1
|
Salas-Millán JÁ, Aguayo E. Fermentation for Revalorisation of Fruit and Vegetable By-Products: A Sustainable Approach Towards Minimising Food Loss and Waste. Foods 2024; 13:3680. [PMID: 39594095 PMCID: PMC11594132 DOI: 10.3390/foods13223680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
In a world increasingly focused on sustainability and integrated resource use, the revalorisation of horticultural by-products is emerging as a key strategy to minimise food loss and waste while maximising value within the food supply chain. Fermentation, one of the earliest and most versatile food processing techniques, utilises microorganisms or enzymes to induce desirable biochemical transformations that enhance the nutritional value, digestibility, safety, and sensory properties of food products. This process has been identified as a promising method for producing novel, high-value food products from discarded or non-aesthetic fruits and vegetables that fail to meet commercial standards due to aesthetic factors such as size or appearance. Besides waste reduction, fermentation enables the production of functional beverages and foods enriched with probiotics, antioxidants, and other bioactive compounds, depending on the specific horticultural matrix and the types of microorganisms employed. This review explores the current bioprocesses used or under investigation, such as alcoholic, lactic, and acetic acid fermentation, for the revalorisation of fruit and vegetable by-products, with particular emphasis on how fermentation can transform these by-products into valuable foods and ingredients for human consumption, contributing to a more sustainable and circular food system.
Collapse
Affiliation(s)
- José Ángel Salas-Millán
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
- Food Quality and Health Group, Institute of Plant Biotechnology (IBV-UPCT), Campus Muralla Del Mar, 30202 Cartagena, Spain
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
- Food Quality and Health Group, Institute of Plant Biotechnology (IBV-UPCT), Campus Muralla Del Mar, 30202 Cartagena, Spain
| |
Collapse
|
2
|
Vicente J, Navascués E, Benito S, Marquina D, Santos A. Microsatellite typing of Lachancea thermotolerans for wine fermentation monitoring. Int J Food Microbiol 2023; 394:110186. [PMID: 36963240 DOI: 10.1016/j.ijfoodmicro.2023.110186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
Climate change is causing a lack of acidity during winemaking and oenologists use several solutions to cope with such a problem. Lachancea thermotolerans, which has the potential to tolerate the harsh physicochemical conditions of wine, has emerged as a promising alternative for pH management during winemaking and, currently, it is the most valuable yeast used for acidity control in wine. In this work a manageable method for L. thermotolerans genotyping based on a multiplexed microsatellite amplification in 6 different loci was developed. The proposed method was used to distinguish between 103 collection strains obtained from different geographical and isolation sources, and then challenged against a 429 L. thermotolerans isolates from several wineries and harvests. The procedure was also tested for fermentation monitoring and strain implantation. This approach was conceived to simplify the methodology available for L. thermotolerans genotyping, making it easy for applying in wine-related laboratories. This method can be applied to distinguish between L. thermotolerans strains in selection programs and to follow implantation of inoculated strains during winemaking with optimal results.
Collapse
Affiliation(s)
- Javier Vicente
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Eva Navascués
- Pago de Carraovejas, S.L.U., 47300 Peñafiel, Valladolid, Spain; Department of Chemistry and Food Technology, Polytechnic University of Madrid, 28040 Madrid, Spain
| | - Santiago Benito
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, 28040 Madrid, Spain
| | - Domingo Marquina
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
3
|
de Celis M, Ruiz J, Vicente J, Acedo A, Marquina D, Santos A, Belda I. Expectable diversity patterns in wine yeast communities. FEMS Yeast Res 2022; 22:6648099. [PMID: 35862862 DOI: 10.1093/femsyr/foac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022] Open
Abstract
Wine fermentations are dominated by Saccharomyces yeast. However, dozens of non-Saccharomyces yeast genera can be found in grape musts and in the early and intermediate stages of wine fermentation, where they co-exist with S. cerevisiae. The diversity of non-Saccharomyces species is determinant for the sensorial attributes of the resulting wines, both directly (by producing aroma impact compounds) and indirectly (modulating the performance of Saccharomyces). Many research groups worldwide are exploring the great diversity of wine yeasts to exploit their metabolic potential to improve wine flavor or to prevent wine spoilage. In this work, we share a new dataset from a wide ITS amplicon survey of 272 wine samples, and we perform a preliminary exploration to build a catalogue of 242 fungal and yeast genera detectable in wine samples, estimating global figures of their prevalence and relative abundance patterns across wine samples. Thus, our mycobiome survey provides a broad measure of the yeast diversity potentially found in wine fermentations; we hope that the wine yeast research community finds it useful, and we also want to encourage further discussion on the advantages and limitations that meta-taxonomic studies may have in wine research and industry.
