1
|
Cianciotto NP. The type II secretion system as an underappreciated and understudied mediator of interbacterial antagonism. Infect Immun 2024; 92:e0020724. [PMID: 38980047 PMCID: PMC11320942 DOI: 10.1128/iai.00207-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Interbacterial antagonism involves all major phyla, occurs across the full range of ecological niches, and has great significance for the environment, clinical arena, and agricultural and industrial sectors. Though the earliest insight into interbacterial antagonism traces back to the discovery of antibiotics, a paradigm shift happened when it was learned that protein secretion systems (e.g., types VI and IV secretion systems) deliver toxic "effectors" against competitors. However, a link between interbacterial antagonism and the Gram-negative type II secretion system (T2SS), which exists in many pathogens and environmental species, is not evident in prior reviews on bacterial competition or T2SS function. A current examination of the literature revealed four examples of a T2SS or one of its known substrates having a bactericidal activity against a Gram-positive target or another Gram-negative. When further studied, the T2SS effectors proved to be peptidases that target the peptidoglycan of the competitor. There are also reports of various bacteriolytic enzymes occurring in the culture supernatants of some other Gram-negative species, and a link between these bactericidal activities and T2SS is suggested. Thus, a T2SS can be a mediator of interbacterial antagonism, and it is possible that many T2SSs have antibacterial outputs. Yet, at present, the T2SS remains relatively understudied for its role in interbacterial competition. Arguably, there is a need to analyze the T2SSs of a broader range of species for their role in interbacterial antagonism. Such investigation offers, among other things, a possible pathway toward developing new antimicrobials for treating disease.
Collapse
Affiliation(s)
- Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Andretta E, De Chiara S, Pagliuca C, Cirella R, Scaglione E, Di Rosario M, Kokoulin MS, Nedashkovskaya OI, Silipo A, Salvatore P, Molinaro A, Di Lorenzo F. Increasing outer membrane complexity: the case of the lipopolysaccharide lipid A from marine Cellulophaga pacifica. Glycoconj J 2024; 41:119-131. [PMID: 38642279 PMCID: PMC11065906 DOI: 10.1007/s10719-024-10149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/22/2024]
Abstract
Gram-negative bacteria living in marine waters have evolved peculiar adaptation strategies to deal with the numerous stress conditions that characterize aquatic environments. Among the multiple mechanisms for efficient adaptation, these bacteria typically exhibit chemical modifications in the structure of the lipopolysaccharide (LPS), which is a fundamental component of their outer membrane. In particular, the glycolipid anchor to the membrane of marine bacteria LPSs, i.e. the lipid A, frequently shows unusual chemical structures, which are reflected in equally singular immunological properties with potential applications as immune adjuvants or anti-sepsis drugs. In this work, we determined the chemical structure of the lipid A from Cellulophaga pacifica KMM 3664T isolated from the Sea of Japan. This bacterium showed to produce a heterogeneous mixture of lipid A molecules that mainly display five acyl chains and carry a single phosphate and a D-mannose disaccharide on the glucosamine backbone. Furthermore, we proved that C. pacifica KMM 3664T LPS acts as a weaker activator of Toll-like receptor 4 (TLR4) compared to the prototypical enterobacterial Salmonella typhimurium LPS. Our results are relevant to the future development of novel vaccine adjuvants and immunomodulators inspired by marine LPS chemistry.
Collapse
Affiliation(s)
- Emanuela Andretta
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 4, Naples, 80126, Italy
| | - Stefania De Chiara
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 4, Naples, 80126, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, Naples, 80131, Italy
| | - Roberta Cirella
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 4, Naples, 80126, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, Naples, 80131, Italy
| | - Martina Di Rosario
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, Naples, 80131, Italy
| | - Maxim S Kokoulin
- Far Eastern Branch, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, 159/2, Prospect 100 Let Vladivostoku, Vladivostok, 690022, Russia
| | - Olga I Nedashkovskaya
- Far Eastern Branch, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Russian Academy of Sciences, 159/2, Prospect 100 Let Vladivostoku, Vladivostok, 690022, Russia
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 4, Naples, 80126, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 436, Naples, 80131, Italy
- Task Force on Microbiome Studies University of Naples Federico II, Naples, 80100, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 4, Naples, 80126, Italy
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 4, Naples, 80126, Italy.
