1
|
Dreyer N, Olesen J, Grygier MJ, Eibye-Jacobsen D, Savchenko AS, Fujita Y, Kolbasov GA, Machida RJ, Chan BKK, Palero F. Novel molecular resources for single-specimen barcoding of enigmatic crustacean y-larvae. INVERTEBR SYST 2024; 38:IS23018. [PMID: 38744526 DOI: 10.1071/is23018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/08/2024] [Indexed: 05/16/2024]
Abstract
Despite discovery more than 100years ago and documented global occurrence from shallow waters to the deep sea, the life cycle of the enigmatic crustacean y-larvae isincompletely understood and adult forms remain unknown. To date, only 2 of the 17 formally described species, all based on larval stages, have been investigated using an integrative taxonomic approach. This approach provided descriptions of the morphology of the naupliar and cyprid stages, and made use of exuvial voucher material and DNA barcodes. To improve our knowledge about the evolutionary history and ecological importance of y-larvae, we developed a novel protocol that maximises the amount of morpho-ecological and molecular data that can be harvested from single larval specimens. This includes single-specimen DNA barcoding and daily imaging of y-nauplii reared in culture dishes, mounting of the last naupliar exuviae on a slide as a reference voucher, live imaging of the y-cyprid instar that follows, and fixation, DNA extraction, amplification and sequencing of the y-cyprid specimen. Through development and testing of a suite of new primers for both nuclear and mitochondrial protein-coding and ribosomal genes, we showcase how new sequence data can be used to estimate the phylogeny of Facetotecta. We expect that our novel procedure will help to unravel the complex systematics of y-larvae and show how these fascinating larval forms have evolved. Moreover, we posit that our protocols should work on larval specimens from a diverse array of moulting marine invertebrate taxa.
Collapse
Affiliation(s)
- Niklas Dreyer
- Natural History Museum of Denmark, University of Copenhagen, Denmark; and Biodiversity Research Center, Academia Sinica, Taipei, Taiwan; and Department of Life Science, National Taiwan Normal University, Taipei, Taiwan; and Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan; and Present address: Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Jørgen Olesen
- Natural History Museum of Denmark, University of Copenhagen, Denmark
| | - Mark J Grygier
- National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
| | | | - Alexandra S Savchenko
- Invertebrate Zoology Department, Biological Faculty, Moscow State University, Moscow, Russian Federation
| | - Yoshihisa Fujita
- General Education Center, Okinawa Prefectural University of Arts, Naha, Okinawa, Japan
| | - Gregory A Kolbasov
- White Sea Biological Station, Biological Faculty of Moscow State University, Moscow, Russian Federation
| | - Ryuji J Machida
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Benny K K Chan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ferran Palero
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE), University of Valencia, Paterna, Spain
| |
Collapse
|
2
|
Savchenko AS, Kolbasov GA. The Sensory Structures of the Carapace of Male Tantulocarida (Crustacea) Are not Homologous to the Lattice Organs of Thecostraca. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 513:S37-S40. [PMID: 38472684 DOI: 10.1134/s0012496623600161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 03/14/2024]
Abstract
Ultrastructural studies on the sensory apparatus of male Tantulocarida (Crustacea) have been conducted for the first time. Comparative morphological analysis with the specialized sensory structures of Thecostraca, known as lattice organs, has allowed for conclusions about possible homologies and further clarification of the phylogenetic position of Tantulocarida.
Collapse
Affiliation(s)
| | - G A Kolbasov
- White Sea Biological Station, Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Bernot JP, Owen CL, Wolfe JM, Meland K, Olesen J, Crandall KA. Major Revisions in Pancrustacean Phylogeny and Evidence of Sensitivity to Taxon Sampling. Mol Biol Evol 2023; 40:msad175. [PMID: 37552897 PMCID: PMC10414812 DOI: 10.1093/molbev/msad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 08/10/2023] Open
Abstract
The clade Pancrustacea, comprising crustaceans and hexapods, is the most diverse group of animals on earth, containing over 80% of animal species and half of animal biomass. It has been the subject of several recent phylogenomic analyses, yet relationships within Pancrustacea show a notable lack of stability. Here, the phylogeny is estimated with expanded taxon sampling, particularly of malacostracans. We show small changes in taxon sampling have large impacts on phylogenetic estimation. By analyzing identical orthologs between two slightly different taxon sets, we show that the differences in the resulting topologies are due primarily to the effects of taxon sampling on the phylogenetic reconstruction method. We compare trees resulting from our phylogenomic analyses with those from the literature to explore the large tree space of pancrustacean phylogenetic hypotheses and find that statistical topology tests reject the previously published trees in favor of the maximum likelihood trees produced here. Our results reject several clades including Caridoida, Eucarida, Multicrustacea, Vericrustacea, and Syncarida. Notably, we find Copepoda nested within Allotriocarida with high support and recover a novel relationship between decapods, euphausiids, and syncarids that we refer to as the Syneucarida. With denser taxon sampling, we find Stomatopoda sister to this latter clade, which we collectively name Stomatocarida, dividing Malacostraca into three clades: Leptostraca, Peracarida, and Stomatocarida. A new Bayesian divergence time estimation is conducted using 13 vetted fossils. We review our results in the context of other pancrustacean phylogenetic hypotheses and highlight 15 key taxa to sample in future studies.
