1
|
Savaliya BF, Kim S, Veltman T, Trott DJ. Comparison of the in vitro antibiofilm activities of otic cleansers against canine otitis externa pathogens. Vet Dermatol 2025; 36:148-158. [PMID: 39976169 PMCID: PMC11885093 DOI: 10.1111/vde.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/27/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Biofilm production by canine otitis externa (COE) pathogens and resistance development to multiple antimicrobials are commonly reported problems in veterinary practice. The use of adjuvants to disrupt biofilms may be a viable adjunctive therapy. HYPOTHESIS/OBJECTIVES To compare the in vitro antibiofilm activity against COE pathogens of three otic cleansers: PHMB-EDTA (poly [hexamethylene] biguanide hydrochloride and disodium edetate), N-acetylcysteine (NAC) and Triz-EDTA. ANIMALS/ISOLATES Thirty isolates of each species, including Staphylococcus pseudintermedius, Pseudomonas aeruginosa, Streptococcus canis, Proteus mirabilis, Escherichia coli, and Malassezia pachydermatis, were collected from COE cases and stored at -80°C until tested. METHODS AND MATERIALS Biofilm production was determined by Congo-red agar and microtitre plate-assay methods. Ten of the best biofilm-producing isolates per species were selected to determine minimum biofilm eradication concentration (MBEC) values. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined to compare MBEC/MIC and MBEC/MBC. RESULTS PHMB-EDTA possessed antibiofilm activity at low concentrations (MBEC range 3.9/2.3-500/300 μg/mL) against all tested COE pathogens. NAC demonstrated antibiofilm activity for all tested bacterial COE pathogens (MBEC range 4,925-19,700 μg/mL); however, most M. pachydermatis isolates exhibited MBEC values >20,000 μg/mL. Triz/EDTA at the highest concentration tested (3,025/19,520 μg/mL) did not demonstrate antibiofilm activity against most COE pathogens except for S. canis (94.5/610 μg/mL). CONCLUSIONS AND CLINICAL RELEVANCE PHMB-EDTA had intrinsic antibiofilm activity at low concentrations against all COE pathogens. Therefore, it is likely to be a very effective adjuvant when used in conjunction with other antimicrobials for the treatment of COE caused by biofilm-producing pathogens.
Collapse
Affiliation(s)
- Bhumika F. Savaliya
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
| | - Sorae Kim
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
| | - Tania Veltman
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
| | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
| |
Collapse
|
2
|
Seres-Steinbach A, Schneider-Patkó B, Jerzsele Á, Veres AM, Sonnevend Á, Bányai K, Schneider G. Characterization of Canine Otitis Externa Pseudomonas aeruginosa Isolates and Their Sensitivities to Different Essential Oils. Animals (Basel) 2025; 15:826. [PMID: 40150355 PMCID: PMC11939669 DOI: 10.3390/ani15060826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Otitis externa is common infection in dogs. Its most important aetiologic agent is Pseudomonas aeruginosa, which, besides its ability to form biofilm, can also be resistant to several antibiotics, leading to therapeutic failures in several cases. Promising therapeutic alternatives are constantly being sought to treat chronic, recurrent infections. Within the framework of this study, we investigated the antibacterial potential of essential oils against canine isolates of P. aeruginosa. Forty P. aeruginosa were isolated from individual dogs' otitis externa. They were identified by MALDI-TOF MS, their antibiotic susceptibility was determined with disk diffusion, and their genetic relatedness was established using pulsed-field gel electrophoresis. Fifty-seven essential oils were screened for their antipseudomonas effects using the drop plate method, and six essential oils-cinnamon (bark and leaf), bay, rosemary, thyme, and bitter orange-were further tested for their mature-biofilm-degrading capacities at 30 °C and 37 °C. Even though the molecular relatedness of the forty P. aeruginosa isolates could be excluded, all isolates' growth was inhibited and their biofilms degraded by a 2.5% concentration of cinnamon (bark and leaf), bay, rosemary, thyme, or bitter orange essential oil. Our results show that essential oils are potent alternatives in the treatment of otitis externa.
Collapse
Affiliation(s)
- Anita Seres-Steinbach
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (A.S.-S.); (B.S.-P.); (Á.S.)
| | - Brigitta Schneider-Patkó
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (A.S.-S.); (B.S.-P.); (Á.S.)
