
|
Kos D, Jelinski M, Ruzzini A. Retrospective analysis of antimicrobial resistance associated with bovine respiratory disease. Appl Environ Microbiol 2025; 91:e0190924. [PMID: 39918326 PMCID: PMC11921372 DOI: 10.1128/aem.01909-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/19/2025] [Indexed: 03/20/2025] Open
Abstract
The administration and utility of antibiotics to control and treat bovine respiratory disease (BRD) in beef cattle feedlots is a growing concern. Antimicrobial resistance (AMR) among BRD-associated bacterial pathogens has been the subject of cultivation-dependent and cultivation-independent surveillance. Bacterial genome sequencing and metagenomic approaches facilitate the characterization of AMR in the beef industry; however, the current collection of cattle-associated AMR research programs lack connections to each other. A more integrated view of how antimicrobial use (AMU) is related to resistance at a gene level is needed. We sought to establish a catalog of commonly observed AMR genes (ARGs) in opportunistic bacterial pathogens that contribute to BRD using publicly available data sets that were generated by the scientific community with and without AMU in mind. The presence of these clinically relevant ARGs appeared to differ by geography. Greater sampling in North America facilitated the generation of a list of ARGs often encoded by Mannheimia haemolytica and Pasteurella multocida. Detection of clinically relevant ARGs in shotgun metagenomes of cattle-associated and accessible feedlot samples such as water, soil, and feces was possible but limited by relative sequence read abundance. An exception was the tylosin esterase-encoding gene estT, which is among the most frequently observed ARGs in M. haemolytica and feedlot-related metagenomic data sets. Finally, by re-evaluating studies on the impact of AMU on AMR in beef production systems, we show that conventional practices, including in-feed antibiotic use, increase the relative abundance of ARGs in animal-derived samples.IMPORTANCEThis retrospective analysis delivers a list of ARGs found in opportunistic pathogens that contribute to BRD. The high incidence of BRD in North America is linked to the origin and implementation of metaphylaxis to mitigate detrimental animal losses at feedlots. Notably, ARGs commonly observed in these pathogens isolated in North America were not conserved across the globe, underscoring the relationship between regional AMU and AMR. A positive relationship was also observed between the relative abundance of ARGs in cattle-associated metagenomes with greater exposure to antibiotics. Overall, this analysis should help to guide future surveillance efforts and experimental designs to more directly evaluate the impacts of feedlot practices on AMR.
Collapse
Affiliation(s)
- Daniel Kos
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Murray Jelinski
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Antonio Ruzzini
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Herman EK, Lacoste SR, Freeman CN, Otto SJG, McCarthy EL, Links MG, Stothard P, Waldner CL. Bacterial enrichment prior to third-generation metagenomic sequencing improves detection of BRD pathogens and genetic determinants of antimicrobial resistance in feedlot cattle. Front Microbiol 2024; 15:1386319. [PMID: 38779502 PMCID: PMC11110911 DOI: 10.3389/fmicb.2024.1386319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Bovine respiratory disease (BRD) is one of the most important animal health problems in the beef industry. While bacterial culture and antimicrobial susceptibility testing have been used for diagnostic testing, the common practice of examining one isolate per species does not fully reflect the bacterial population in the sample. In contrast, a recent study with metagenomic sequencing of nasal swabs from feedlot cattle is promising in terms of bacterial pathogen identification and detection of antimicrobial resistance genes (ARGs). However, the sensitivity of metagenomic sequencing was impeded by the high proportion of host biomass in the nasal swab samples. Methods This pilot study employed a non-selective bacterial enrichment step before nucleic acid extraction to increase the relative proportion of bacterial DNA for sequencing. Results Non-selective bacterial enrichment increased the proportion of bacteria relative to host sequence data, allowing increased detection of BRD pathogens compared with unenriched samples. This process also allowed for enhanced detection of ARGs with species-level resolution, including detection of ARGs for bacterial species of interest that were not targeted for culture and susceptibility testing. The long-read sequencing approach enabled ARG detection on individual bacterial reads without the need for assembly. Metagenomics following non-selective bacterial enrichment resulted in substantial agreement for four of six comparisons with culture for respiratory bacteria and substantial or better correlation with qPCR. Comparison between isolate susceptibility results and detection of ARGs was best for macrolide ARGs in Mannheimia haemolytica reads but was also substantial for sulfonamide ARGs within M. haemolytica and Pasteurella multocida reads and tetracycline ARGs in Histophilus somni reads. Discussion By increasing the proportion of bacterial DNA relative to host DNA through non-selective enrichment, we demonstrated a corresponding increase in the proportion of sequencing data identifying BRD-associated pathogens and ARGs in deep nasopharyngeal swabs from feedlot cattle using long-read metagenomic sequencing. This method shows promise as a detection strategy for BRD pathogens and ARGs and strikes a balance between processing time, input costs, and generation of on-target data. This approach could serve as a valuable tool to inform antimicrobial management for BRD and support antimicrobial stewardship.
