1
|
Sonam A, Hameed A, Rekha PD, Stothard P, Tellis RC, Arun AB. Ketone body oxidation and susceptibility to ethyl acetoacetate in a novel hemolytic multidrug-resistant strain Leptospira interrogans KeTo originated from sewage water. Sci Rep 2024; 14:25198. [PMID: 39448678 PMCID: PMC11502798 DOI: 10.1038/s41598-024-76546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Terrestrial and aquatic environments contaminated with animal urine may contribute to the transmission of Leptospira, a causative agent of leptospirosis in humans and wild/domesticated animals. Although enormous amounts of work have been done decoding the ecophysiology, the factors governing the cell growth and virulence in Leptospires derived from environmental samples still remain elusive. Here, we show oxidation of a wide array of organic acids including acetoacetate by a new strain of Leptospira interrogans designated as KeTo, isolated from a sewage sample originating from a wildlife enclosure located at Mangalore, India. We further demonstrate the susceptibility of KeTo to ethyl ester of acetoacetate (ethyl acetoacetate, EA). A 4.7 Mbp genome of KeTo shared the highest relatedness to pathogenic L. interrogans RGAT (99.3%), followed by L. kirschneri 3522CT (91.3%) and other related species of Leptospira (80.8‒74.3%), and harbored genes encoding acetoacetyl-CoA synthetase and acetoacetate decarboxylase respectively involved in the acetoacetate utilization and acetone formation. In line with this, strain KeTo oxidized acetoacetate when supplied as a sole carbon. Aqueous EA suppressed biofilm formation (p < 0.0001) of KeTo in basal Ellinghausen-McCullough-Johnson-Harris (EMJH) medium. Similarly, significant inhibition in the growth/biofilm of Leptospira was recorded in semisolid EMJH with/without blood supplementation when exposed to volatile EA. The extent of ketone body oxidation and susceptibility to EA was found to vary with strain as evident through the analysis of L. interrogans serogroup Australis sv. Australis strain Ballico and L. interrogans serogroup Icterohaemorrhagiae sv. Lai Like strain AF61. In conclusion, our study demonstrated the ketone body metabolic ability and susceptibility to an esterified derivative of a major ketone body in the tested strains of L. interrogans. Molecular aspects governing EA-driven growth inhibition warrant further investigations to develop optimal therapeutics for leptospirosis.
Collapse
Affiliation(s)
- Amin Sonam
- Division of Microbiology and Biotechnology, Yenepoya (Deemed to be University), Yenepoya Research Centre, University Road, Deralakatte, Mangalore, 575018, India
| | - Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya (Deemed to be University), Yenepoya Research Centre, University Road, Deralakatte, Mangalore, 575018, India.
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya (Deemed to be University), Yenepoya Research Centre, University Road, Deralakatte, Mangalore, 575018, India
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | | | - Ananthapadmanabha Bhagwath Arun
- Division of Microbiology and Biotechnology, Yenepoya (Deemed to be University), Yenepoya Research Centre, University Road, Deralakatte, Mangalore, 575018, India.
- Yenepoya Institute of Arts, Science, Commerce and Management, Balmatta, Mangalore, 575002, India.
| |
Collapse
|
2
|
Ye Q, Zhong Z, Chao S, Liu L, Chen M, Feng X, Wu H. Antifungal Effect of Bacillus velezensis ZN-S10 against Plant Pathogen Colletotrichum changpingense and Its Inhibition Mechanism. Int J Mol Sci 2023; 24:16694. [PMID: 38069016 PMCID: PMC10705930 DOI: 10.3390/ijms242316694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
In order to optimize crop production and mitigate the adverse impacts associated with the utilization of chemical agents, it is necessary to explore new biocontrol agents. Bacillus velezensis has been widely studied as a biocontrol agent because of its efficient and ecofriendly plant disease control mechanisms. This study shows that the strain ZN-S10 effectively reduces the area of leaf spots caused by the pathogen Colletotrichum changpingense ZAFU0163-1, which affects conidia production and germination, inhibits mycelium growth, and induces mycelium deformation. In antifungal experiments with crude extracts, we observed a delay in the cell cycle of conidia, which may be responsible for the inhibition of conidial germination. Among the bioactive metabolites detected through integrated LC-MS- and GC-MS-based untargeted metabolomics, 7-O-Succinyl macrolactin A, telocinobufagin, and surfactin A may be the main antifungal metabolites of strain ZN-S10. The presence of 7-O-Succinyl macrolactin A could explain the cell damage in germ tubes. This is the first report of telocinobufagin detected in B. velezensis. These results are significant for understanding the inhibitory mechanisms employed by B. velezensis and should serve as a reference in the production of biocontrol agents.