Collapse
Affiliation(s)
- Miguel de Celis
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier Ruiz
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier Vicente
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Domingo Marquina
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ignacio Belda
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Preliminary Evaluation of the Use of Thermally-Dried Immobilized Kefir Cells in Low Alcohol Winemaking. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low alcohol wines (≤10.5% vol) are novel products that have gradually been gaining the consumers’ and market’s interest over the last decade. Taking into account the technological properties of immobilized cell systems alongside with the commercial need for dry cultures, the aim of the present study was to assess the suitability of thermally-dried immobilized kefir cells on DCM, apples pieces, and grape skins in low alcohol wine production. Storage of thermally-dried kefir culture in various temperatures (−18, 5, and 20 °C) resulted in high viability rates for immobilized cells (up to 93% for yeasts/molds immobilized on grape skins and stored at −18 °C for 6 months). Fermentation activity was maintained after storage in all cases, while high operational stability was confirmed in repeated batch fermentations for a period of 6 months. Principal Component Analysis (PCA) revealed that the fermentation temperature rather than the state of kefir culture affected significantly volatiles detected by Head Space Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry analysis. Notably, all new products were of high quality and approved by the sensory panel.
Collapse
|
5
|
New Isolated Autochthonous Strains of S. cerevisiae for Fermentation of Two Grape Varieties Grown in Poland. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Many commercial strains of the Saccharomyces cerevisiae species are used around the world in the wine industry, while the use of native yeast strains is highly recommended for their role in shaping specific, terroir-associated wine characteristics. In recent years, in Poland, an increase in the number of registered vineyards has been observed, and Polish wines are becoming more recognizable among consumers. In the fermentation process, apart from ethyl alcohol, numerous microbial metabolites are formed. These compounds shape the wine bouquet or become precursors for the creation of new products that affect the sensory characteristics and quality of the wine. The aim of this work was to study the effect of the grapevine varieties and newly isolated native S. cerevisiae yeast strains on the content of selected wine fermentation metabolites. Two vine varieties—Regent and Seyval blanc were used. A total of 16 different yeast strains of the S. cerevisiae species were used for fermentation: nine newly isolated from vine fruit and seven commercial cultures. The obtained wines differed in terms of the content of analyzed oenological characteristics and the differences depended both on the raw material (vine variety) as well as the source of isolation and origin of the yeast strain used (commercial vs. native). Generally, red wines characterized a higher content of tested analytes than white wines, regardless of the yeast strain used. The red wines are produced with the use of native yeast strains characterized by higher content of amyl alcohols and esters.