Collapse
Affiliation(s)
- Emily K. Herman
- Department of Agricultural, Food, and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Stacey R. Lacoste
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Claire N. Freeman
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J. G. Otto
- HEAT-AMR (Human-Environment-Animal Transdisciplinary AMR) Research Group, School of Public Health, University of Alberta, Edmonton, AB, Canada
- Healthy Environments Thematic Area Lead, Centre for Healthy Communities, School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - E. Luke McCarthy
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Matthew G. Links
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Computer Science, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul Stothard
- Department of Agricultural, Food, and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Cheryl L. Waldner
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Depenbrock S, Schlesener C, Aly S, Williams D, ElAshmawy W, McArthur G, Clothier K, Wenz J, Fritz H, Chigerwe M, Weimer B. Antimicrobial Resistance Genes in Respiratory Bacteria from Weaned Dairy Heifers. Pathogens 2024; 13:300. [PMID: 38668255 PMCID: PMC11053459 DOI: 10.3390/pathogens13040300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Bovine respiratory disease (BRD) is the leading cause of mortality and antimicrobial drug (AMD) use in weaned dairy heifers. Limited information is available regarding antimicrobial resistance (AMR) in respiratory bacteria in this population. This study determined AMR gene presence in 326 respiratory isolates (Pasteurella multocida, Mannheimia haemolytica, and Histophilus somni) from weaned dairy heifers using whole genome sequencing. Concordance between AMR genotype and phenotype was determined. Twenty-six AMR genes for 8 broad classes of AMD were identified. The most prevalent, medically important AMD classes used in calf rearing, to which these genes predict AMR among study isolates were tetracycline (95%), aminoglycoside (94%), sulfonamide (94%), beta-lactam (77%), phenicol (50%), and macrolide (44%). The co-occurrence of AMR genes within an isolate was common; the largest cluster of gene co-occurrence encodes AMR to phenicol, macrolide, elfamycin, β-lactam (cephalosporin, penam cephamycin), aminoglycoside, tetracycline, and sulfonamide class AMD. Concordance between genotype and phenotype varied (Matthew's Correlation Coefficient ranged from -0.57 to 1) by bacterial species, gene, and AMD tested, and was particularly poor for fluoroquinolones (no AMR genes detected) and ceftiofur (no phenotypic AMR classified while AMR genes present). These findings suggest a high genetic potential for AMR in weaned dairy heifers; preventing BRD and decreasing AMD reliance may be important in this population.
