1
|
López-Torres S, Bertrand OC, Fostowicz-Frelik Ł, Lang MM, Law CJ, San Martin-Flores G, Schillaci MA, Silcox MT. The allometry of brain size in Euarchontoglires: clade-specific patterns and their impact on encephalization quotients. J Mammal 2024; 105:1430-1445. [PMID: 39588191 PMCID: PMC11586101 DOI: 10.1093/jmammal/gyae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/26/2024] [Indexed: 11/27/2024] Open
Abstract
The timing and nature of evolutionary shifts in the relative brain size of Primates have been extensively studied. Less is known, however, about the scaling of the brain-to-body size in their closest living relatives, i.e., among other members of Euarchontoglires (Dermoptera, Scandentia, Lagomorpha, Rodentia). Ordinary least squares (OLS), reduced major axis (RMA), and phylogenetic generalized least squares (PGLS) regressions were fitted to the largest euarchontogliran data set of brain and body mass, comprising 715 species. Contrary to previous inferences, lagomorph brain sizes (PGLS slope = 0.465; OLS slope = 0.593) scale relative to body mass similarly to rodents (PGLS = 0.526; OLS = 0.638), and differently than primates (PGLS = 0.607; OLS = 0.794). There is a shift in the pattern of the scaling of the brain in Primates, with Strepsirrhini occupying an intermediate stage similar to Scandentia but different from Rodentia and Lagomorpha, while Haplorhini differ from all other groups in the OLS and RMA analyses. The unique brain-body scaling relationship of Primates among Euarchontoglires illustrates the need for clade-specific metrics for relative brain size (i.e., encephalization quotients; EQs) for more restricted taxonomic entities than Mammalia. We created clade-specific regular and phylogenetically adjusted EQ equations at superordinal, ordinal, and subordinal levels. When using fossils as test cases, our results show that generalized mammalian equations underestimate the encephalization of the stem lagomorph Megalagus turgidus in the context of lagomorphs, overestimate the encephalization of the stem primate Microsyops annectens and the early euprimate Necrolemur antiquus, but provide similar EQ values as our new strepsirrhine-specific EQ when applied to the early euprimate Adapis parisiensis.
Collapse
Affiliation(s)
- Sergi López-Torres
- University of Warsaw, Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024-5192, United States
| | - Ornella C Bertrand
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Spain
- School of Geosciences, The University of Edinburgh, Grant Institute, Edinburgh EH9 3FE, United Kingdom
| | - Łucja Fostowicz-Frelik
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637, United States
- Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-Zhi-Men-Wai Street, Beijing 100044, People’s Republic of China
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Madlen M Lang
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Chris J Law
- Division of Paleontology, American Museum of Natural History, 79th Street and Central Park West, New York, NY 10024-5192, United States
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, United States
- Department of Integrative Biology, University of Texas, 2415 Speedway #C0930, Austin, TX 78712, United States
| | - Gabriela San Martin-Flores
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Michael A Schillaci
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
2
|
Taylor PJ, Nengovhela A, Denys C, Scott GR, Ivy CM. Adaptation in brain structure and respiratory and olfactory structures across environmental gradients in African and North American muroid rodents. Integr Zool 2024; 19:165-181. [PMID: 38044327 DOI: 10.1111/1749-4877.12788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Morphometric studies of 3D micro CT-scanned images can provide insights into the evolution of the brain and sensory structures but such data are still scarce for the most diverse mammalian order of rodents. From reviewed and new data, we tested for convergence to extreme aridity and high elevation in the sensory and brain morphology of rodents, from morphometric data from micro-CT X-ray scans of 174 crania of 16 species of three distantly related African murid (soft-furred mice, Praomyini, laminate-toothed rats, Otomyini, and gerbils, Gerbillinae) clades and one North American cricetid (deer mice and white-footed mice, Peromyscus) clade. Recent studies demonstrated convergent evolution acting on the oval window area of the cochlea (enlarged in extremely arid-adapted species of Otomyini and Gerbillinae) and on endocranial volume (reduced in high elevation taxa of Otomyini and Peromyscus). However, contrary to our predictions, we did not find evidence of convergence in brain structure to aridity, or in the olfactory/respiratory system (turbinate bones) to high elevation. Brain structure differed, particularly in the petrosal lobules of the cerebellum and the olfactory bulbs, between Otomyini and Gerbillinae, with extreme arid-adapted species in each clade being highly divergent (not convergent) from other species in the same clade. We observed greater "packing" of the maxillary turbinate bones, which have important respiratory functions, in Peromyscus mice from high and low elevations compared to the high-elevation African Praomyini, but more complex patterns within Peromyscus, probably related to trade-offs in respiratory physiology and heat exchange in the nasal epithelium associated with high-elevation adaptation.