| |
Collapse
|
3
|
Catalão M, Fernandes M, Galdon L, Rodrigues CF, Sobral RG, Gaudêncio SP, Torres CAV. Exopolysaccharide Production from Marine-Derived Brevundimonas huaxiensis Obtained from Estremadura Spur Pockmarks Sediments Revealing Potential for Circular Economy. Mar Drugs 2023; 21:419. [PMID: 37504950 PMCID: PMC10381572 DOI: 10.3390/md21070419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Marine environments represent an enormous biodiversity reservoir due to their numerous different habitats, being abundant in microorganisms capable of producing biomolecules, namely exopolysaccharides (EPS), with unique physical characteristics and applications in a broad range of industrial sectors. From a total of 67 marine-derived bacteria obtained from marine sediments collected at depths of 200 to 350 m from the Estremadura Spur pockmarks field, off the coast of Continental Portugal, the Brevundimonas huaxiensis strain SPUR-41 was selected to be cultivated in a bioreactor with saline culture media and glucose as a carbon source. The bacterium exhibited the capacity to produce 1.83 g/L of EPS under saline conditions. SPUR-41 EPS was a heteropolysaccharide composed of mannose (62.55% mol), glucose (9.19% mol), rhamnose (19.41% mol), glucuronic acid (4.43% mol), galactose (2.53% mol), and galacturonic acid (1.89% mol). Moreover, SPUR-41 EPS also revealed acyl groups in its composition, namely acetyl, succinyl, and pyruvyl. This study revealed the importance of research on marine environments for the discovery of bacteria that produce new value-added biopolymers for pharmaceutical and other biotechnological applications, enabling us to potentially address saline effluent pollution via a sustainable circular economy.
Collapse
Affiliation(s)
- Marta Catalão
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Almada, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Almada, Portugal
| | - Mafalda Fernandes
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Almada, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Almada, Portugal
| | - Lorena Galdon
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Almada, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Almada, Portugal
| | - Clara F Rodrigues
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita G Sobral
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Almada, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Almada, Portugal
| | - Susana P Gaudêncio
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Almada, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Almada, Portugal
| | - Cristiana A V Torres
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Almada, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Almada, Portugal
| |
Collapse
|
4
|
Lila ASA, Rajab AAH, Abdallah MH, Rizvi SMD, Moin A, Khafagy ES, Tabrez S, Hegazy WAH. Biofilm Lifestyle in Recurrent Urinary Tract Infections. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010148. [PMID: 36676100 PMCID: PMC9865985 DOI: 10.3390/life13010148] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies.
Collapse
Affiliation(s)
- Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| | - Azza A. H. Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| |
Collapse
|
5
|
Srinivasan R, Santhakumari S, Poonguzhali P, Geetha M, Dyavaiah M, Xiangmin L. Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections. Front Microbiol 2021; 12:676458. [PMID: 34054785 PMCID: PMC8149761 DOI: 10.3389/fmicb.2021.676458] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Biofilm formation is a major concern in various sectors and cause severe problems to public health, medicine, and industry. Bacterial biofilm formation is a major persistent threat, as it increases morbidity and mortality, thereby imposing heavy economic pressure on the healthcare sector. Bacterial biofilms also strengthen biofouling, affecting shipping functions, and the offshore industries in their natural environment. Besides, they accomplish harsh roles in the corrosion of pipelines in industries. At biofilm state, bacterial pathogens are significantly resistant to external attack like antibiotics, chemicals, disinfectants, etc. Within a cell, they are insensitive to drugs and host immune responses. The development of intact biofilms is very critical for the spreading and persistence of bacterial infections in the host. Further, bacteria form biofilms on every probable substratum, and their infections have been found in plants, livestock, and humans. The advent of novel strategies for treating and preventing biofilm formation has gained a great deal of attention. To prevent the development of resistant mutants, a feasible technique that may target adhesive properties without affecting the bacterial vitality is needed. This stimulated research is a rapidly growing field for applicable control measures to prevent biofilm formation. Therefore, this review discusses the current understanding of antibiotic resistance mechanisms in bacterial biofilm and intensely emphasized the novel therapeutic strategies for combating biofilm mediated infections. The forthcoming experimental studies will focus on these recent therapeutic strategies that may lead to the development of effective biofilm inhibitors than conventional treatments.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China
| | - Sivasubramanian Santhakumari
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | | | - Mani Geetha
- PG Research and Department of Microbiology, St. Joseph's College of Arts and Science (Autonomous), Tamil Nadu, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Lin Xiangmin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
6
|