Collapse
Affiliation(s)
- Qingling Ye
- Jixian Honors College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - Zhupeiqi Zhong
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.Z.); (S.C.); (L.L.); (M.C.)
| | - Shufeng Chao
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.Z.); (S.C.); (L.L.); (M.C.)
| | - Lu Liu
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.Z.); (S.C.); (L.L.); (M.C.)
| | - Mengli Chen
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.Z.); (S.C.); (L.L.); (M.C.)
| | - Xiaoxiao Feng
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Huiming Wu
- College of Advanced Agriculture Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Z.Z.); (S.C.); (L.L.); (M.C.)
| |
Collapse
|
3
|
Horne SM, Prüß BM. A Wash of Ethyl Acetoacetate Reduces Externally added Salmonella enterica on Tomatoes. Antibiotics (Basel) 2022; 11:antibiotics11081134. [PMID: 36010003 PMCID: PMC9405465 DOI: 10.3390/antibiotics11081134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/04/2022] Open
Abstract
The continuously high numbers of food-borne disease outbreaks document that current intervention techniques are not yet satisfactory. This study describes a novel wash for tomatoes that can be used as part of the food processing chain and is designed to prevent contamination with serovars of Salmonella enterica. The wash contains ethyl acetoacetate (EAA) at a concentration of 8% in H2O. This wash reduced live bacterial counts (on Salmonella Shigella agar) of externally added S. Newport MDD14 by 2.3 log, counts of S. Typhimurium ATCC19585 by 1.5 log, and counts of S. Typhimurium FSL R6-0020 by 3.4 log. The naturally occurring background flora of the tomatoes was determined on plate count agar. The log reduction by EAA was 2.1. To mimic organic matter in the wash, we added 1% tomato homogenate to the 8% EAA solution. Prior to using the wash, the tomato homogenate was incubated with the EAA for 2 h. In the presence of the tomato homogenate, the log reductions were 2.4 log for S. Newport MDD14 and 3 log for S. Typhimurium FSL R6-0020. It seems like tomato homogenate did not reduce the efficacy of the EAA wash in the two S. enterica serovars tested. We propose the use of EAA as a wash for tomatoes to reduce bacterial counts of S. enterica well as naturally occurring background flora.
Collapse
|
4
|
Zhang L, Chen X, Wang G, Yao J, Wei J, Liu Z, Lin X, Liu Y. Quantitative proteomics reveals the antibiotics adaptation mechanism of Aeromonas hydrophila under kanamycin stress. J Proteomics 2022; 264:104621. [PMID: 35618212 DOI: 10.1016/j.jprot.2022.104621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
Aeromonas hydrophila is a widespread opportunistic pathogen of aquatic fishes in freshwater habitats. The current emergence of antimicrobial-resistant A. hydrophila has been reported in the world while the bacterial antibiotics adaptive mechanism remains poorly explored. In this study, using quantitative proteomics technology, the behavior of A. hydrophila was investigated by comparing the differentially expression proteins between with and without kanamycin (KAN) treatment. A total of 374 altered proteins including 184 increasing and 190 proteins decreasing abundances were quantified when responding to KAN stress. The bioinformatics analysis showed that stress related proteins were hub proteins that significantly increased to reduce the pressure from the misreading of mRNA caused by KAN. Moreover, several metallic pathways, such as oxidative phosphorylation and TCA cycle pathways may affect KAN resistance. Finally, eight selected genes were deleted and their antibiotics susceptibilities to kanamycin were valued, respectively. Results showed that OmpA II family protein A0KI26, and two-component system protein AtoC may involve in the KAN resistance in this study. In general, our results provide an insight into the behaviors of bacterial responding to KAN stress, and demonstrate the intrinsic antibiotics adaptive mechanism of A. hydrophila. BIOLOGICAL SIGNIFICANCE: In this study, the differentially expressed proteins (DEPs) of A. hydrophila strain between with and without kanamycin (KAN) were compared by using a data-independent acquisition (DIA) - based quantitative proteomics method. Bioinformatics analysis showed that stress - related proteins are hub proteins that significantly increased under KAN stress. Moreover, several metallic pathways, such as oxidative phosphorylation and citrate cycle (TCA cycle) pathways, can affect KAN resistance. Finally, our antibiotics susceptibility assay showed that the protein A0KI26 of the OmpA II family, and the AtoC of the two-component system may involve in KAN resistance in this study. These results provide insights into the antibiotics adaptation mechanism of A. hydrophila when responding to KAN stress.