Collapse
Affiliation(s)
- James P Bernot
- Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Christopher L Owen
- Systematic Entomology Laboratory, USDA-ARS, ℅ National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kenneth Meland
- Department of Biology, University of Bergen, Bergen, Norway
| | - Jørgen Olesen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Keith A Crandall
- Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| |
Collapse
|
4
|
Dreyer N, Palero F, Grygier MJ, K K Chan B, Olesen J. Single-specimen systematics resolves the phylogeny and diversity conundrum of enigmatic crustacean y-larvae. Mol Phylogenet Evol 2023; 184:107780. [PMID: 37031710 DOI: 10.1016/j.ympev.2023.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/11/2023]
Abstract
Resolving the evolutionary history of organisms is a major goal in biology. Yet for some taxa the diversity, phylogeny, and even adult stages remain unknown. The enigmatic crustacean "y-larvae" (Facetotecta) is one particularly striking example. Here we use extensive video-imaging and single-specimen molecular sequencing of >200 y-larval specimens to comprehensively explore for the first time their evolutionary history and diversity. This integrative approach revealed five major clades of Facetotecta, four of which encompass a considerable larval diversity. Whereas morphological analyses recognized 35 y-naupliar "morphospecies", molecular species delimitation analyses suggested the existence of between 88 and 127 species. The phenotypic and genetic diversity between the morphospecies suggests that a more elaborate classification than the current one-genus approach is needed. Morphology and molecular data were highly congruent at shallower phylogenetic levels, but no morphological synapomorphies could be unambiguously identified for major clades, which mostly comprise both planktotrophic and lecithotrophic y-nauplii. We argue that lecithotrophy arose several times independently whereas planktotrophic y-nauplii, which are structurally more similar across clades, most likely display the ancestral feeding mode of Facetotecta. We document a remarkably complex and highly diverse phylogenetic backbone for a taxon of marine crustaceans, the full life cycle of which remains a mystery.
Collapse
Affiliation(s)
- Niklas Dreyer
- Natural History Museum of Denmark, University of Copenhagen, Denmark; Biodiversity Research Center, Academia Sinica, Taipei, Taiwan; Department of Life Science, National Taiwan Normal University, Taipei, Taiwan; Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Ferran Palero
- Institut Cavanilles de Biodiversitat i Biologia, Evolutiva (ICBIBE), Valencia, Spain.
| | - Mark J Grygier
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan; National Museum of Marine Biology & Aquarium, Checheng, Pingtung, Taiwan
| | - Benny K K Chan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
| | - Jørgen Olesen
- Natural History Museum of Denmark, University of Copenhagen, Denmark.
| |
Collapse
|
5
|
Kolbasov GA, Savchenko AS, Dreyer N, Chan BKK, Høeg JT. A synthesis of the external morphology of cypridiform larvae of Facetotecta (crustacea: Thecostraca) and the limits of the genus Hansenocaris. Ecol Evol 2022; 12:e9488. [PMID: 36415881 PMCID: PMC9671813 DOI: 10.1002/ece3.9488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Although the naupliar and cypridiform stages of the enigmatic y-larvae of Facetotecta have been found in the marine plankton worldwide, they still represent the last significant group of crustaceans for which the adult forms are still unknown. From a number of y-cyprids representing different taxa from different locations, we employ scanning electron microscopy to describe fine morphological details of all external structures of this unique larval form. We document different segmentation patterns of the abdomen and presence/absence of the labrum and structural differences in the antennules, labrum, paraocular process, thoracopods, and telson lend support for the erection of several new genera as opposed to the single Hansenocaris. The data presented here emphasize the morphological limits of the genus Hansenocaris and the "bauplan" of cyprydiform larvae of Facetotecta. Although the optimum pathway is a joint analysis of both molecular and morphological characters, we use the morphological characters of y-cyprids to align them cladistically and determine the limits of the genus Hansenocaris s.s. and describe common characters for all y-cyprids including six pairs of the lattice organs instead five pairs considered as a ground pattern for all Thecostraca. We also determine plesiomorphic and apomorphic characters of all known y-cyprids and separate them from other thecostracan cypridiform larvae.