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, H-1078 Budapest, Hungary; (Á.J.); (A.M.V.); (K.B.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - Adrienn Mercedesz Veres
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, H-1078 Budapest, Hungary; (Á.J.); (A.M.V.); (K.B.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
| | - Ágnes Sonnevend
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (A.S.-S.); (B.S.-P.); (Á.S.)
| | - Krisztián Bányai
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, H-1078 Budapest, Hungary; (Á.J.); (A.M.V.); (K.B.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, H-1078 Budapest, Hungary
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | - György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, H-7624 Pécs, Hungary; (A.S.-S.); (B.S.-P.); (Á.S.)
| |
Collapse
|
3
|
Guedes RFDM, Guedes GMDM, Gomes FIF, Soares ACDCF, Pereira VC, Freitas AS, Amando BR, Sidrim JJC, Cordeiro RDA, Rocha MFG, Castelo-Branco DDSCM. Antimicrobial and antibiofilm effect of promethazine on bacterial isolates from canine otitis externa: an in vitro study. Microb Pathog 2024; 196:106993. [PMID: 39374884 DOI: 10.1016/j.micpath.2024.106993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Otitis externa is an inflammatory disease of the external ear canal of complex and multifactorial etiology associated with recurrent bacterial infection. This study aimed to assess the antimicrobial and antibiofilm activity of promethazine against bacterial isolates from dogs with otitis externa, as well as the effect of this compound on the dynamics of biofilm formation over 120 h. Planktonic bacterial susceptibility to promethazine was evaluated to determine the minimum inhibitory concentrations (MIC). The minimum biofilm eradication concentration (MBEC) was also determined by broth microdilution. To evaluate the effect on biofilm growth, promethazine was tested at three concentrations MIC, MIC/2 and MIC/8, with daily readings at 48, 72, 96 and 120 h. The MICs of promethazine ranged from 48.83 to 781.25 μg mL-1. Promethazine significantly (P < 0.05) reduced mature biofilm biomass, with MBECs ranging from 48.8 to 6250 μg mL-1 and reduced (P < 0.01) biofilm formation for up to the 120-h, at concentrations corresponding to the MIC obtained against each isolate. Promethazine was effective against microorganisms associated with canine otitis externa. The data suggest that promethazine presents antimicrobial and antibiofilm activity and is a potential alternative to treat and prevent recurrent bacterial otitis in dogs. These results emphasize the importance of drug repurposing in veterinary otology as an alternative to reduce antimicrobial resistance.
Collapse
Affiliation(s)
- Rodrigo Fonseca de Medeiros Guedes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Cel. Nunes de Melo, 1315, Rodolfo Teófilo, CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Gláucia Morgana de Melo Guedes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Cel. Nunes de Melo, 1315, Rodolfo Teófilo, CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Francisco Ivanilsom Firmiano Gomes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Cel. Nunes de Melo, 1315, Rodolfo Teófilo, CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Ana Carla de Castro Freitas Soares
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Cel. Nunes de Melo, 1315, Rodolfo Teófilo, CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Vinicius Carvalho Pereira
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Cel. Nunes de Melo, 1315, Rodolfo Teófilo, CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Alyne Soares Freitas
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Cel. Nunes de Melo, 1315, Rodolfo Teófilo, CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Bruno Rocha Amando
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Cel. Nunes de Melo, 1315, Rodolfo Teófilo, CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Cel. Nunes de Melo, 1315, Rodolfo Teófilo, CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Cel. Nunes de Melo, 1315, Rodolfo Teófilo, CEP: 60430-275, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Cel. Nunes de Melo, 1315, Rodolfo Teófilo, CEP: 60430-275, Fortaleza, Ceará, Brazil; Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Av. Dr. Silas Munguba, 1700, Campus do Itaperi, CEP: 60714-903, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Cel. Nunes de Melo, 1315, Rodolfo Teófilo, CEP: 60430-275, Fortaleza, Ceará, Brazil; Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Cel. Nunes de Melo, 1315, Rodolfo Teófilo, CEP: 60430-275, Fortaleza, Ceará, Brazil.
| |
Collapse
|
4
|
Stefanetti V, Passamonti F, Rampacci E. Antimicrobial Strategies Proposed for the Treatment of S. pseudintermedius and Other Dermato-Pathogenic Staphylococcus spp. in Companion Animals: A Narrative Review. Vet Sci 2024; 11:311. [PMID: 39057995 PMCID: PMC11281426 DOI: 10.3390/vetsci11070311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The treatment of dermato-pathogenic Staphylococcus spp., particularly Staphylococcus pseudintermedius, in companion animals presents significant challenges due to rising antimicrobial resistance. This review explores innovative strategies to combat these infections. We examined novel antimicrobials and the repurposing of existing drugs to enhance their efficacy against resistant strains. Additionally, we evaluate the potential of natural products, nanomaterials, and skin antiseptics as alternative treatments. The review also investigates the use of antimicrobial peptides and bacteriophages, highlighting their targeted action against staphylococcal pathogens. Furthermore, the role of adjuvants in antibiotic treatments, such as antimicrobial resistance breakers, is discussed, emphasizing their ability to enhance therapeutic outcomes. Our analysis underscores the importance of a multifaceted approach in developing effective antimicrobial strategies for companion animals, aiming to mitigate resistance and improve clinical management of staphylococcal skin infections.