Collapse
Affiliation(s)
- Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomeng Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guibin Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jindong Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin Wei
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou 350002, China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yanling Liu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Fernández-Grajera M, Pacha-Olivenza MA, Gallardo-Moreno AM, González-Martín ML, Pérez-Giraldo C, Fernández-Calderón MC. Modification of physico-chemical surface properties and growth of Staphylococcus aureus under hyperglycemia and ketoacidosis conditions. Colloids Surf B Biointerfaces 2021; 209:112137. [PMID: 34628126 DOI: 10.1016/j.colsurfb.2021.112137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/24/2021] [Accepted: 09/23/2021] [Indexed: 11/26/2022]
Abstract
Diabetes is a widely spread disease affecting the quality of life of millions of people around the world and is associated to a higher risk of developing infections in different parts of the body. The reasons why diabetes enhances infection episodes are not entirely clear; in this study our aim was to explore the changes that one of the most frequently pathogenic bacteria undergoes when exposed to hyperglycemia and ketoacidosis conditions. Physical surface properties such as hydrophobicity and surface electrical charge are related to bacterial growth behavior and the ability of Staphylococcus aureus to form biofilms. The addition of glucose made bacteria more negatively charged and with moderate-intermediate hydrophobicity. Ketone bodies increased hydrophobicity to approximately 75% and pathological concentrations hindered some of the bacterial surface charge by decreasing the negative zeta potential of cells. When both components were present, the bacterial physical surface changes were more similar to those observed in ketone bodies, suggesting a preferential adsorption of ketone bodies over glucose because of the more favorable solubility of glucose in water. Glucose diabetic concentrations gave the highest number of bacteria in the stationary phase of growth and provoked an increase in the biofilm slime index of around 400% in relation to the control state. Also, this situation is related with an increase of bacterial coverage. The combination of a high concentration of glucose and ketone bodies, which corresponds to a poorly controlled diabetic situation, appears associated with an early infection phase; increased hydrophobic attractive force and reduced electrostatic repulsion between cells results in better packing of cells within the biofilm and more efficient retention to the host surface. Knowledge of bacterial response in high amount of glucose and ketoacidosis environments can serve as a basis for designing strategies to prevent bacterial adhesion, biofilm formation and, consequently, the development of infections.
Collapse
Affiliation(s)
- María Fernández-Grajera
- University of Extremadura, Department of Applied Physics, Badajoz, Spain; University Institute of Extremadura Sanity Research (INUBE), Badajoz, Spain
| | - Miguel A Pacha-Olivenza
- University Institute of Extremadura Sanity Research (INUBE), Badajoz, Spain; University of Extremadura, Department of Biomedical Science, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain.