Collapse
Affiliation(s)
- Gregory A. Kolbasov
- White Sea Biological StationBiological Faculty of Moscow State UniversityMoscowRussia
| | | | - Niklas Dreyer
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
- Biodiversity Program, Taiwan International Graduate ProgramAcademia SinicaTaipeiTaiwan
| | | | - Jens T. Høeg
- Marine Biology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
6
|
|
7
|
Chan BKK, Dreyer N, Gale AS, Glenner H, Ewers-Saucedo C, Pérez-Losada M, Kolbasov GA, Crandall KA, Høeg JT. The evolutionary diversity of barnacles, with an updated classification of fossil and living forms. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlaa160] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
We present a comprehensive revision and synthesis of the higher-level classification of the barnacles (Crustacea: Thecostraca) to the genus level and including both extant and fossils forms. We provide estimates of the number of species in each group. Our classification scheme has been updated based on insights from recent phylogenetic studies and attempts to adjust the higher-level classifications to represent evolutionary lineages better, while documenting the evolutionary diversity of the barnacles. Except where specifically noted, recognized taxa down to family are argued to be monophyletic from molecular analysis and/or morphological data. Our resulting classification divides the Thecostraca into the subclasses Facetotecta, Ascothoracida and Cirripedia. The whole class now contains 14 orders, 65 families and 367 genera. We estimate that barnacles consist of 2116 species. The taxonomy is accompanied by a discussion of major morphological events in barnacle evolution and justifications for the various rearrangements we propose.
Collapse
Affiliation(s)
- Benny K K Chan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Niklas Dreyer
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Natural History Museum of Denmark, Invertebrate Zoology, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | - Andy S Gale
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, UK
- Department of Earth Sciences, The Natural History Museum, London, UK
| | - Henrik Glenner
- Marine Biodiversity Group, Department of Biology, University of Bergen, Bergen, Norway
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, George Washington University, Washington, DC, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Gregory A Kolbasov
- White Sea Biological Station, Biological Faculty of Moscow State University, Moscow, Russia
| | - Keith A Crandall
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, George Washington University, Washington, DC, USA
- Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Jens T Høeg
- Marine Biology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Ewers-Saucedo C, Owen CL, Pérez-Losada M, Høeg JT, Glenner H, Chan BK, Crandall KA. Towards a barnacle tree of life: integrating diverse phylogenetic efforts into a comprehensive hypothesis of thecostracan evolution. PeerJ 2019; 7:e7387. [PMID: 31440430 PMCID: PMC6699479 DOI: 10.7717/peerj.7387] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/01/2019] [Indexed: 01/07/2023] Open
Abstract
Barnacles and their allies (Thecostraca) are a biologically diverse, monophyletic crustacean group, which includes both intensely studied taxa, such as the acorn and stalked barnacles, as well as cryptic taxa, for example, Facetotecta. Recent efforts have clarified phylogenetic relationships in many different parts of the barnacle tree, but the outcomes of these phylogenetic studies have not yet been combined into a single hypothesis for all barnacles. In the present study, we applied a new "synthesis" tree approach to estimate the first working Barnacle Tree of Life. Using this approach, we integrated phylogenetic hypotheses from 27 studies, which did not necessarily include the same taxa or used the same characters, with hierarchical taxonomic information for all recognized species. This first synthesis tree contains 2,070 barnacle species and subspecies, including 239 barnacle species with phylogenetic information and 198 undescribed or unidentified species. The tree had 442 bifurcating nodes, indicating that 79.3% of all nodes are still unresolved. We found that the acorn and stalked barnacles, the Thoracica, and the parasitic Rhizocephala have the largest amount of published phylogenetic information. About half of the thecostracan families for which phylogenetic information was available were polyphyletic. We queried publicly available geographic occurrence databases for the group, gaining a sense of geographic gaps and hotspots in our phylogenetic knowledge. Phylogenetic information is especially lacking for deep sea and Arctic taxa, but even coastal species are not fully incorporated into phylogenetic studies.