Collapse
Affiliation(s)
- Sarah Depenbrock
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Cory Schlesener
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Sharif Aly
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA
| | - Deniece Williams
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA
| | - Wagdy ElAshmawy
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California Davis, Tulare, CA 93274, USA
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Gary McArthur
- Swinging Udders Veterinarian Services, Galt, CA 95632, USA
| | - Kristin Clothier
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - John Wenz
- Field Disease Investigation Unit, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| | - Heather Fritz
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Munashe Chigerwe
- Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Bart Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| |
Collapse
|
4
|
Fossen JD, Campbell JR, Gow SP, Erickson N, Waldner CL. Antimicrobial resistance in generic E. coli isolated from western Canadian cow-calf herds. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2024; 65:146-155. [PMID: 38304484 PMCID: PMC10783568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Objective To examine antimicrobial resistance (AMR) in commensal fecal Escherichia coli (E. coli) from extensively managed beef calves and cows in western Canada and describe the differences among cows and calves in the spring and fall. Animal Beef cattle, cow-calf. Procedure Antimicrobial susceptibility testing was conducted on generic E. coli isolates collected from 388 calves and 387 cows from 39 herds following calving in 2021, 419 calves from 39 herds near weaning, and 357 cows from 36 herds at pregnancy testing. Minimum inhibitory concentrations were measured with the NARMS CMV5AGNF plate for Gram-negative bacteria and interpreted using Clinical and Laboratory Standards Institute standard breakpoints for humans. Results Only 16% (242/1551) of all isolates from 97% (38/39) of herds were resistant to ≥ 1 antimicrobial. Generic E. coli isolates were most commonly resistant to sulfisoxazole (11%, 175/1551), followed by tetracycline (9.3%, 145/1551) and chloramphenicol (3.5%, 55/1551). Isolates from calves in the spring were more likely to be resistant to sulfisoxazole, tetracycline, and chloramphenicol than those from cows in the spring or calves in the fall. Multiclass-resistant isolates were identified in 5% (39/807) of calves. Only 2 isolates recovered from cows were resistant to antimicrobials of very high importance for human health. Conclusion and clinical relevance Most generic E. coli isolates were pansusceptible. The observed resistance patterns were consistent with earlier studies of AMR from commensal E. coli in this region. Baseline AMR data for cow-calf herds are not currently collected as part of routine surveillance, but are essential to inform antimicrobial use policy and stewardship.
Collapse
Affiliation(s)
- Jayce D Fossen
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4 (Fossen, Campbell, Erickson, Waldner); Public Health Agency of Canada, Saskatoon, Saskatchewan S7N 5B4 (Gow)
| | - John R Campbell
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4 (Fossen, Campbell, Erickson, Waldner); Public Health Agency of Canada, Saskatoon, Saskatchewan S7N 5B4 (Gow)
| | - Sheryl P Gow
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4 (Fossen, Campbell, Erickson, Waldner); Public Health Agency of Canada, Saskatoon, Saskatchewan S7N 5B4 (Gow)
| | - Nathan Erickson
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4 (Fossen, Campbell, Erickson, Waldner); Public Health Agency of Canada, Saskatoon, Saskatchewan S7N 5B4 (Gow)
| | - Cheryl L Waldner
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4 (Fossen, Campbell, Erickson, Waldner); Public Health Agency of Canada, Saskatoon, Saskatchewan S7N 5B4 (Gow)
| |
Collapse
|
5
|
Alvarez J, Calderón Bernal JM, Torre-Fuentes L, Hernández M, Jimenez CEP, Domínguez L, Fernández-Garayzábal JF, Vela AI, Cid D. Antimicrobial Susceptibility and Resistance Mechanisms in Mannheimia haemolytica Isolates from Sheep at Slaughter. Animals (Basel) 2023; 13:1991. [PMID: 37370501 DOI: 10.3390/ani13121991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Mannheimia haemolytica is the main pathogen contributing to pneumonic pasteurellosis in sheep. The aim of this study was to investigate the antimicrobial resistance levels in M. haemolytica isolates from the lungs of slaughtered sheep and to examine the genetic resistance mechanisms involved. A total of 256 M. haemolytica isolates, 169 from lungs with pneumonic lesions and 87 from lungs without lesions, were analyzed by the disk diffusion method for 12 antimicrobials, and the whole genome of 14 isolates was sequenced to identify antimicrobial resistance determinants. Levels of phenotypic resistance ranged from <2% for 10 antimicrobials (amoxicillin, amoxicillin-clavulanic, ceftiofur, cefquinome, lincomycin/spectinomycin, gentamicin, erythromycin, florfenicol, enrofloxacin, and doxycycline) to 4.3% for tetracycline and 89.1% for tylosin. Six isolates carried tetH genes and four isolates carried, in addition, the strA and sul2 genes in putative plasmid sequences. No mutations associated with macrolide resistance were identified in 23 rDNA sequences, suggesting that the M. haemolytica phenotypic results for tylosin should be interpreted with care in the absence of well-established epidemiological and clinical breakpoints. The identification of strains phenotypically resistant to tetracycline and of several resistance genes, some of which were present in plasmids, highlights the need for continuous monitoring of susceptibility patterns in Pasteurellaceae isolates from livestock.