| | - Amparo M Gallardo-Moreno
- University of Extremadura, Department of Applied Physics, Badajoz, Spain; University Institute of Extremadura Sanity Research (INUBE), Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
| | - M Luisa González-Martín
- University of Extremadura, Department of Applied Physics, Badajoz, Spain; University Institute of Extremadura Sanity Research (INUBE), Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
| | - Ciro Pérez-Giraldo
- University Institute of Extremadura Sanity Research (INUBE), Badajoz, Spain; University of Extremadura, Department of Biomedical Science, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
| | - M Coronada Fernández-Calderón
- University Institute of Extremadura Sanity Research (INUBE), Badajoz, Spain; University of Extremadura, Department of Biomedical Science, Badajoz, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
| |
Collapse
|
6
|
Horne SM, Ugrinov A, Prüβ BM. The Food Anti-Microbials β-Phenylethylamine (-HCl) and Ethyl Acetoacetate Do Not Change during the Heating Process. Antibiotics (Basel) 2021; 10:antibiotics10040418. [PMID: 33920266 PMCID: PMC8069388 DOI: 10.3390/antibiotics10040418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 01/17/2023] Open
Abstract
β-Phenylethylamine hydrochloride (PEA-HCl) and ethyl acetoacetate (EAA) are anti-microbials with applications in food processing. As food anti-microbials, the compounds will have to withstand the cooking process without changing to toxic compounds. With this Communication, we address the question of whether PEA and EAA are altered when heated to 73.9 °C or 93.3 °C. A combination of gas chromatography and mass spectrometry was used to analyze solutions of PEA(-HCl) or EAA in beef broth or water. In addition, the anti-microbial activity of PEA-HCl and EAA was compared between heated and unheated samples at a range of concentrations. The gas chromatograms of PEA(-HCl) and EAA showed one peak at early retention times that did not differ between the heated and unheated samples. The mass spectra for PEA and EAA were near identical to those from a spectral database and did not show any differences between the heated and unheated samples. We conclude that PEA(-HCl) and EAA formed pure solutions and were not altered during the heating process. In addition, the anti-microbial activity of PEA-HCl and EAA did not change after the heating of the compounds. Regardless of temperature, the minimal inhibitory concentrations (MICs) for PEA-HCl were 20.75 mmol mL−1 for Escherichia coli and Salmonella enterica serotype Typhimurium. For EAA, the MICs were 23.4 mmol mL−1 for E. coli and 15.6 mmol mL−1 for S. enterica.
Collapse
Affiliation(s)
- Shelley M. Horne
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA;
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA;
| | - Birgit M. Prüβ
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA;
- Correspondence: ; Tel.: +1-701-231-7848
| |
Collapse
|
7
|
Di Marco N, Pungitore C, Lucero‐Estrada C. Aporphinoid alkaloids inhibit biofilm formation of
Yersinia enterocolitica
isolated from sausages. J Appl Microbiol 2020; 129:1029-1042. [DOI: 10.1111/jam.14664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/03/2020] [Accepted: 04/05/2020] [Indexed: 01/16/2023]
Affiliation(s)
- N.I. Di Marco
- Instituto de Investigación en Tecnología Química‐Consejo Nacional de Investigaciones Científicas y Técnicas (INTEQUI‐ CONICET) San Luis Argentina
- Química Orgánica Facultad de Química, Bioquímica y Farmacia Universidad Nacional de San Luis San Luis Argentina
| | - C.R. Pungitore
- Instituto de Investigación en Tecnología Química‐Consejo Nacional de Investigaciones Científicas y Técnicas (INTEQUI‐ CONICET) San Luis Argentina
- Química Orgánica Facultad de Química, Bioquímica y Farmacia Universidad Nacional de San Luis San Luis Argentina
| | - C.S.M. Lucero‐Estrada
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis‐Consejo Nacional de Investigaciones Científicas y Técnicas (IMIBIO‐SL‐CONICET) San Luis Argentina
- Microbiología General Facultad de Química, Bioquímica y Farmacia Universidad Nacional de San Luis San Luis Argentina
| |
Collapse
|
8
|
Cortés MP, Acuña V, Travisany D, Siegel A, Maass A, Latorre M. Integration of Biological Networks for Acidithiobacillus thiooxidans Describes a Modular Gene Regulatory Organization of Bioleaching Pathways. Front Mol Biosci 2020; 6:155. [PMID: 31998751 PMCID: PMC6966769 DOI: 10.3389/fmolb.2019.00155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/13/2019] [Indexed: 11/13/2022] Open
Abstract
Acidithiobacillus thiooxidans is one of the most studied biomining species, highlighting its ability to oxidize reduced inorganic sulfur compounds, coupled with its elevated capacity to live under an elevated concentration of heavy metals. In this work, using an in silico semi-automatic genome scale approach, two biological networks for A. thiooxidans Licanantay were generated: (i) An affinity transcriptional regulatory network composed of 42 regulatory family genes and 1,501 operons (57% genome coverage) linked through 2,646 putative DNA binding sites (arcs), (ii) A metabolic network reconstruction made of 523 genes and 1,203 reactions (22 pathways related to biomining processes). Through the identification of confident connections between both networks (V-shapes), it was possible to identify a sub-network of transcriptional factor (34 regulators) regulating genes (61 operons) encoding for proteins involved in biomining-related pathways. Network analysis suggested that transcriptional regulation of biomining genes is organized into different modules. The topological parameters showed a high hierarchical organization by levels inside this network (14 layers), highlighting transcription factors CysB, LysR, and IHF as complex modules with high degree and number of controlled pathways. In addition, it was possible to identify transcription factor modules named primary regulators (not controlled by other regulators in the sub-network). Inside this group, CysB was the main module involved in gene regulation of several bioleaching processes. In particular, metabolic processes related to energy metabolism (such as sulfur metabolism) showed a complex integrated regulation, where different primary regulators controlled several genes. In contrast, pathways involved in iron homeostasis and oxidative stress damage are mainly regulated by unique primary regulators, conferring Licanantay an efficient, and specific metal resistance response. This work shows new evidence in terms of transcriptional regulation at a systems level and broadens the study of bioleaching in A. thiooxidans species.