Collapse
Affiliation(s)
- Peter J Taylor
- Department of Zoology, School of Natural and Mathematical Sciences, University of Venda, Thohoyandou, South Africa
- Afromontane Unit, Department of Zoology and Entomology, University of the Free State, Phuthaditjhaba, South Africa
| | | | - Christiane Denys
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université Des Antilles, Paris, France
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Catherine M Ivy
- Guglielmo and Shoemaker Labs, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Allemand R, López-Aguirre C, Abdul-Sater J, Khalid W, Lang MM, Macrì S, Di-Poï N, Daghfous G, Silcox MT. A landmarking protocol for geometric morphometric analysis of squamate endocasts. Anat Rec (Hoboken) 2023; 306:2425-2442. [PMID: 36654187 DOI: 10.1002/ar.25162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
Landmark-based geometric morphometrics is widely used to study the morphology of the endocast, or internal mold of the braincase, and the diversity associated with this structure across vertebrates. Landmarks, as the basic unit of such methods, are intended to be points of correspondence, selected depending on the question at hand, whose proper definition is essential to guarantee robustness and reproducibility of results. In this study, 20 landmarks are defined to provide a framework to analyze the morphological variability in squamate endocasts. Ten species representing a cross-section of the diversity of Squamata from both phylogenetic and ecological (i.e., habitat) perspectives were considered, to select landmarks replicable throughout the entire clade, regardless of the degree of neuroanatomical resolution of the endocast. To assess the precision, accuracy, and repeatability of these newly defined landmarks, both intraobserver and interobserver error were investigated. Estimates of measurement error show that most of the landmarks established here are highly replicable, and preliminary results suggest that they capture aspects of endocast shape related to both phylogenetic and ecologic signals. This study provides a basis for further examinations of squamate endocast disparity using landmark-based geometric morphometrics.
Collapse
Affiliation(s)
- Rémi Allemand
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Camilo López-Aguirre
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Jade Abdul-Sater
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Waqqas Khalid
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Madlen M Lang
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Simone Macrì
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | | | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Nengovhela A, Ivy CM, Scott GR, Denys C, Taylor PJ. Counter-gradient variation and the expensive tissue hypothesis explain parallel brain size reductions at high elevation in cricetid and murid rodents. Sci Rep 2023; 13:5617. [PMID: 37024565 PMCID: PMC10079977 DOI: 10.1038/s41598-023-32498-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
To better understand functional morphological adaptations to high elevation (> 3000 m above sea level) life in both North American and African mountain-associated rodents, we used microCT scanning to acquire 3D images and a 3D morphometric approach to calculate endocranial volumes and skull lengths. This was done on 113 crania of low-elevation and high-elevation populations in species of North American cricetid mice (two Peromyscus species, n = 53), and African murid rodents of two tribes, Otomyini (five species, n = 49) and Praomyini (four species, n = 11). We tested two distinct hypotheses for how endocranial volume might vary in high-elevation populations: the expensive tissue hypothesis, which predicts that brain and endocranial volumes will be reduced to lessen the costs of growing and maintaining a large brain; and the brain-swelling hypothesis, which predicts that endocranial volumes will be increased either as a direct phenotypic effect or as an adaptation to accommodate brain swelling and thus minimize pathological symptoms of altitude sickness. After correcting for general allometric variation in cranial size, we found that in both North American Peromyscus mice and African laminate-toothed (Otomys) rats, highland rodents had smaller endocranial volumes than lower-elevation rodents, consistent with the expensive tissue hypothesis. In the former group, Peromyscus mice, crania were obtained not just from wild-caught mice from high and low elevations but also from those bred in common-garden laboratory conditions from parents caught from either high or low elevations. Our results in these mice showed that brain size responses to elevation might have a strong genetic basis, which counters an opposite but weaker environmental effect on brain volume. These results potentially suggest that selection may act to reduce brain volume across small mammals at high elevations but further experiments are needed to assess the generality of this conclusion and the nature of underlying mechanisms.