Collapse
Affiliation(s)
- Julio Alvarez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain
| | - Johan M Calderón Bernal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Laura Torre-Fuentes
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain
| | - Marta Hernández
- Laboratorio de Biología Molecular y Microbiología, Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid, Spain
| | - Chris E Pinto Jimenez
- London School of Hygiene and Tropical Medicine, University of London, London WC1E 7HT, UK
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Lucas Domínguez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain
| | - José F Fernández-Garayzábal
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain
| | - Ana I Vela
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, 28040 Madrid, Spain
| | - Dolores Cid
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
6
|
Freeman CN, Herman EK, Abi Younes J, Ramsay DE, Erikson N, Stothard P, Links MG, Otto SJG, Waldner C. Evaluating the potential of third generation metagenomic sequencing for the detection of BRD pathogens and genetic determinants of antimicrobial resistance in chronically ill feedlot cattle. BMC Vet Res 2022; 18:211. [PMID: 35655189 PMCID: PMC9161498 DOI: 10.1186/s12917-022-03269-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Bovine respiratory disease (BRD) is an important cause of morbidity and mortality and is responsible for most of the injectable antimicrobial use in the feedlot industry. Traditional bacterial culture can be used to diagnose BRD by confirming the presence of causative pathogens and to support antimicrobial selection. However, given that bacterial culture takes up to a week and early intervention is critical for treatment success, culture has limited utility for informing rapid therapeutic decision-making. In contrast, metagenomic sequencing has the potential to quickly resolve all nucleic acid in a sample, including pathogen biomarkers and antimicrobial resistance genes. In particular, third-generation Oxford Nanopore Technology sequencing platforms provide long reads and access to raw sequencing data in real-time as it is produced, thereby reducing the time from sample collection to diagnostic answer. The purpose of this study was to compare the performance of nanopore metagenomic sequencing to traditional culture and sensitivity methods as applied to nasopharyngeal samples from segregated groups of chronically ill feedlot cattle, previously treated with antimicrobials for nonresponsive pneumonia or lameness.
Results
BRD pathogens were isolated from most samples and a variety of different resistance profiles were observed across isolates. The sequencing data indicated the samples were dominated by Moraxella bovoculi, Mannheimia haemolytica, Mycoplasma dispar, and Pasteurella multocida, and included a wide range of antimicrobial resistance genes (ARGs), encoding resistance for up to seven classes of antimicrobials. Genes conferring resistance to beta-lactams were the most commonly detected, while the tetH gene was detected in the most samples overall. Metagenomic sequencing detected the BRD pathogens of interest more often than did culture, but there was limited concordance between phenotypic resistance to antimicrobials and the presence of relevant ARGs.