Collapse
Affiliation(s)
- María Paz Cortés
- Center for Mathematical Modeling, Universidad de Chile and UMI CNRS 2807, Santiago, Chile.,Center for Genome Regulation, Universidad de Chile, Santiago, Chile
| | - Vicente Acuña
- Center for Mathematical Modeling, Universidad de Chile and UMI CNRS 2807, Santiago, Chile
| | - Dante Travisany
- Center for Mathematical Modeling, Universidad de Chile and UMI CNRS 2807, Santiago, Chile.,Center for Genome Regulation, Universidad de Chile, Santiago, Chile
| | - Anne Siegel
- IRISA, UMR 6074, CNRS, Rennes, France.,INRIA, Dyliss Team, Centre Rennes-Bretagne-Atlantique, Rennes, France
| | - Alejandro Maass
- Center for Mathematical Modeling, Universidad de Chile and UMI CNRS 2807, Santiago, Chile.,Center for Genome Regulation, Universidad de Chile, Santiago, Chile.,Department of Mathematical Engineering, Universidad de Chile, Santiago, Chile
| | - Mauricio Latorre
- Center for Mathematical Modeling, Universidad de Chile and UMI CNRS 2807, Santiago, Chile.,Center for Genome Regulation, Universidad de Chile, Santiago, Chile.,Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile.,Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| |
Collapse
|
9
|
Lu J, Chen Q, Pan B, Qin Z, Fan L, Xia Q, Zhao L. Efficient inhibition of Cronobacter biofilms by chitooligosaccharides of specific molecular weight. World J Microbiol Biotechnol 2019; 35:87. [DOI: 10.1007/s11274-019-2662-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022]
|
10
|
Lenchenko E, Lozovoy D, Strizhakov A, Vatnikov Y, Byakhova V, Kulikov E, Sturov N, Kuznetsov V, Avdotin V, Grishin V. Features of formation of Yersinia enterocolitica biofilms. Vet World 2019; 12:136-140. [PMID: 30936667 PMCID: PMC6431818 DOI: 10.14202/vetworld.2019.136-140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022] Open
Abstract
Aim The work aimed to study the morphology of colonies and their comparison by features of the formation of Yersinia enterocolitica biofilms. Materials and Methods Bacteria were cultured on a Yersinia Selective Agar medium ("CIN-agar") at 28°C for 24 h. The microorganisms were grown in meat-peptone broth with 1.0% glucose to measure the absolute values of the optical density of the culture. The optical density of the liquid was determined in a microplate photometric analyzer Immunochem-2100 (HTI, USA) at a wavelength of 490 nm. For the study of biofilms, the specimens were fixed for 3-5 h in pairs of 25.0% solution of glutaraldehyde (according to DV), and pairs of a 1.0% aqueous solution of osmic acid (OSO4) were used for contrasting for 2-3 min. The specimens were examined with stereoscopic microscopy "BIOMED MS-1 Stereo" (Russia) and scanning electron microscope "TM 3030 plus" (Holland). Results With stereoscopic microscopy of the colonies of Y. enterocolitica, the S-forms had an elevated intensely colored center, radial striation along the periphery, smooth edges, d ≤ 1.0 mm. R-form colonies had a dark color and a dry surface, were tuberous and had a dense center with a peripheral ridge, rugged edges, d ≥ 1.5 mm. The optical density of the Y. enterocolitica S-form showed that this type of microorganism belongs to the moderate producers of biofilms since the optical density of the sample (density of the sample - Ds) exceeded the optical density of control (density of the control - Dc) by 3 times. In Y. enterocolitic a R-form (D ≤ 0.197) weakly produced biofilms, the optical density of the sample exceeded the optical density of the control by <2 times. Conclusion The ability to form biofilms, the variability of phenotypic features, and the multiplicity of virulence factors of bacteria significantly reduce the effectiveness of diagnostic studies. The development of accelerated methods of detection and differentiation of the virulent properties of pathogenic bacteria will allow scientifically to substantiate and develop a set of measures aimed at preventing animal diseases and obtaining safe livestock products to prevent human diseases. Thus, we need to pay attention to which forms of colonies do Y. enterocolitic a form on solid nutrient media: S- or R-forms. Through this study, we know that bacteria-forming S-shaped colonies are more capable of forming biofilms than R-forms. It means that they are more pathogenic and can cause persistent infections due to adhesion and biofilm formation.