Collapse
Affiliation(s)
- Aluwani Nengovhela
- Department of Mammalogy, National Museum, Bloemfontein, 9300, South Africa.
- Department of Zoology, School of Natural and Mathematical Sciences, University of Venda, Thohoyandou, South Africa.
| | - Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Christiane Denys
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51, 57 Rue Cuvier, 75005, Paris, France
| | - Peter J Taylor
- Department of Zoology, School of Natural and Mathematical Sciences, University of Venda, Thohoyandou, South Africa
- Afromontane Unit, Department of Zoology and Entomology, University of the Free State, Phuthaditjhaba, South Africa
| |
Collapse
|
5
|
Bento Da Costa L, Bardin J, Senut B. Locomotor adaptations in the Early Miocene species Diamantomys luederitzi (Rodentia, Mammalia) from Uganda (Napak). J Morphol 2023; 284:e21560. [PMID: 36715561 DOI: 10.1002/jmor.21560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
The study of morphological adaptations to different ecological parameters among fossil vertebrates has been an important challenge in recent decades. In this paper, we focus on the link between morphological traits and locomotor behavior such as terrestriality, fossoriality and arboreality (including gliding). One of the most diverse groups in which various locomotor habits are represented is rodents, occupying a wide range of ecological niches. This work highlights morphological variations in skulls and humerus in extant rodents with varying locomotion, to predict this parameter in the extinct species Diamantomys luederitzi (Early Miocene, Napak, Uganda). Linear discriminant analysis and phylogenetic flexible discriminant analysis are used to analyze datasets obtained via traditional morphometry (measurements) and geometric morphometrics (landmarks). The results show good discrimination between locomotor groups for both structures in extant species: the skull has a wider and longer rostrum in terrestrial and fossorial taxa compared to arboreal rodents, is also higher and posteriorly wider in fossorial taxa; the distal humerus shows elongation of the trochlea and capitulum and a higher trochlea in fossorial and terrestrial species, allowing an increase of stability instead of mobility, which is more important in arboreal taxa for movement in trees. In D. luederitzi, all skull analyses except one predicted it as a terrestrial species, the other prediction as a glider was possibly linked to the diet. For the distal humerus, this species has been predicted as a terrestrial, fossorial and arboreal taxon in differing analyses, reflected by morphological traits represented in these different locomotor categories. These varying predictions could highlight the intraspecific variation in this fossil species as well as its locomotor repertoire, raising a discussion about the use of different methods in such analyses. In addition to these predictions, several issues are discussed, such as the presence of locomotor signal in the skull and its validity in locomotor studies, as well as the relevance of the use of fragmentary material in such analyses. The results obtained in this work highlight the importance of the locomotor signal in these structures, as well as the possibility of taking into account poorly preserved material, in particular the distal humerus.