Conclusions
Metagenomic sequencing can reduce the time from sampling to results, detect pathogens missed by bacterial culture, and identify genetically encoded determinants of resistance. Increasing sequencing coverage of target organisms will be an essential component of improving the reliability of this technology, such that it can be better used for the surveillance of pathogens of interest, genetic determinants of resistance, and to inform diagnostic decisions.
Collapse
|
7
|
Wang M, Zhang Y, Wang R, Wang Z, Yang B, Kuang H. An Evolving Technology That Integrates Classical Methods with Continuous Technological Developments: Thin-Layer Chromatography Bioautography. Molecules 2021; 26:4647. [PMID: 34361800 PMCID: PMC8347725 DOI: 10.3390/molecules26154647] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
Thin-layer chromatography (TLC) bioautography is an evolving technology that integrates the separation and analysis technology of TLC with biological activity detection technology, which has shown a steep rise in popularity over the past few decades. It connects TLC with convenient, economic and intuitive features and bioautography with high levels of sensitivity and specificity. In this study, we discuss the research progress of TLC bioautography and then establish a definite timeline to introduce it. This review summarizes known TLC bioautography types and practical applications for determining antibacterial, antifungal, antitumor and antioxidant compounds and for inhibiting glucosidase, pancreatic lipase, tyrosinase and cholinesterase activity constitutes. Nowadays, especially during the COVID-19 pandemic, it is important to identify original, natural products with anti-COVID potential compounds from Chinese traditional medicine and natural medicinal plants. We also give an account of detection techniques, including in situ and ex situ techniques; even in situ ion sources represent a major reform. Considering the current technical innovations, we propose that the technology will make more progress in TLC plates with higher separation and detection technology with a more portable and extensive scope of application. We believe this technology will be diffusely applied in medicine, biology, agriculture, animal husbandry, garden forestry, environmental management and other fields in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150000, China; (M.W.); (Y.Z.); (R.W.); (Z.W.); (B.Y.)
| |
Collapse
|
8
|
Snyder ER, Savitske BJ, Credille BC. Concordance of disk diffusion, broth microdilution, and whole-genome sequencing for determination of in vitro antimicrobial susceptibility of Mannheimia haemolytica. J Vet Intern Med 2020; 34:2158-2168. [PMID: 32893911 PMCID: PMC7517867 DOI: 10.1111/jvim.15883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022] Open
Abstract
Background Extensive drug resistance (XDR) is an emerging concern with Mannheimia haemolytica, and a variety of testing methods are available for characterizing in vitro antimicrobial susceptibility. Objectives To compare the concordance among disk diffusion, broth microdilution, and whole genome sequencing (WGS) for susceptibility testing of M. haemolytica before and after mass treatment using tulathromycin. Animals Forty‐eight M. haemolytica isolates collected from high‐risk beef stocker calves before and after mass treatment (metaphylaxis) using tulathromycin (Draxxin, Zoetis, Parsippany, NJ) given at the label dosage of 2.5 mg/kg body weight SC in the neck. Methods In vitro antimicrobial susceptibility was determined for all 48 isolates using disk diffusion, broth microdilution, and WGS. Concordance was calculated between pairs of susceptibility testing methods as follows: number of isolates classified identically by the 2 testing methods for each timepoint, divided by the number of isolates tested at that timepoint. Discordance was calculated as follows: number of isolates classified differently by the 2 testing methods for each timepoint, divided by the number of isolates tested at that timepoint. Results Concordance between testing methods ranged from 42.3% to 100%, depending on antimicrobial evaluated, timing of sample collection, and testing method used. Very major errors were identified in up to 7.7% of classifications whereas minor errors were seen in up to 50% of classifications depending on antimicrobial evaluated, timing of sample collection, and testing method used. Conclusions and Clinical Importance Our results show that discrepancies in the results of different susceptibility testing methods occur and suggest a need for greater harmonization of susceptibility testing methods.
Collapse
Affiliation(s)
- Emily R Snyder
- Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Bridget J Savitske
- Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Brent C Credille
- Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|