1
|
Sasse S, Arrizabalaga-Larrañaga A, Sterk SS. Antiviral drugs in animal-derived matrices: A review. Heliyon 2024; 10:e37460. [PMID: 39309792 PMCID: PMC11416254 DOI: 10.1016/j.heliyon.2024.e37460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The ban of antiviral drugs in food-producing animals in several parts of the world, latest by Commission Delegated Regulation (EU) 2022/1644, has increased the need for food control laboratories to develop analytical methods and perform official controls. However, little is known about antiviral drugs, their use, and its analysis in food-producing animals in the EU. This review aims to provide insights into relevant viruses, antiviral drugs, and animal-derived matrices for analytical method development and monitoring purposes to implement in food control laboratories. For years, animal viruses, such as African swine fever and avian influenza, have caused many outbreaks. Besides, they led to large economic losses due to the applied control measures and a lack of available treatments. Considering these losses and the known effectiveness of authorized human antiviral drugs in different organisms, medicines such as amantadine in Chinese poultry have been misused. Various analytical methods, including screening assays and sensors (published 2016-2023), and mass spectrometry methods (published 2012-2023) have been outlined in this review for the monitoring of antiviral drugs in animal-derived matrices. However, pharmacokinetics information on metabolite formation and distribution of these substances in different animal-derived matrices is incomplete. Additionally, apart from a few countries, there is a lack of available data on the potential misuse of different antiviral drugs in animal-derived matrices. Although a handful of important antiviral drugs, such as influenza, broad-spectrum, antiretroviral, and herpes drugs, and animal-derived matrices, such as chicken muscle, are identified, the priority of the scope should be further specified by closing the aforementioned gaps.
Collapse
Affiliation(s)
- Samantha Sasse
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, European Union Reference Laboratory for Residues, 6700 AE, Wageningen, the Netherlands
| | - Ane Arrizabalaga-Larrañaga
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, European Union Reference Laboratory for Residues, 6700 AE, Wageningen, the Netherlands
| | - Saskia S. Sterk
- Wageningen Food Safety Research (WFSR), Part of Wageningen University & Research, European Union Reference Laboratory for Residues, 6700 AE, Wageningen, the Netherlands
| |
Collapse
|
2
|
Zhu S, Miao B, Zhang YZ, Wang DS, Wang GX. Amantadine, a promising therapeutic agent against viral encephalopathy and retinopathy. JOURNAL OF FISH DISEASES 2022; 45:451-459. [PMID: 34962648 DOI: 10.1111/jfd.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Outbreaks of viral encephalopathy and retinopathy (VER) in marine and freshwater species severely devastate the aquaculture worldwide. The causative agent of VER is nervous necrosis virus (NNV), which mainly infects the early developmental stages of fish, limiting the effectiveness of vaccines. To counter this case, the anti-NNV potentials of nine drugs with broad-spectrum antiviral activity were explored using ribavirin as a positive drug. Toxicity of the selected drugs to SSN-1 cells and grouper was firstly evaluated to determine the safety concentrations. For screening in vitro, amantadine and oseltamivir phosphate can relieve the cytopathic effects and inhibit NNV replication with the 90% inhibitory concentrations (IC90 ) of 38.74 and 106.75 mg/L, respectively. Amantadine has a stronger anti-NNV activity than ribavirin at the with- and post-NNV infection stages, indicating that it is a potential therapeutic agent against VER by acting directly on NNV. Similarly, amantadine also has a strong anti-NNV activity in vivo with the IC90 of 27.91 mg/L at the 7 days post-infection, while that was 73.25 mg/L for ribavirin. Following exposure to amantadine (40 mg/L) and ribavirin (100 mg/L) for 7 days, the survival rates of NNV-infected grouper were increased to 44% and 39%, respectively. The maximum amantadine content (11.88 mg/Kg) in grouper brain was reached following exposure for 24 hr, and amantadine can be quickly excreted from fish, reducing the risk of drug residue. Results so far indicated that amantadine is a promising therapeutic agent against NNV in aquaculture, providing an effective strategy for VER control at the early developmental stages of fish.
Collapse
Affiliation(s)
- Song Zhu
- College of Fisheries, Southwest University, Chongqing, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Bo Miao
- College of Fisheries, Southwest University, Chongqing, China
| | - Yu-Zhou Zhang
- College of Fisheries, Southwest University, Chongqing, China
| | - De-Shou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
A Nanobody-Mediated Virus-Targeting Drug Delivery Platform for the Central Nervous System Viral Disease Therapy. Microbiol Spectr 2021; 9:e0148721. [PMID: 34817277 PMCID: PMC8612154 DOI: 10.1128/spectrum.01487-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Viral diseases of the central nervous system (CNS) represent a major global health concern. Difficulties in treating these diseases are caused mainly by the biological tissues and barriers, which hinder the transport of drugs into the CNS. To counter this, a nanobody-mediated virus-targeting drug delivery platform (SWCNTs-P-A-Nb) is constructed for CNS viral disease therapy. Viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), is employed as a disease model. SWCNTs-P-A-Nb is successfully constructed by employing single-walled carbon nanotubes, amantadine, and NNV-specific nanobody (NNV-Nb) as the nanocarrier, anti-NNV drug, and targeting ligand, respectively. Results showed that SWCNTs-P-A-Nb has a good NNV-targeting ability in vitro and in vivo, improving the specific distribution of amantadine in NNV-infected sites under the guidance of NNV-Nb. SWCNTs-P-F-A-Nb can pass through the muscle and gill and be excreted by the kidney. SWCNTs-P-A-Nb can transport amantadine in a fast manner and prolong the action time, improving the anti-NNV activity of amantadine. Results so far have indicated that the nanobody-mediated NNV-targeting drug delivery platform is an effective method for VER therapy, providing new ideas and technologies for control of the CNS viral diseases. IMPORTANCE CNS viral diseases have resulted in many deadly epidemics throughout history and continue to pose one of the greatest threats to public health. Drug therapy remains challenging due to the complex structure and relative impermeability of the biological tissues and barriers. Therefore, development in the intelligent drug delivery platform is highly desired for CNS viral disease therapy. In the study, a nanobody-mediated virus-targeting drug delivery platform is constructed to explore the potential application of targeted therapy in CNS viral diseases. Our findings hold great promise for the application of targeted drug delivery in CNS viral disease therapy.