Collapse
Affiliation(s)
| | - Jérémie Bardin
- CR2P-UMR 7207 MNHN-CNRS-Sorbonne Université, Sorbonne Université, Paris, France
| | - Brigitte Senut
- Département Origines & Evolution, CR2P-UMR 7207 MNHN-CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| |
Collapse
|
6
|
White CL, Bloch JI, Morse PE, Silcox MT. Virtual endocast of late Paleocene Niptomomys (Microsyopidae, Euarchonta) and early primate brain evolution. J Hum Evol 2023; 175:103303. [PMID: 36608392 DOI: 10.1016/j.jhevol.2022.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Paleogene microsyopid plesiadapiforms are among the oldest euarchontans known from relatively complete crania. While cranial endocasts are known for larger-bodied Eocene microsyopine microsyopids, this study documents the first virtual endocast for the more diminutive uintasoricine microsyopids, derived from a specimen of Niptomomys cf. Niptomomys doreenae (USNM 530198) from the late Paleocene of Wyoming. Size estimates of smaller-bodied uintasoricines are similar to those inferred for the common ancestor of Primates, so the virtual endocast of Niptomomys may provide a useful model to study early primate brain evolution. Due to the broken and telescoped nature of the neurocranium of USNM 530198, a μCT scan of the specimen was used to create a 3D model of multiple bone fragments that were then independently isolated, repositioned, and merged to form a cranial reconstruction from which a virtual endocast was extracted. The virtual endocast of Niptomomys has visible caudal colliculi, suggesting less caudal expansion of the cerebrum compared to that of euprimates, but similar to that of several other plesiadapiforms. The part of the endocast representing the olfactory bulbs is larger relative to overall endocast volume in Niptomomys (8.61%) than that of other known plesiadapiforms (∼5%) or euprimates (<3.5%). The petrosal lobules (associated with visual stabilization) are relatively large for a Paleocene placental mammal (1.66%). The encephalization quotient of Niptomomys is relatively high (range = 0.35-0.85) compared to that of Microsyops (range = 0.32-0.52), with the upper estimates in the range of values calculated for early euprimates. However, this contrast likely relates in part to the small size of the taxon, and is not associated with evidence of neocortical expansion. These findings are consistent with a model of shifting emphasis in primate evolution toward functions of the cerebrum and away from olfaction with the origin of euprimates.
Collapse
Affiliation(s)
- Chelsea L White
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4, Canada
| | - Jonathan I Bloch
- Florida Museum of Natural History, University of Florida, P.O. Box 117800, Gainesville, FL, 32611-7800, USA
| | - Paul E Morse
- Florida Museum of Natural History, University of Florida, P.O. Box 117800, Gainesville, FL, 32611-7800, USA; Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario, M1C 1A4, Canada.
| |
Collapse
|
7
|
López-Aguirre C, Lang MM, Silcox MT. Diet drove brain and dental morphological coevolution in strepsirrhine primates. PLoS One 2022; 17:e0269041. [PMID: 35666739 PMCID: PMC9170099 DOI: 10.1371/journal.pone.0269041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
The evolution of the remarkably complex primate brain has been a topic of great interest for decades. Multiple factors have been proposed to explain the comparatively larger primate brain (relative to body mass), with recent studies indicating diet has the greatest explanatory power. Dietary specialisations also correlate with dental adaptations, providing a potential evolutionary link between brain and dental morphological evolution. However, unambiguous evidence of association between brain and dental phenotypes in primates remains elusive. Here we investigate the effect of diet on variation in primate brain and dental morphology and test whether the two anatomical systems coevolved. We focused on the primate suborder Strepsirrhini, a living primate group that occupies a very wide range of dietary niches. By making use of both geometric morphometrics and dental topographic analysis, we extend the study of brain-dental ecomorphological evolution beyond measures of size. After controlling for allometry and evolutionary relatedness, differences in brain and dental morphology were found between dietary groups, and brain and dental morphologies were found to covary. Historical trajectories of morphological diversification revealed a strong integration in the rates of brain and dental evolution and similarities in their modes of evolution. Combined, our results reveal an interplay between brain and dental ecomorphological adaptations throughout strepsirrhine evolution that can be linked to diet.