Marine Bacteria, A Source for Alginolytic Enzyme to Disrupt Pseudomonas aeruginosa Biofilms. Mar Drugs 2019; 17:md17050307. [PMID: 31137680 PMCID: PMC6562671 DOI: 10.3390/md17050307] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa biofilms are typically associated with the chronic lung infection of cystic fibrosis (CF) patients and represent a major challenge for treatment. This opportunistic bacterial pathogen secretes alginate, a polysaccharide that is one of the main components of its biofilm. Targeting this major biofilm component has emerged as a tempting therapeutic strategy for tackling biofilm-associated bacterial infections. The enormous potential in genetic diversity of the marine microbial community make it a valuable resource for mining activities responsible for a broad range of metabolic processes, including the alginolytic activity responsible for degrading alginate. A collection of 36 bacterial isolates were purified from marine water based on their alginolytic activity. These isolates were identified based on their 16S rRNA gene sequences. Pseudoalteromonas sp. 1400 showed the highest alginolytic activity and was further confirmed to produce the enzyme alginate lyase. The purified alginate lyase (AlyP1400) produced by Pseudoalteromonas sp. 1400 showed a band of 23 KDa on a protein electrophoresis gel and exhibited a bifunctional lyase activity for both poly-mannuronic acid and poly-glucuronic acid degradation. A tryptic digestion of this gel band analyzed by liquid chromatography-tandem mass spectrometry confirmed high similarity to the alginate lyases in polysaccharide lyase family 18. The purified alginate lyase showed a maximum relative activity at 30 °C at a slightly acidic condition. It decreased the sodium alginate viscosity by over 90% and reduced the P. aeruginosa (strain PA14) biofilms by 69% after 24 h of incubation. The combined activity of AlyP1400 with carbenicillin or ciprofloxacin reduced the P. aeruginosa biofilm thickness, biovolume and surface area in a flow cell system. The present data revealed that AlyP1400 combined with conventional antibiotics helped to disrupt the biofilms produced by P. aeruginosa and can be used as a promising combinational therapeutic strategy.
Collapse
|
7
|
Exopolysaccharide production by a marine Pseudoalteromonas sp. strain isolated from Madeira Archipelago ocean sediments. N Biotechnol 2016; 33:460-6. [DOI: 10.1016/j.nbt.2016.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/21/2016] [Accepted: 02/16/2016] [Indexed: 11/16/2022]
|
8
|
Marine Natural Products from New Caledonia--A Review. Mar Drugs 2016; 14:md14030058. [PMID: 26999165 PMCID: PMC4820312 DOI: 10.3390/md14030058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 01/17/2023] Open
Abstract
Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species identification, biological and/or pharmaceutical analyses are performed on marine organisms to assess their bioactivities. A total of 3582 genera, 1107 families and 9372 species have been surveyed and more than 350 novel molecular structures have been identified. Along with their bioactivities that hold promise for therapeutic applications, most of these molecules are also potentially useful for cosmetics and food biotechnology. This review highlights the tremendous marine diversity in New Caledonia, and offers an outline of the vast possibilities for natural products, especially in the interest of pursuing collaborative fundamental research programs and developing local biotechnology programs.
Collapse
|
9
|
Svahn KS, Chryssanthou E, Olsen B, Bohlin L, Göransson U. Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B. Fungal Biol Biotechnol 2015; 2:1. [PMID: 28955453 PMCID: PMC5611601 DOI: 10.1186/s40694-014-0011-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/15/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The need for new antibiotic drugs increases as pathogenic microorganisms continue to develop resistance against current antibiotics. We obtained samples from Antarctica as part of a search for new antimicrobial metabolites derived from filamentous fungi. This terrestrial environment near the South Pole is hostile and extreme due to a sparsely populated food web, low temperatures, and insufficient liquid water availability. We hypothesize that this environment could cause the development of fungal defense or survival mechanisms not found elsewhere. RESULTS We isolated a strain of Penicillium nalgiovense Laxa from a soil sample obtained from an abandoned penguin's nest. Amphotericin B was the only metabolite secreted from Penicillium nalgiovense Laxa with noticeable antimicrobial activity, with minimum inhibitory concentration of 0.125 μg/mL against Candida albicans. This is the first time that amphotericin B has been isolated from an organism other than the bacterium Streptomyces nodosus. In terms of amphotericin B production, cultures on solid medium proved to be a more reliable and favorable choice compared to liquid medium. CONCLUSIONS These results encourage further investigation of the many unexplored sampling sites characterized by extreme conditions, and confirm filamentous fungi as potential sources of metabolites with antimicrobial activity.
Collapse
Affiliation(s)
- K Stefan Svahn
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Erja Chryssanthou
- Department of Clinical Microbiology, Karolinska University Hospital & Karolinska Institute, Stockholm, Sweden
| | - Björn Olsen
- Department of Medical Sciences and Zoonosis Science Centre IMBIM, Uppsala University, Uppsala, Sweden
| | - Lars Bohlin
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Ulf Göransson
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|