Collapse
|
6
|
Selection of Three Indigenous Lebanese Yeast Saccharomyces cerevisiae with Physiological Traits from Grape Varieties in Western Semi-Desert and Pedoclimatic Conditions in the Bekaa Valley. FERMENTATION 2021. [DOI: 10.3390/fermentation7040280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Wine production depends on the fermentation process performed by yeasts, especially (but not solely) strains of the species Saccharomyces cerevisiae, which is a technique that has been practiced from the Middle Ages till modern days. Selecting indigenous starters offers a beneficial technique to manage alcoholic grape juice fermentation, conserving the particular sensory qualities of wine produced from specific regions. This paper investigated yeast biodiversity of four grape varieties (Carignan, Syrah, Grenache, and Aswad Karesh) grown in the pedoclimatic western semi-desert Bekaa Valley. Further research identified, characterized, and selected strains with the most industrial wine interest and economic value to Lebanon. By using molecular methods and by the ITS PCR analysis, the isolates belonging to the Saccharomyces and non-Saccharomyces genus were identified. These isolates taken from four varieties were further characterized by amplification with Interdelta and δ12/δ21 primer pairs, permitting the identification of 96 S. cerevisiae strains. Forty-five genomically homogenous groups were classified through the comparison between their mtDNA RFLP patterns. Based on physiological characterization analysis (H2S and SO2 production, killer phenotype, sugar consumption, malic and acetic acid, etc.), three strains (NL28629, NL28649, and NL28652) showed interesting features, where they were also vigorously fermented in a synthetic medium. These strains can be used as a convenient starter for typical wine production. In particular, Carignan and Syrah had the highest percentage of strains with the most desirable physiological parameters.
Collapse
|
7
|
Ma Y, Li T, Xu X, Ji Y, Jiang X, Shi X, Wang B. Investigation of Volatile Compounds, Microbial Succession, and Their Relation During Spontaneous Fermentation of Petit Manseng. Front Microbiol 2021; 12:717387. [PMID: 34475866 PMCID: PMC8406806 DOI: 10.3389/fmicb.2021.717387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
Petit Manseng is widely used for fermenting sweet wine and is popular among younger consumers because of its sweet taste and attractive flavor. To understand the mechanisms underlying spontaneous fermentation of Petit Manseng sweet wine in Xinjiang, the dynamic changes in the microbial population and volatile compounds were investigated through high-throughput sequencing (HTS) and headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) technology, respectively. Moreover, the relationship between the microbial population and volatile compounds was deduced via multivariate data analysis. Candida and Mortierella were dominant genera in Petit Manseng wine during spontaneous fermentation. Many fermentative aroma compounds, including ethyl octanoate, isoamyl acetate, ethyl butyrate, ethyl decanoate, isoamyl alcohol, ethyl laurate, isopropyl acetate, hexanoic acid, and octanoic acid, were noted and found to be responsible for the strong fruity and fatty aroma of Petit Manseng sweet wine. Multivariate data analysis indicated that the predominant microorganisms contributed to the formation of these fermentative aroma compounds. Hannaella and Neomicrosphaeropsis displayed a significantly positive correlation with the 6-methylhept-5-en-2-one produced. The current results provide a reference for producing Petit Manseng sweet wine with desirable characteristics.
Collapse
Affiliation(s)
- Yanqin Ma
- Food College, Shihezi University, Shihezi, China
| | - Tian Li
- Food College, Shihezi University, Shihezi, China
| | - Xiaoyu Xu
- Food College, Shihezi University, Shihezi, China
| | - Yanyu Ji
- Food College, Shihezi University, Shihezi, China
| | - Xia Jiang
- Food College, Shihezi University, Shihezi, China
| | - Xuewei Shi
- Food College, Shihezi University, Shihezi, China
| | - Bin Wang
- Food College, Shihezi University, Shihezi, China
| |
Collapse
|
8
|
Philipp C, Bagheri B, Horacek M, Eder P, Bauer FF, Setati ME. Inoculation of grape musts with single strains of Saccharomyces cerevisiae yeast reduces the diversity of chemical profiles of wines. PLoS One 2021; 16:e0254919. [PMID: 34292980 PMCID: PMC8297920 DOI: 10.1371/journal.pone.0254919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022] Open
Abstract
Anecdotal evidence suggests that spontaneous alcoholic fermentation of grape juice is becoming a more popular option in global wine production. Wines produced from the same grape juice by inoculation or spontaneous fermentation usually present distinct chemical and sensorial profiles. Inoculation has been associated with more similar end-products, a loss of typicity, and lower aroma complexity, and it has been suggested that this may be linked to suppression of the local or regional wine microbial ecosystems responsible for spontaneous fermentations. However, whether inoculated fermentations of different juices from different regions really end up with a narrower, less diverse chemical profile than those of spontaneously fermented juices has never been properly investigated. To address this question, we used grape juice from three different varieties, Grüner Veltliner (white), Zweigelt (red), and Pinot noir (red), originating from different regions in Austria to compare spontaneous and single active dry yeast strains inoculated fermentations of the same grape samples. The chemical analysis covered primary metabolites such as glycerol, ethanol and organic acids, and volatile secondary metabolites, including more than 40 major and minor esters, as well as higher alcohols and volatile fatty acids, allowing an in depth statistical evaluation of differences between fermentation strategies. The fungal (mainly yeast) communities throughout fermentations were monitored using automated ribosomal intergenic spacer analysis. The data provide evidence that inoculation with single active dry yeast strains limits the diversity of the chemical fingerprints. The fungal community profiles clearly show that inoculation had an effect on fermentation dynamics and resulted in chemically less diverse wines.