Collapse
Affiliation(s)
- Valentina Stefanetti
- Department of Human Science and Promotion of Quality Life, San Raffaele Telematic University, 00166 Rome, Italy;
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Fabrizio Passamonti
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| |
Collapse
|
5
|
Gigante AM, Hadis MA, Secker B, Shaw SC, Cooper PR, Palin WM, Milward MR, Atterbury RJ. Exposure to blue light reduces antimicrobial resistant Pseudomonas aeruginosa isolated from dog ear infections. Front Microbiol 2024; 15:1414412. [PMID: 39027093 PMCID: PMC11255781 DOI: 10.3389/fmicb.2024.1414412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Pseudomonas aeruginosa is a leading cause of canine otitis externa. Enrofloxacin is often applied topically to treat this condition, although recalcitrant and recurring infections are common. There is evidence that exposure to blue light (400-470 nm) has a bactericidal effect on P. aeruginosa and other microorganisms. Methods In the present study, we tested the biocidal effect of blue light (375-450 nm), alone or in combination with enrofloxacin, against six isolates of P. aeruginosa from dogs with otitis externa (5 of which were resistant to enrofloxacin). Results Treatment of planktonic cell cultures with blue light resulted in significant (p < 0.5) reductions in Colony Forming Units (CFU) for all seven strains tested, in some cases below the limit of detection. The greatest bactericidal effect was observed following exposure to light at 405 nm wavelength (p < 0.05). Exposure to blue light for 20 min usually resulted in a greater reduction in Pseudomonas aeruginosa than enrofloxacin treatment, and combination treatment typically resulted in the largest reductions in CFU. Analysis of the genome sequences of these strains established that enrofloxacin resistance was likely the result of a S466F substitution in GyrB. However, there was no clear association between genotype and susceptibility to blue light treatment. Discussion These results suggest that blue light treatment, particularly at 405 nm wavelength, and especially in combination with enrofloxacin therapy, could be an effective treatment for otherwise recalcitrant canine otitis externa caused by Pseudomonas aeruginosa. It may also provide a way of extending the usefulness of enrofloxacin therapy which would otherwise be ineffective as a sole therapeutic agent.
Collapse
Affiliation(s)
- Adriano M. Gigante
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Mohammad A. Hadis
- School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - Bailey Secker
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Stephen C. Shaw
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| | - Paul R. Cooper
- School of Dentistry, University of Birmingham, Birmingham, United Kingdom
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - William M. Palin
- School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - Michael R. Milward
- School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - Robert J. Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, United Kingdom
| |
Collapse
|
6
|
Amiriantz S, Hoummady S, Jarousse E, Roudeix S, Philippon T. Investigating the Bactericidal Activity of an Ocular Solution Containing EDTA, Tris, and Polysorbate 80 and Its Impact on the In Vitro Efficacy of Neomycin Sulfate against Staphylococcus aureus: A Preliminary Study. Antibiotics (Basel) 2024; 13:611. [PMID: 39061293 PMCID: PMC11273460 DOI: 10.3390/antibiotics13070611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
In the current context of emerging and spreading antimicrobial resistance in human and animal infections, new strategies need to be developed to improve the efficacy of commonly prescribed antibiotics and preserve more critical compounds for multi-drug-resistant infections. This preliminary study aimed at evaluating the benefits of an eye cleaning solution containing 0.1% EDTA, 0.02% Tris, and 0.1% Polysorbate 80 in veterinary ophthalmology. A first in vitro study was performed to assess the bactericidal activity of the test solution against Staphylococcus aureus and Pseudomonas aeruginosa strains. A second in vitro study evaluated the impact of the test solution on the antimicrobial activity of neomycin against Staphylococcus aureus. The test solution alone did not show bactericidal activity against Staphylococcus aureus and Pseudomonas aeruginosa. The test solution seemed to increase the activity of Neomycin Sulfate against Staphylococcus aureus. These findings warrant further research to better characterize the impact on the bactericidal activity of antimicrobials used in veterinary ocular surface infections of the solution containing 0.1% EDTA, 0.02% Tris, and 0.1% Polysorbate 80 as well as of each individual ingredient for a thorough understanding of how this test solution could provide a new strategy to address the growing antimicrobial resistance issue worldwide.