Collapse
Affiliation(s)
| | - Christopher L. Owen
- Systematic Entomology Laboratory, USDA-ARS, Beltsville, MD, USA
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Ashburn, VA, USA
| | - Marcos Pérez-Losada
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Ashburn, VA, USA
- Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Jens T. Høeg
- Marine Biology Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Glenner
- Marine Biodiversity Group, Department of Biology, University of Bergen, Bergen, Norway
| | - Benny K.K. Chan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Keith A. Crandall
- Computational Biology Institute, Milken Institute School of Public Health, George Washington University, Ashburn, VA, USA
- Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
9
|
Abstract
Parasitic Crustacea have been present in scientific literature since Linnaeus introduced the first classification system (binomial nomenclature). Crustaceans are considered to be the most morphologically diverse arthropods, with currently 19 parasitic orders known to science. This chapter reviews the history of discovery for each of the major parasitic Crustacea groups, highlighting some of the key developments that have influenced our current understanding of these parasites. Each taxonomic group is briefly introduced, followed by a synopsis on some of the outstanding contributions within that group. Knowledge development is followed, from the first parasites discovered to other historical highlights that influenced the groups up to this point. Other important discoveries (both taxonomic and ecological) are also noted, serving as a preview to the host-parasite interactions covered in the subsequent chapters. Additionally, several researchers who have added significant contributions to our knowledge of the parasitic Crustacea (specifically in taxonomy and discovery) are introduced, along with photographs of a select few. This historical review of the crustacean parasites provides a background to these diverse and abundant organisms and will contribute to a better understanding of their unique niche in the aquatic environment.
Collapse
Affiliation(s)
- Nico J. Smit
- North-West University, and Unit for Environmental Sciences and Management , Potchefstroom, Northwest South Africa
| | - Niel L. Bruce
- Biodiversity & Geosciences Program, Queensland Museum, South Brisbane BC, Queensland 4101, Australia, and Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Kerry A. Hadfield
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
10
|
|
11
|
Høeg JT, Rees DJ, Jensen PC, Glenner H. Unravelling the Evolutions of the Rhizocephala: A Case Study for Molecular-Based Phylogeny in the Parasitic Crustacea. PARASITIC CRUSTACEA 2019. [DOI: 10.1007/978-3-030-17385-2_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Anatomy of the Tantulocarida: first results obtained using TEM and CLSM. Part I: tantulus larva. ORG DIVERS EVOL 2018. [DOI: 10.1007/s13127-018-0376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Khodami S, McArthur JV, Blanco-Bercial L, Martinez Arbizu P. Molecular Phylogeny and Revision of Copepod Orders (Crustacea: Copepoda). Sci Rep 2017; 7:9164. [PMID: 28831035 PMCID: PMC5567239 DOI: 10.1038/s41598-017-06656-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/16/2017] [Indexed: 11/10/2022] Open
Abstract
For the first time, the phylogenetic relationships between representatives of all 10 copepod orders have been investigated using 28S and 18S rRNA, Histone H3 protein and COI mtDNA. The monophyly of Copepoda (including Platycopioida Fosshagen, 1985) is demonstrated for the first time using molecular data. Maxillopoda is rejected, as it is a polyphyletic group. The monophyly of the major subgroups of Copepoda, including Progymnoplea Lang, 1948 (=Platycopioida); Neocopepoda Huys and Boxshall, 1991; Gymnoplea Giesbrecht, 1892 (=Calanoida Sars, 1903); and Podoplea Giesbrecht, 1892, are supported in this study. Seven copepod orders are monophyletic, including Platycopioida, Calanoida, Misophrioida Gurney, 1933; Monstrilloida Sars, 1901; Siphonostomatoida Burmeister, 1834; Gelyelloida Huys, 1988; and Mormonilloida Boxshall, 1979. Misophrioida (=Propodoplea Lang, 1948) is the most basal Podoplean order. The order Cyclopoida Burmeister, 1835, is paraphyletic and now encompasses Poecilostomatoida Thorell, 1859, as a sister to the family Schminkepinellidae Martinez Arbizu, 2006. Within Harpacticoida Sars, 1903, both sections, Polyarthra Lang, 1948, and Oligoarthra Lang, 1948, are monophyletic, but not sister groups. The order Canuelloida is proposed while maintaining the order Harpacticoida s. str. (Oligoarthra). Cyclopoida, Harpacticoida and Cyclopinidae are redefined, while Canuelloida ordo. nov., Smirnovipinidae fam. nov. and Cyclopicinidae fam. nov are proposed as new taxa.
Collapse
Affiliation(s)
- Sahar Khodami
- Senckenberg am Meer, German Center for Marine Biodiversity Research, Südstrand 44, 26382, Wilhelmshaven, Germany.
| | | | | | - Pedro Martinez Arbizu
- Senckenberg am Meer, German Center for Marine Biodiversity Research, Südstrand 44, 26382, Wilhelmshaven, Germany
| |
Collapse
|