Collapse
Affiliation(s)
- Christian Philipp
- Department of Chemistry and Quality Control, Höhere Bundeslehranstalt und Bundesamt für Wein- und Obstbau, Klosterneuburg, Austria
| | - Bahareh Bagheri
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, South Africa
| | - Micha Horacek
- Department of Lithospheric Research, Vienna University, Vienna, Austria
| | - Phillip Eder
- Department of Chemistry and Quality Control, Höhere Bundeslehranstalt und Bundesamt für Wein- und Obstbau, Klosterneuburg, Austria
| | - Florian Franz Bauer
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, South Africa
| | - Mathabatha Evodia Setati
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, South Africa
| |
Collapse
|
9
|
Oenological Potential of Autochthonous Saccharomyces cerevisiae Yeast Strains from the Greek Varieties of Agiorgitiko and Moschofilero. BEVERAGES 2021. [DOI: 10.3390/beverages7020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nemea and Mantinia are famous wine regions in Greece known for two indigenous grape varieties, Agiorgitiko and Moschofilero, which produce high quality PDO wines. In the present study, indigenous Saccharomyces cerevisiae yeast strains were isolated and identified from spontaneous alcoholic fermentation of Agiorgitiko and Moschofilero musts in order to evaluate their oenological potential. Random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) recovered the presence of five distinct profiles from a total of 430 yeast isolates. The five obtained strains were evaluated at microvinifications trials and tested for basic oenological and biochemical parameters including sulphur dioxide and ethanol tolerance as well as H2S production in sterile grape must. The selected autochthonous yeast strains named, Soi2 (Agiorgitiko wine) and L2M (Moschofilero wine), were evaluated also in industrial (4000L) fermentations to assess their sensorial and oenological characteristics. The volatile compounds of the produced wines were determined by GC-FID. Our results demonstrated the feasibility of using Soi2 and L2M strains in industrial fermentations for Agiorgitiko and Moschofilero grape musts, respectively.