Collapse
Affiliation(s)
- Camilo López-Aguirre
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- * E-mail:
| | - Madlen M. Lang
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Mary T. Silcox
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Lang MM, Bertrand OC, San Martin Flores G, Law CJ, Abdul‐Sater J, Spakowski S, Silcox MT. Scaling Patterns of Cerebellar Petrosal Lobules in Euarchontoglires: Impacts of Ecology and Phylogeny. Anat Rec (Hoboken) 2022; 305:3472-3503. [DOI: 10.1002/ar.24929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Madlen M. Lang
- Department of Anthropology University of Toronto Scarborough Toronto ON Canada
| | - Ornella C. Bertrand
- School of GeoSciences University of Edinburgh, Grant Institute Edinburgh Scotland UK
| | | | - Chris J. Law
- Richard Gilder Graduate School, Department of Mammalogy, and Division of Paleontology American Museum of Natural History, 200 Central Park West New York NY
- Department of Biology University of Washington Seattle WA
- The University of Texas at Austin Austin TX
| | - Jade Abdul‐Sater
- Department of Anthropology University of Toronto Scarborough Toronto ON Canada
| | - Shayda Spakowski
- Department of Anthropology University of Toronto Scarborough Toronto ON Canada
| | - Mary T. Silcox
- Department of Anthropology University of Toronto Scarborough Toronto ON Canada
| |
Collapse
|
9
|
Ferreira JD, Dozo MT, de Moura Bubadué J, Kerber L. Morphology and postnatal ontogeny of the cranial endocast and paranasal sinuses of capybara (Hydrochoerus hydrochaeris), the largest living rodent. J Morphol 2021; 283:66-90. [PMID: 34775628 DOI: 10.1002/jmor.21428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 01/22/2023]
Abstract
Recent studies have analyzed and described the endocranial cavities of caviomorph rodents. However, no study has documented the changes in the morphology and relative size of such cavities during ontogeny. Expecting to contribute to the discussion of the endocranial spaces of extinct caviomorphs, we aimed to characterize the cranial endocast morphology and paranasal sinuses of the largest living rodent, Hydrochoerus hydrochaeris, by focusing on its ontogenetic growth patterns. We analyzed 12 specimens of different ontogenetic stages and provided a comparison with other cavioids. Our study demonstrates that the adult cranial endocast of H. hydrochaeris is characterized by olfactory bulbs with an irregular shape, showing an elongated olfactory tract without a clear circular fissure, a marked temporal region that makes the endocast with rhombus outline, and gyrencephaly. Some of these traits change as the brain grows. The cranial pneumatization is present in the frontal and lacrimal bones. We identified two recesses (frontal and lacrimal) and one sinus (frontal). These pneumatic cavities increase their volume as the cranium grows, covering the cranial region of the cranial endocast. The encephalization quotient was calculated for each specimen, demonstrating that it decreases as the individual grows, being much higher in younger specimens than in adults. Our results show that the ontogenetic stage can be a confounding factor when it comes to the general patterns of encephalization of extinct rodents, reinforcing the need for paleobiologists to take the age of the specimens into account in future studies on this subject to avoid age-related biases.
Collapse
Affiliation(s)
- José D Ferreira
- Programa de Pós-Graduação em Biodiversidade Animal, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Maria Teresa Dozo
- Instituto Patagónico de Geología y Paleontología, CCT CONICET-CENPAT, Puerto Madryn, Argentina
| | - Jamile de Moura Bubadué
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Leonardo Kerber
- Programa de Pós-Graduação em Biodiversidade Animal, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Museu Paraense Emílio Goeldi, Coordenação de Ciências da Terra e Ecologia, Belém, Brazil
| |
Collapse
|
10
|
Inside the head of snakes: influence of size, phylogeny, and sensory ecology on endocranium morphology. Brain Struct Funct 2021; 226:2401-2415. [PMID: 34287703 DOI: 10.1007/s00429-021-02340-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Environmental properties, and the behavioral habits of species impact sensory cues available for foraging, predator avoidance and inter/intraspecific communication. Consequently, relationships have been discovered between the sensory ecology and brain morphology in many groups of vertebrates. However, these types of studies have remained scare on snake. Here, we investigate the link between endocranial shape and the sensory-related ecology of snakes by comparing 36 species of snakes for which we gathered six sensory-ecology characteristics. We use µCT scanning and 3D geometric morphometrics to compare their endocranium in a phylogenetically informed context. Our results demonstrate that size is a major driver of endocranial shape, with smaller species tending to maximize endocranial volume using a more bulbous shape, while larger species share an elongate endocranial morphology. Phylogeny plays a secondary role with more derived snakes diverging the most in endocranial shape, compared to other species. The activity period influences the shape of the olfactory and optic tract, while the foraging habitat impacts the shape of the cerebellum and cranial nerve regions: structures involved in orientation, equilibrium, and sensory information. However, we found that endocranial morphology alone is not sufficient to predict the activity period of a species without prior knowledge of its phylogenetic relationship. Our results thus demonstrate the value of utilizing endocranial shape as complementary information to size and volume in neurobiological studies.