Collapse
|
4
|
Guo L, Liu M, Zhang S, Wang Z, Yu X. Multi-wavelength fluorescence polarization immunoassays for simultaneous detection of amantadine and ribavirin in chicken and human serum. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1940877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Liuchaun Guo
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Meixuan Liu
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Suxia Zhang
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Xuezhi Yu
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Toots M, Plemper RK. Next-generation direct-acting influenza therapeutics. Transl Res 2020; 220:33-42. [PMID: 32088166 PMCID: PMC7102518 DOI: 10.1016/j.trsl.2020.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022]
Abstract
Influenza viruses are a major threat to human health globally. In addition to further improving vaccine prophylaxis, disease management through antiviral therapeutics constitutes an important component of the current intervention strategy to prevent advance to complicated disease and reduce case-fatality rates. Standard-of-care is treatment with neuraminidase inhibitors that prevent viral dissemination. In 2018, the first mechanistically new influenza drug class for the treatment of uncomplicated seasonal influenza in 2 decades was approved for human use. Targeting the PA endonuclease subunit of the viral polymerase complex, this class suppresses viral replication. However, the genetic barrier against viral resistance to both drug classes is low, pre-existing resistance is observed in circulating strains, and resistant viruses are pathogenic and transmit efficiently. Addressing the resistance problem has emerged as an important objective for the development of next-generation influenza virus therapeutics. This review will discuss the status of influenza therapeutics including the endonuclease inhibitor baloxavir marboxil after its first year of clinical use and evaluate a subset of direct-acting antiviral candidates in different stages of preclinical and clinical development.
Collapse
Affiliation(s)
- Mart Toots
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
6
|
Xie Z, Yang M, Luo L, Lv Y, Song K, Liu S, Chen D, Wang J. Nanochannel sensor for sensitive and selective adamantanamine detection based on host-guest competition. Talanta 2020; 219:121213. [PMID: 32887115 DOI: 10.1016/j.talanta.2020.121213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 01/01/2023]
Abstract
The abuse of adamantanamine (ADA) and its derivatives as veterinary drugs in the poultry industry could cause severe health problems for humans. It is of great need to develop a rapid, cheap and ultrasensitive method for ADA detection. In this study, a sensitive conical nanochannel sensor was established for the rapid quantitative detection of ADA with the distinctive design of the host-guest competition. The sensor was constructed by functionalizing the nanochannel surface with p-toluidine and was then assembled with Cucurbit [7]uril (CB [7]). When ADA is added, it could occupy the cavity of CB [7] due to the host-guest competition and makes CB [7] to release from the CB [7]-p-toluidine complex, resulting in a distinct change of hydrophobicity of the nanochannel, which could be determined by the ionic current. Under the optimal conditions, the strategy permitted sensitive detection of ADA in a linear range of 10-1000 nM. The nanochannel based ADA sensing platform showed both high sensitivity and excellent reproducibility and the limit of detection was 4.54 nM. For the first time, the rapid and sensitive recognition of an illegal medicine was realized based on the host-guest competition method with the nanochannel system and the principle and feasibility of this method were described at length. This strategy provides a simple, reliable, and effective way to apply host-guest system in the development of nanochannel sensor for small-molecule drug detection.
Collapse
Affiliation(s)
- Zhipeng Xie
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China; The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Mingfeng Yang
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Le Luo
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yiping Lv
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Kangjin Song
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Simin Liu
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Daqi Chen
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Jiahai Wang
- School of Chemistry and Chemical Engineering, School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Pan M, Yang J, Li S, Wen W, Wang J, Ding Y, Wang S. A Reproducible Surface Plasmon Resonance Immunochip for the Label-Free Detection of Amantadine in Animal-Derived Foods. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-018-01424-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Different glyceollin synthesis-related metabolic content and gene expressions in soybean callus suspension cultures and cotyledon tissues induced by alginate oligosaccharides. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Zhu F, Peng J, Huang Z, Hu L, Zhang G, Liu D, Xing K, Zhang K, Lai W. Specific colorimetric ELISA method based on DNA hybridization reaction and non–crosslinking gold nanoparticles aggregation for the detection of amantadine. Food Chem 2018; 257:382-387. [DOI: 10.1016/j.foodchem.2018.03.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
|