Collapse
Affiliation(s)
- Sophie Amiriantz
- Dômes Pharma, ZA Champ Lamet, 3 Rue André Citroën, 63430 Pont-du-Château, France
| | - Sara Hoummady
- Dômes Pharma, ZA Champ Lamet, 3 Rue André Citroën, 63430 Pont-du-Château, France
- Transformations et Agro-Ressources, ULR 7519, Institut Polytechnique Unilasalle—Collège Vétérinaire, Université d’Artois, 76130 Mont Saint Aignan, France
| | - Elodie Jarousse
- Groupe Icare, Biopôle Limagne, 6 Rue Emile Duclaux, 63360 Saint Beauzire, France
| | - Séverine Roudeix
- Groupe Icare, Biopôle Limagne, 6 Rue Emile Duclaux, 63360 Saint Beauzire, France
| | - Thomas Philippon
- Dômes Pharma, ZA Champ Lamet, 3 Rue André Citroën, 63430 Pont-du-Château, France
| |
Collapse
|
7
|
Araújo D, Silva AR, Fernandes R, Serra P, Barros MM, Campos AM, Oliveira R, Silva S, Almeida C, Castro J. Emerging Approaches for Mitigating Biofilm-Formation-Associated Infections in Farm, Wild, and Companion Animals. Pathogens 2024; 13:320. [PMID: 38668275 PMCID: PMC11054384 DOI: 10.3390/pathogens13040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
The importance of addressing the problem of biofilms in farm, wild, and companion animals lies in their pervasive impact on animal health and welfare. Biofilms, as resilient communities of microorganisms, pose a persistent challenge in causing infections and complicating treatment strategies. Recognizing and understanding the importance of mitigating biofilm formation is critical to ensuring the welfare of animals in a variety of settings, from farms to the wild and companion animals. Effectively addressing this issue not only improves the overall health of individual animals, but also contributes to the broader goals of sustainable agriculture, wildlife conservation, and responsible pet ownership. This review examines the current understanding of biofilm formation in animal diseases and elucidates the complex processes involved. Recognizing the limitations of traditional antibiotic treatments, mechanisms of resistance associated with biofilms are explored. The focus is on alternative therapeutic strategies to control biofilm, with illuminating case studies providing valuable context and practical insights. In conclusion, the review highlights the importance of exploring emerging approaches to mitigate biofilm formation in animals. It consolidates existing knowledge, highlights gaps in understanding, and encourages further research to address this critical facet of animal health. The comprehensive perspective provided by this review serves as a foundation for future investigations and interventions to improve the management of biofilm-associated infections in diverse animal populations.
Collapse
Affiliation(s)
- Daniela Araújo
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Rita Silva
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Rúben Fernandes
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Patrícia Serra
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Maria Margarida Barros
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Maria Campos
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
| | - Ricardo Oliveira
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sónia Silva
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Carina Almeida
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Castro
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (A.R.S.); (R.F.); (P.S.); (M.M.B.); (A.M.C.); (R.O.); (S.S.); (C.A.)
- CEB—Centre of Biological Engineering Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Rosales RS, Ramírez AS, Moya-Gil E, de la Fuente SN, Suárez-Pérez A, Poveda JB. Microbiological Survey and Evaluation of Antimicrobial Susceptibility Patterns of Microorganisms Obtained from Suspect Cases of Canine Otitis Externa in Gran Canaria, Spain. Animals (Basel) 2024; 14:742. [PMID: 38473127 DOI: 10.3390/ani14050742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
A retrospective study of microbiological laboratory results from 2020 to 2022, obtained from a veterinary diagnostic laboratory of the island of Gran Canaria, Spain, focused on canine otitis cases, was performed. The objective of this study was to analyze the pathogen distribution, antimicrobial susceptibility, prevalence of multidrug resistant phenotypes and the role of coinfections in otitis cases in order to provide up-to-date evidence that could support effective control strategies for this prevalent pathology. A total of 604 submissions were processed for the diagnosis of canine external otitis. Of the samples analyzed, 472 were positive for bacterial or fungal growth (78.1%; 95% CI: 74.8-81.4%). A total of 558 microbiological diagnoses were obtained, divided in 421 bacterial (75.4%; 95% CI: 71.8-79.0%) and 137 fungal (24.6%; 95% CI: 20.9-28.1%) identifications. Staphylococcus pseudintermedius, Malassezia pachydermatis and Pseudomonas aeruginosa were the most prevalent microorganisms detected in clinical cases of otitis. High level antimicrobial resistance was found for Pseudomonas aeruginosa (30.7%), Proteus mirabilis (29.4%), Staphylococcus pseudintermedius (25.1%) and Escherichia coli (19%). Multidrug-resistant phenotypes were observed in 47% of the bacteria isolated. In addition, a 26.4% prevalence of methicillin-resistant Staphylococcus pseudintermedius was detected. The high prevalence of antimicrobial resistant phenotypes in these bacteria highlights the current necessity for constant up-to-date prevalence and antimicrobial susceptibility data that can support evidence-based strategies to effectively tackle this animal and public health concern.