Collapse
Affiliation(s)
- E Lenchenko
- Department of Veterinary Medicine, Moscow State University of Food Production, Moscow, Russia
| | - D Lozovoy
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples' Friendship University of Russia, Moscow, Russia
| | - A Strizhakov
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples' Friendship University of Russia, Moscow, Russia
| | - Yu Vatnikov
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples' Friendship University of Russia, Moscow, Russia
| | - V Byakhova
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples' Friendship University of Russia, Moscow, Russia
| | - Eu Kulikov
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples' Friendship University of Russia, Moscow, Russia
| | - N Sturov
- Department of General medical practice, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
| | - V Kuznetsov
- Department of General medical practice, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
| | - V Avdotin
- Department of Agrobiotechnology, Agrarian Technological Institute, Peoples' Friendship University of Russia, Moscow, Russia
| | - V Grishin
- Department of Agrobiotechnology, Agrarian Technological Institute, Peoples' Friendship University of Russia, Moscow, Russia
| |
Collapse
|
11
|
Schroeder M, Horne SM, Prüß BM. Efficacy of β-phenylethylamine as a novel anti-microbial and application as a liquid catheter flush. J Med Microbiol 2018; 67:1778-1788. [PMID: 30325301 DOI: 10.1099/jmm.0.000840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
With this study, we introduce a liquid flush for catheters and other tubing-based applications that consists of a solution of β-phenylethylamine (PEA) in tryptic soy broth. The initial experiments in multiwell polystyrene plates were conducted with Escherichia coli K-12 to assess the effectiveness of PEA at reducing planktonic growth, as well as the biomass and adenosine triphosphate (ATP) content of biofilm; PEA reduced these growth parameters as a function of increasing concentration. This effect was also seen in mutants of PEA catabolism, which leads us to believe that the PEA effect is due to PEA itself and not one of its degradation products. Since PEA reduced planktonic growth and biofilm when added at the time of inoculation, as well as at later time points, we propose PEA as a novel compound for the prevention and treatment of biofilm. PEA reduced planktonic growth and the ATP content of the biofilm for five bacterial pathogens, including an enterohemorrhagic E. coli, two uropathogenic E. coli, Pseudomonas aeruginosa and Staphylococcus aureus. A major finding of this study is the reduction of the ATP content of biofilm that formed in silicone tubing by periodic flushes of PEA. This experiment was performed to model antibiotic-lock treatment of an intravenous catheter. It was found that 10 mg ml-1 of PEA reduced the ATP content of biofilm of five bacterial strains by 96.3 % or more after 2 weeks of incubation and three treatments with PEA. For P. aeruginosa, the reduction in ATP content was paralleled by an identical percentage reduction in viable cells in the biofilm.
Collapse
Affiliation(s)
- Meredith Schroeder
- Department of Microbiological Sciences, North Dakota State University, 1523 Centennial Blvd, Fargo ND, 58108-6050, USA
| | - Shelley M Horne
- Department of Microbiological Sciences, North Dakota State University, 1523 Centennial Blvd, Fargo ND, 58108-6050, USA
| | - Birgit M Prüß
- Department of Microbiological Sciences, North Dakota State University, 1523 Centennial Blvd, Fargo ND, 58108-6050, USA
| |
Collapse
|