Collapse
|
11
|
Bertrand OC, Püschel HP, Schwab JA, Silcox MT, Brusatte SL. The impact of locomotion on the brain evolution of squirrels and close relatives. Commun Biol 2021; 4:460. [PMID: 33846528 PMCID: PMC8042109 DOI: 10.1038/s42003-021-01887-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/22/2021] [Indexed: 02/01/2023] Open
Abstract
How do brain size and proportions relate to ecology and evolutionary history? Here, we use virtual endocasts from 38 extinct and extant rodent species spanning 50+ million years of evolution to assess the impact of locomotion, body mass, and phylogeny on the size of the brain, olfactory bulbs, petrosal lobules, and neocortex. We find that body mass and phylogeny are highly correlated with relative brain and brain component size, and that locomotion strongly influences brain, petrosal lobule, and neocortical sizes. Notably, species living in trees have greater relative overall brain, petrosal lobule, and neocortical sizes compared to other locomotor categories, especially fossorial taxa. Across millions of years of Eocene-Recent environmental change, arboreality played a major role in the early evolution of squirrels and closely related aplodontiids, promoting the expansion of the neocortex and petrosal lobules. Fossoriality in aplodontiids had an opposing effect by reducing the need for large brains.
Collapse
Affiliation(s)
- Ornella C Bertrand
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, UK.
| | - Hans P Püschel
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, UK
| | - Julia A Schwab
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, UK
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Stephen L Brusatte
- School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, UK
| |
Collapse
|
12
|
Weisbecker V, Rowe T, Wroe S, Macrini TE, Garland KLS, Travouillon KJ, Black K, Archer M, Hand SJ, Berlin JC, Beck RMD, Ladevèze S, Sharp AC, Mardon K, Sherratt E. Global elongation and high shape flexibility as an evolutionary hypothesis of accommodating mammalian brains into skulls. Evolution 2021; 75:625-640. [PMID: 33483947 DOI: 10.1111/evo.14163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 12/26/2022]
Abstract
Little is known about how the large brains of mammals are accommodated into the dazzling diversity of their skulls. It has been suggested that brain shape is influenced by relative brain size, that it evolves or develops according to extrinsic or intrinsic mechanical constraints, and that its shape can provide insights into its proportions and function. Here, we characterize the shape variation among 84 marsupial cranial endocasts of 57 species including fossils, using three-dimensional geometric morphometrics and virtual dissections. Statistical shape analysis revealed four main patterns: over half of endocast shape variation ranges from elongate and straight to globular and inclined; little allometric variation with respect to centroid size, and none for relative volume; no association between locomotion and endocast shape; limited association between endocast shape and previously published histological cortex volumes. Fossil species tend to have smaller cerebral hemispheres. We find divergent endocast shapes in closely related species and within species, and diverse morphologies superimposed over the main variation. An evolutionarily and individually malleable brain with a fundamental tendency to arrange into a spectrum of elongate-to-globular shapes-possibly mostly independent of brain function-may explain the accommodation of brains within the enormous diversity of mammalian skull form.