Collapse
Affiliation(s)
- Rubén S Rosales
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain
- Análisis Veterinarios Eurofins, Calle Leopoldo Matos, 18, 35006 Las Palmas de Gran Canaria, Spain
| | - Ana S Ramírez
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain
| | - Eduardo Moya-Gil
- Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain
| | - Sara N de la Fuente
- Análisis Veterinarios Eurofins, Calle Leopoldo Matos, 18, 35006 Las Palmas de Gran Canaria, Spain
| | - Alejandro Suárez-Pérez
- Departamento de Patolología Animal, Producción Animal, Bromatología y Ciencia y Tecnología de los Alimentos, Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain
| | - José B Poveda
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Veterinary Faculty, University of Las Palmas de Gran Canaria, Trasmontaña s/n, 35416 Arucas, Spain
| |
Collapse
|
9
|
Luciani L, Stefanetti V, Rampacci E, Gobbi P, Valentini L, Capuozzo R, Passamonti F. Comparison between clinical evaluations and laboratory findings and the impact of biofilm on antimicrobial susceptibility in vitro in canine otitis externa. Vet Dermatol 2023; 34:586-596. [PMID: 37580811 DOI: 10.1111/vde.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND In canine otitis externa (OE), biofilm-producing bacteria are frequently present but biofilm may be underdiagnosed clinically. HYPOTHESIS/OBJECTIVES The study aimed to investigate an association between clinical and cytological findings with bacteriological data from dogs with OE, to establish, through Environmental Scanning Electron Microscope (ESEM) examination, whether the presence of biofilm in vivo can be predicted and to evaluate the impact of biofilm on antimicrobial susceptibility tests. MATERIALS AND METHODS Fifty-six dogs showing clinical signs of OE were enrolled. One cotton swab each was collected for ESEM, bacterial culture and susceptibility testing and for cytology. Staphylococcus pseudintermedius (n = 42, 48.8%) and Pseudomonas aeruginosa (n = 26, 30.2%) were tested for their ability to form biofilm. Minimum Inhibitory Concentrations (MIC), Minimal Biofilm Inhibitory Concentrations (MBIC) and Minimal Biofilm Eradication Concentrations (MBEC) towards enrofloxacin, gentamicin, polymyxin B and rifampicin were determined. RESULTS Pseudomonas aeruginosa was positively associated with the biofilm clinical evaluation (p < 0.01) and neutrophils (p < 0.05), nuclear streaks (p < 0.01) and rods bacteria (p < 0.01) on cytology. S. pseudintermedius was associated with a low presence of neutrophils. There was a statistical correlation between clinical and cytological biofilm presence (p ≤ 0.01), but none with the biofilm production assay nor ESEM biofilm detection. No differences were found comparing the results of MIC and MBIC. MBEC results showed higher values than MIC and MBIC for all antimicrobials tested (p ≤ 0.001). CONCLUSIONS AND CLINICAL RELEVANCE Biofilm presence in OE was often underdiagnosed. Even if there is no specific clinical or cytological pattern related to biofilm, its presence should always be suspected.
Collapse
Affiliation(s)
- Luca Luciani
- Private Practitioner, Centro Veterinario Cattolica, Cattolica, Italy
| | | | - Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Pietro Gobbi
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo, Italy
| | - Laura Valentini
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo, Italy
| | - Raffaella Capuozzo
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
10
|
Secker B, Shaw S, Atterbury RJ. Pseudomonas spp. in Canine Otitis Externa. Microorganisms 2023; 11:2650. [PMID: 38004662 PMCID: PMC10673570 DOI: 10.3390/microorganisms11112650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Canine otitis externa (OE) is a commonly diagnosed condition seen in veterinary practice worldwide. In this review, we discuss the mechanisms of the disease, with a particular focus on the biological characteristics of Pseudomonas aeruginosa and the impact that antibiotic resistance has on successful recovery from OE. We also consider potential alternatives to antimicrobial chemotherapy for the treatment of recalcitrant infections. P. aeruginosa is not a typical constituent of the canine ear microbiota, but is frequently isolated from cases of chronic OE, and the nature of this pathogen often makes treatment difficult. Biofilm formation is identified in 40-95% of P. aeruginosa from cases of OE and intrinsic and acquired antibiotic resistance, especially resistance to clinically important antibiotics, highlights the need for alternative treatments. The role of other virulence factors in OE remains relatively unexplored and further work is needed. The studies described in this work highlight several potential alternative treatments, including the use of bacteriophages. This review provides a summary of the aetiology of OE with particular reference to the dysbiosis that leads to colonisation by P. aeruginosa and highlights the need for novel treatments for the future management of P. aeruginosa otitis.
Collapse
Affiliation(s)
- Bailey Secker
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK; (B.S.); (S.S.)
- School of Biosciences, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Stephen Shaw
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK; (B.S.); (S.S.)
| | - Robert J. Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK; (B.S.); (S.S.)
| |
Collapse
|
11
|
Hobi S, Barrs VR, Bęczkowski PM. Dermatological Problems of Brachycephalic Dogs. Animals (Basel) 2023; 13:2016. [PMID: 37370526 DOI: 10.3390/ani13122016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Brachycephalic dogs are not only affected by brachycephalic obstructive airway syndrome (BOAS), but are also frequently referred to veterinary dermatologists for skin conditions, with English bulldogs and pugs particularly over-represented. Some skin diseases, such as skin fold dermatitis, are directly associated with the abnormal anatomic conformation of brachycephalic dogs, while for others, such as atopic dermatitis and viral pigmented plaques, there is an underlying genetic basis or a general predisposition. Anatomic alterations associated with brachycephaly, leading to fold formation of the skin and stenosis of the ear canal, together with primary immunodeficiencies described in some breeds, favor the development of pyoderma, Malassezia dermatitis, and otitis externa/media. In addition, the frequently neglected but often lifelong dermatological problems of brachycephalic dogs are an important consideration when discussing genetic and medical conditions affecting the welfare of those dogs. Here we review the current state of knowledge concerning dermatological problems in brachycephalic dogs and combine it with clinical experience in the management of these challenging disorders.
Collapse
Affiliation(s)
- Stefan Hobi
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Vanessa R Barrs
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Paweł M Bęczkowski
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
12
|
Nesse LL, Osland AM, Vestby LK. The Role of Biofilms in the Pathogenesis of Animal Bacterial Infections. Microorganisms 2023; 11:608. [PMID: 36985183 PMCID: PMC10059901 DOI: 10.3390/microorganisms11030608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Biofilms are bacterial aggregates embedded in a self-produced, protective matrix. The biofilm lifestyle offers resilience to external threats such as the immune system, antimicrobials, and other treatments. It is therefore not surprising that biofilms have been observed to be present in a number of bacterial infections. This review describes biofilm-associated bacterial infections in most body systems of husbandry animals, including fish, as well as in sport and companion animals. The biofilms have been observed in the auditory, cardiovascular, central nervous, digestive, integumentary, reproductive, respiratory, urinary, and visual system. A number of potential roles that biofilms can play in disease pathogenesis are also described. Biofilms can induce or regulate local inflammation. For some bacterial species, biofilms appear to facilitate intracellular invasion. Biofilms can also obstruct the healing process by acting as a physical barrier. The long-term protection of bacteria in biofilms can contribute to chronic subclinical infections, Furthermore, a biofilm already present may be used by other pathogens to avoid elimination by the immune system. This review shows the importance of acknowledging the role of biofilms in animal bacterial infections, as this influences both diagnostic procedures and treatment.
Collapse
Affiliation(s)
- Live L. Nesse
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, 1433 Ås, Norway
| | - Ane Mohr Osland
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, 1433 Ås, Norway
| | - Lene K. Vestby
- Department of Analysis and Diagnostics, Norwegian Veterinary Institute, 1433 Ås, Norway
| |
Collapse
|
13
|
Saedi M, Shirshahi V, Mirzaei M, Nikbakht M. Preparation of graphene oxide nanoparticles and their derivatives: Evaluation of their antimicrobial and anti-proliferative activity against 3T3 cell line. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2151458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Mohammadamin Saedi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Vahid Shirshahi
- Department of Basic Sciences, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Mirzaei
- Department of Basic Sciences, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Nikbakht
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
14
|
Electrospun nanofibrous membrane functionalized with dual drug-cyclodextrin inclusion complexes for the potential treatment of otitis externa. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Staphylococcus pseudintermedius: Is it a real threat to human health? POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Staphylococcus Intermedius Group (SIG) staphylococci, especially Staphylococcus pseudintermedius (S. pseudintermedius), share many features with the common human Staphylococcus aureus. The similarities concern both the phenotypic characteristics and virulence of the bacteria. It is a cause of difficulties in identifying the species of isolated staphylococci. Until now, S. pseudintermedius was considered a typically animal species, of marginal importance for humans. However, it is likely that the incidence of this staphylococcus in humans is underestimated due to the misidentification of S. pseudintermedius strains as S. aureus. The cases of infections caused by S. pseudintermedius both in humans and animals described so far in the literature show that these bacteria have a similar pathogenic potential. S. pseudintermedius also produces virulence factors that favor colonization of various body regions and infections, and may affect the species composition of the natural microbiota and the host’s immune response mechanisms. Also, S. pseudintermedius may show the ability to grow in the form of a biofilm, which significantly impedes effective antibiotic therapy in clinical practice. Due to its zoonotic potential, S. pseudintermedius deserves the attention of physicians and animal owners.
Collapse
|
16
|
Rhimi W, Theelen B, Boekhout T, Aneke CI, Otranto D, Cafarchia C. Conventional therapy and new antifungal drugs against Malassezia infections. Med Mycol 2021; 59:215-234. [PMID: 33099634 DOI: 10.1093/mmy/myaa087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Malassezia yeasts are commensal microorganisms occurring on the skin of humans and animals causing dermatological disorders or systemic infections in severely immunocompromised hosts. Despite attempts to control such yeast infections with topical and systemic antifungals, recurrence of clinical signs of skin infections as well as treatment failure in preventing or treating Malassezia furfur fungemia have been reported most likely due to wrong management of these infections (e.g., due to early termination of treatment) or due to the occurrence of resistant phenomena. Standardized methods for in vitro antifungal susceptibility tests of these yeasts are still lacking, thus resulting in variable susceptibility profiles to azoles among Malassezia spp. and a lack of clinical breakpoints. The inherent limitations to the current pharmacological treatments for Malassezia infections both in humans and animals, stimulated the interest of the scientific community to discover new, effective antifungal drugs or substances to treat these infections. In this review, data about the in vivo and in vitro antifungal activity of the most commonly employed drugs (i.e., azoles, polyenes, allylamines, and echinocandins) against Malassezia yeasts, with a focus on human bloodstream infections, are summarized and their clinical implications are discussed. In addition, the usefulness of alternative compounds is discussed.