Collapse
Affiliation(s)
- Vera Weisbecker
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.,School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Timothy Rowe
- Department of Geological Sciences, The University of Texas at Austin, Austin, Texas, 78712
| | - Stephen Wroe
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Thomas E Macrini
- Department of Biological Sciences, St. Mary's University, San Antonio, Texas, 78228
| | | | - Kenny J Travouillon
- Collections and Research, Western Australian Museum, Welshpool, WA, 6986, Australia
| | - Karen Black
- Earth and Sustainability Science Research Center, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael Archer
- Earth and Sustainability Science Research Center, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Suzanne J Hand
- Earth and Sustainability Science Research Center, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jeri C Berlin
- Department of Geological Sciences, The University of Texas at Austin, Austin, Texas, 78712
| | - Robin M D Beck
- School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, United Kingdom
| | - Sandrine Ladevèze
- CR2P UMR 7207, CNRS/MNHN/Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, F-75005, France
| | - Alana C Sharp
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, United Kingdom
| | - Karine Mardon
- Centre of Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Emma Sherratt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
13
|
Ballell A, King JL, Neenan JM, Rayfield EJ, Benton MJ. The braincase, brain and palaeobiology of the basal sauropodomorph dinosaur Thecodontosaurus antiquus. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Sauropodomorph dinosaurs underwent drastic changes in their anatomy and ecology throughout their evolution. The Late Triassic Thecodontosaurus antiquus occupies a basal position within Sauropodomorpha, being a key taxon for documenting how those morphofunctional transitions occurred. Here, we redescribe the braincase osteology and reconstruct the neuroanatomy of Thecodontosaurus, based on computed tomography data. The braincase of Thecodontosaurus shares the presence of medial basioccipital components of the basal tubera and a U-shaped basioccipital–parabasisphenoid suture with other basal sauropodomorphs and shows a distinct combination of characters: a straight outline of the braincase floor, an undivided metotic foramen, an unossified gap, large floccular fossae, basipterygoid processes perpendicular to the cultriform process in lateral view and a rhomboid foramen magnum. We reinterpret these braincase features in the light of new discoveries in dinosaur anatomy. Our endocranial reconstruction reveals important aspects of the palaeobiology of Thecodontosaurus, supporting a bipedal stance and cursorial habits, with adaptations to retain a steady head and gaze while moving. We also estimate its hearing frequency and range based on endosseous labyrinth morphology. Our study provides new information on the pattern of braincase and endocranial evolution in Sauropodomorpha.
Collapse
Affiliation(s)
- Antonio Ballell
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - J Logan King
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - James M Neenan
- Oxford University Museum of Natural History, Parks Road, Oxford, UK
| | | | | |
Collapse
|
14
|
Fontoura E, Ferreira JD, Bubadué J, Ribeiro AM, Kerber L. Virtual brain endocast of Antifer (Mammalia: Cervidae), an extinct large cervid from South America. J Morphol 2020; 281:1223-1240. [PMID: 32815595 DOI: 10.1002/jmor.21243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/23/2020] [Accepted: 07/17/2020] [Indexed: 01/22/2023]
Abstract
A diverse fossil record of Cervidae (Mammalia) has been documented in the South American Pleistocene, when these animals arrived during the Great American Biotic Interchange. Using computed tomography-scanning techniques, it is possible to access the endocranial morphology of extinct species. Here, we studied the brain endocast of the extinct late Pleistocene cervid Antifer ensenadensis from southern Brazil, one of the largest forms that lived on this continent, using comparative morphology, geometric morphometrics, and encephalization quotients. The analyzed endocasts demonstrate that A. ensenadensis had a gyrencephalic brain, showing a prominent longitudinal sinus (=sagittal superior sinus), which is also observed in the large South American cervid Blastocerus dichotomus. The encephalization quotient is within the variation of extant cervids, suggesting maintenance of the pattern of encephalization from at least the late Pleistocene. Geometric morphometric analysis suggested a clear and linear allometric trend between brain endocast size and shape, and highlights A. ensenadensis as an extreme form within the analyzed cervids regarding brain morphology.
Collapse
Affiliation(s)
- Emmanuelle Fontoura
- Programa de Pós-Graduação em Biodiversidade Animal, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, São João do Polêsine, Brazil
| | - José Darival Ferreira
- Programa de Pós-Graduação em Biodiversidade Animal, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, São João do Polêsine, Brazil
| | - Jamile Bubadué
- Programa de Pós-Graduação em Biodiversidade Animal, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | - Ana Maria Ribeiro
- Seção de Paleontologia, Museu de Ciências Naturais, Secretaria do Meio Ambiente e Infraestrutura, Porto Alegre, Brazil
| | - Leonardo Kerber
- Programa de Pós-Graduação em Biodiversidade Animal, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, São João do Polêsine, Brazil.,Museu Paraense Emílio Goeldi, Coordenação de Ciências da Terra e Ecologia, Belém, Brazil
| |
Collapse
|
15
|
Selba MC, Bryson ER, Rosenberg CL, Heng HG, DeLeon VB. Selective breeding in domestic dogs: How selecting for a short face impacted canine neuroanatomy. Anat Rec (Hoboken) 2020; 304:101-115. [PMID: 32686330 DOI: 10.1002/ar.24471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/13/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022]
Abstract
The range of cranial morphology seen in domestic dogs (Canis lupus familiaris) is a direct result of thousands of years of selective breeding. This article is the first to investigate how selection for reduced faces in brachycephalic dogs impacted the neuroanatomy of the canine brain through the analysis of endocasts. Previous research has demonstrated global effects on the shape of the bony cranium as the result of these breeding practices; however, these studies have largely focused on the bony structures of the skull and failed to consider the influence of facial reduction on the soft tissues of the brain. We generated endocasts from an existing set of clinically-obtained CT scans representing a variety of dogs with various cranial morphologies. These dogs represented four breeds as well as a comparative sample of dogs of unknown breed. We recorded three-dimensional coordinate data for 31 landmarks representing various gyri, sulci, and other neuroanatomical landmarks that allowed us to analyze differences in shape of the endocasts. Through geometric morphometric analyses, we determined that the endocast shape variance in this sample is correlated with cephalic index, and thus the selection for facial reduction has caused a perceivable effect on canine neuroanatomy. Additionally, we found the majority of the shape variance in the sample to be associated with olfactory anatomy; however, the rest of the morphology also correlates with cephalic index. The results of this article indicate that modern breeding practices and the selection for dogs with short faces have significantly influenced canine neuroanatomy.
Collapse
|
16
|
Hinckley A, Hawkins MTR, Achmadi AS, Maldonado JE, Leonard JA. Ancient Divergence Driven by Geographic Isolation and Ecological Adaptation in Forest Dependent Sundaland Tree Squirrels. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A surprising amount of hidden phylogenetic diversity exists in the small to medium size, drab colored squirrels of the genus Sundasciurus. This genus is endemic to Sundaland and the Philippines, where it is widespread. An earlier revision of this genus found that the high elevation ‘populations’ of the widespread, lowland slender squirrel (S. tenuis) were different species. Previous phylogenies based on mitochondrial cytochrome b sequences also suggested that the widespread, lowland Low’s squirrel (S. lowii) and the narrow endemic Fraternal squirrel (S. fraterculus) are not reciprocally monophyletic. Additionally, deep divergences have been identified between lineages within Low’s squirrel that date to the early Pliocene. Here we focus on evaluating the relationships and differences within and between populations of these two nominal species using whole mitochondrial genome sequences, nuclear intron sequences, and morphology. We reassess the taxonomy of this group, revalidate the species status of Robinson’s squirrel (Sundasciurus robinsoniBonhote, 1903) support the species level recognition of the Natuna squirrel (Sundasciurus natunensisThomas, 1895) and identify three other lineages that require further study. We estimate times of divergence and integrate geologic history to find that most of the divergences are pre-Pleistocene, and thus predate the Pleistocene flooding of Sundaland. Biogeographic, and ecological factors may have played a more important role than climatic factors in generating these patterns. While divergence in allopatry seems to be the main process driving speciation in lowland Sundaland squirrels (Sundasciurus), ecomorphological and behavioral adaptations in this clade suggest an important role of niche divergence.
Collapse
|