Collapse
Affiliation(s)
- Wafa Rhimi
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Chioma Inyang Aneke
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy.,Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy.,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi "Aldo Moro", Bari, Italy
| |
Collapse
|
17
|
Parnell-Turner H, Griffin CE, Rosenkrantz WS, Kelly Keating M, Bidot WA. Evaluation of the use of paired modified Wright's and periodic acid Schiff stains to identify microbial aggregates on cytological smears of dogs with microbial otitis externa and suspected biofilm. Vet Dermatol 2021; 32:448-e122. [PMID: 34351013 DOI: 10.1111/vde.13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Micro-organisms associated with canine otitis externa (OE) may cause biofilm-associated infections (BAI). A key component of biofilm is microbial aggregate and extracellular polymeric substance (EPS). Periodic acid Schiff (PAS) can stain polysaccharide EPS in human otitis media with effusion, but this has not been tested in canine OE. There is no cytological definition for microbial aggregate, and definitive methods for identifying BAI in a clinical setting in canine OE have not been defined. OBJECTIVES To establish whether PAS stain can identify polysaccharide matrix on cytological smears; and to determine the reproducibility of identification of microbial aggregates within a discrete area of stained matrix, using paired modified Wright's and PAS-stained smears. ANIMALS Forty privately-owned dogs presenting to a dermatological referral practice. METHODS AND MATERIALS In this prospective, cross-sectional study, three investigators independently and blindly classified 40 paired modified Wright's-PAS slide sets into groups: aggregate-associated infection (AAI) and non-AAI (n = 27); and control (n = 13). Agreement between investigators for presence of AAI was measured using Fleiss' kappa statistic (FK). Agreement between investigators and dermatologists for presence of AAI upon cytological evaluation, and suspected BAI based on clinical examination, was measured using Cohen's kappa statistic. RESULTS The matrix was confirmed to stain PAS-positive. Interinvestigator agreement for AAI was very good using PAS (0.82 FK) and fair using modified-Wright's (MW) (0.33 FK). Reproducible cytological features associated with AAI were the presence of: three or more distinct aggregates (0.76 FK); discrete areas of PAS-positive matrix (0.70 FK); and the presence of high-density material (0.70 FK) using PAS stain. CONCLUSION PAS can stain the extracellular matrix on otic smears, and a novel protocol for reproducible identification of cytological features such as microbial aggregates has been established.
Collapse
Affiliation(s)
| | - Craig E Griffin
- Animal Dermatology Clinic, 5610 Kearny Mesa Road, San Diego, CA, 92111, USA
| | | | - M Kelly Keating
- Animal Dermatology Clinic, 2965 Edinger Avenue, Tustin, CA, 92780, USA
| | - Willie A Bidot
- Office of Animal Resources, Western University of Health Sciences, Pomona, CA, 91766, USA
| |
Collapse
|
18
|
Nocera FP, Ambrosio M, Fiorito F, Cortese L, De Martino L. On Gram-Positive- and Gram-Negative-Bacteria-Associated Canine and Feline Skin Infections: A 4-Year Retrospective Study of the University Veterinary Microbiology Diagnostic Laboratory of Naples, Italy. Animals (Basel) 2021; 11:ani11061603. [PMID: 34072316 PMCID: PMC8227065 DOI: 10.3390/ani11061603] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Pet animals’ bacterial skin infections represent the main reason for presentation in small animal practice and are generally secondary complications of other pathological conditions. Pyoderma and otitis externa are generally caused by Staphylococcus spp., and particularly Staphylococcus pseudintermedius is often isolated from dogs and cats suffering from skin disorders. However, also Gram-negative bacteria, such as Pseudomonas aeruginosa and Escherichia coli, can be responsible for both otitis externa and pyoderma. Since multi-drug-resistant bacterial strains have become a relevant threat in veterinary medicine, this study aimed to identify the bacteria most frequently associated with the most common clinical cases of skin infections in dogs and cats attending the University Veterinary Teaching Hospital of Naples in the period from January 2016 to December 2019. Moreover, their antibiotic resistance profiles were evaluated, highlighting an increasing spread of multi-drug-resistant strains. It is worth noting that this spread may also concern humans because of their close contact with pets. Thus, it not only is of veterinary significance but also has zoonotic importance, with pets acting as reservoirs for humans, especially pet owners and veterinarians. Abstract A 4-year retrospective study (2016–2019) of selected routine bacteriological examinations of the veterinary microbiology laboratory of the University Veterinary Teaching Hospital of Naples (Italy) was carried out. A total of 189 bacteriological samples were collected from 171 dogs and 18 cats suffering from skin infections. In dogs, the most common cutaneous infection was otitis externa, while pyoderma was found to be prevalent in cats. The number of recorded Gram-positive strains over the study period did not vary considerably from year to year and was always significantly higher (p-value = 0.0007) in comparison with Gram-negative bacterial isolations. In dogs, Staphylococcus pseudintermedius was the most common identified Gram-positive bacterium (65%), while Pseudomonas aeruginosa (36%) was the one among the isolated Gram-negative bacteria. In cats, coagulase-negative staphylococci were the most predominant isolated bacteria (47%). The phenotypic profiles of antibiotic resistance showed that most of the strains were resistant to amoxicillin–clavulanate, penicillin, clindamycin, and trimethoprim–sulfamethoxazole. Several multi-drug-resistant strains (35%) were detected in canine isolates. An updating of antibiotic resistance profiles of the main Gram-positive and Gram-negative bacteria principally associated with skin infections of pet animals is necessary to improve stewardship programs of veterinary hospitals and clinics.
Collapse
Affiliation(s)
| | | | | | - Laura Cortese
- Correspondence: (L.C.); (L.D.M.); Tel.: +39-081-253-6005 (L.C.); +39-081-253-6180 (L.D.M.)
| | - Luisa De Martino
- Correspondence: (L.C.); (L.D.M.); Tel.: +39-081-253-6005 (L.C.); +39-081-253-6180 (L.D.M.)
| |
Collapse
|
19
|
Hattab J, Mosca F, Francesco CED, Aste G, Marruchella G, Guardiani P, Tiscar PG. Occurrence, antimicrobial susceptibility, and pathogenic factors of Pseudomonas aeruginosa in canine clinical samples. Vet World 2021; 14:978-985. [PMID: 34083949 PMCID: PMC8167523 DOI: 10.14202/vetworld.2021.978-985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Pseudomonas aeruginosa is a relevant opportunistic and difficult to treat pathogen due to its widespread environmental diffusion, intrinsic resistance to many classes of antimicrobials, high ability to acquire additional resistance mechanisms, and wide range of pathogenic factors. The present study aimed to investigate the prevalence of P. aeruginosa in canine clinical samples, the antimicrobial susceptibility against antipseudomonal antibiotics, and the presence of extracellular pathogenic factors of the isolates, as well as their ability to produce biofilm. Materials and Methods: Overall, 300 clinical specimens from dogs with pyoderma or abscesses (n=58), otitis (n=59), and suspected bladder infection (n=183) were analyzed by standard bacteriological methods. P. aeruginosa isolates were tested for their antimicrobial susceptibility by disk and gradient diffusion methods to determine the minimum inhibitory concentrations. The ability of the isolates to produce biofilm was investigated by a microtiter plate assay, while virulence genes coding for elastase (lasB), exotoxin A (toxA), alkaline protease (aprA), hemolytic phospholipase C (plcH), and exoenzyme S (ExoS) were detected by polymerase chain reaction method. Results: A total of 24 isolates of P. aeruginosa were found in clinical specimens (urine n=3, skin/soft tissue n=6, and ear canal n=15). No resistance was found to ceftazidime, gentamicin, aztreonam, and imipenem (IMI), while low levels of resistance were found to enrofloxacin (ENR) (4.2%) and piperacillin-tazobactam (8.3%). However, 41.7% and 29.2% of the isolates showed intermediate susceptibility to ENR and IMI, respectively. Disk and gradient diffusion methods showed high concordance. The majority of the isolates revealed a weak (33.3%) or intermediate (45.8%) ability to form biofilm, while the strong biofilm producers (20.8%) derived exclusively from the ear canal samples. All isolates (100%) were positive for lasB, aprA, and plcH genes, while exoS and toxA were amplified in 21 (87.5%) and 22 (91.7%) isolates, respectively. Conclusion: In the present study, P. aeruginosa isolates from canine clinical samples were characterized by low levels of antimicrobial resistance against antipseudomonal drugs. However, the high presence of isolates with intermediate susceptibility for some categories of antibiotics, including carbapenems which are not authorized for veterinary use, could represent an early warning signal. Moreover, the presence of isolates with strong ability to produce biofilm represents a challenge for the interpretation of the antimicrobial susceptibility profile. In addition, the high prevalence of the extracellular pathogenic factors was indicative of the potential virulence of the isolates.
Collapse
Affiliation(s)
- Jasmine Hattab
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Francesco Mosca
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | | | - Giovanni Aste
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Giuseppe Marruchella
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | | | - Pietro Giorgio Tiscar
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| |
Collapse
|