Collapse
|
10
|
Pretorius IS. Tasting the terroir of wine yeast innovation. FEMS Yeast Res 2021; 20:5674549. [PMID: 31830254 PMCID: PMC6964221 DOI: 10.1093/femsyr/foz084] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Wine is an archetypal traditional fermented beverage with strong territorial and socio-cultural connotations. Its 7000 year history is patterned by a tradition of innovation. Every value-adding innovation − whether in the vineyard, winery, supply chain or marketplace − that led to the invention of a new tradition spurred progress and created a brighter future from past developments. In a way, wine traditions can be defined as remembered innovations from the distant past − inherited knowledge and wisdom that withstood the test of time. Therefore, it should not be assumed a priori that tradition and innovation are polar opposites. The relations between the forces driven by the anchors of tradition and the wings of innovation do not necessarily involve displacement, conflict or exclusiveness. Innovation can strengthen wine tradition, and the reinvention of a tradition-bound practice, approach or concept can foster innovation. In cases where a paradigm-shifting innovation disrupts a tradition, the process of such an innovation transitioning into a radically new tradition can become protracted while proponents of divergent opinions duke it out. Sometimes these conflicting opinions are based on fact, and sometimes not. The imperfections of such a debate between the ‘ancients’ and the ‘moderns’ can, from time to time, obscure the line between myth and reality. Therefore, finding the right balance between traditions worth keeping and innovations worth implementing can be complex. The intent here is to harness the creative tension between science fiction and science fact when innovation's first-principles challenge the status quo by re-examining the foundational principles about a core traditional concept, such as terroir. Poignant questions are raised about the importance of the terroir (biogeography) of yeasts and the value of the microbiome of grapes to wine quality. This article imagines a metaphorical terroir free from cognitive biases where diverse perspectives can converge to uncork the effervescent power of territorial yeast populations as well as ‘nomadic’ yeast starter cultures. At the same time, this paper also engages in mental time-travel. A future scenario is imagined, explored, tested and debated where terroir-less yeast avatars are equipped with designer genomes to safely and consistently produce, individually or in combination with region-specific wild yeasts and or other starter cultures, high-quality wine according to the preferences of consumers in a range of markets. The purpose of this review is to look beyond the horizon and to synthesize a link between what we know now and what could be. This article informs readers where to look without suggesting what they must see as a way forward. In the context of one of the world's oldest fermentation industries − steeped in a rich history of tradition and innovation − the mantra here is: respect the past, lead the present and secure the future of wine.
Collapse
Affiliation(s)
- I S Pretorius
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, 19 Eastern Road, North Ryde, Sydney, NSW 2109, Australia
| |
Collapse
|
11
|
González-Alonso I, Walker ME, Vallejo-Pascual ME, Naharro-Carrasco G, Jiranek V. Capturing yeast associated with grapes and spontaneous fermentations of the Negro Saurí minority variety from an experimental vineyard near León. Sci Rep 2021; 11:3748. [PMID: 33580153 PMCID: PMC7881026 DOI: 10.1038/s41598-021-83123-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/27/2021] [Indexed: 11/23/2022] Open
Abstract
‘Microbial terroir’ relates to the influence of autochthonous yeasts associated with a grape cultivar on the resultant wine. Geographic region, vineyard site and topography, climate and vintage influence the biodiversity of these microbial communities. Current research focus attempts to correlate their ‘microbial fingerprint’ to the sensorial and chemical characteristics of varietal wines from distinct geographical wine regions. This study focuses on the minor red grape variety, Negro Saurí, which has seen a resurgence in the León Appellation of Origin in Spain as a varietal wine. An experimental vineyard at Melgarajo S.A. (42° 15′ 48.68_N 5° 9′ 56.66_W) was sampled over four consecutive vintages, with autochthonous yeasts being isolated from grapes, must and pilot-scale un-inoculated fermentations, and identified by ITS sequencing. Forty-nine isolates belonging to Metschnikowia pulcherrima, Lachancea thermotolerans, Hanseniaspora uvarum and Torulaspora delbrueckii were isolated from grapes and must, and early stages of fermentation dependent on seasonal variation. Saccharomyces cerevisiae predominated throughout fermentation, as a heterogeneous and dynamic population, with seven major biotypes identified amongst 110 isolates across four consecutive vintages. Twenty-four S. cerevisiae isolates representing five strains dominated in two or more vintages. Their persistence through fermentation warrants further validation of their oenological properties as starter cultures.
Collapse
Affiliation(s)
| | | | | | | | - Vladimir Jiranek
- Department of Wine Science, The University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia. .,Australian Research Council Training Centre for Innovative Wine Production, Adelaide, Australia.
| |
Collapse
|
12
|
Quantifying the effect of human practices on S. cerevisiae vineyard metapopulation diversity. Sci Rep 2020; 10:16214. [PMID: 33004911 PMCID: PMC7530672 DOI: 10.1038/s41598-020-73279-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/27/2020] [Indexed: 12/04/2022] Open
Abstract
Saccharomyces cerevisiae is the main actor of wine fermentation but at present, still little is known about the factors impacting its distribution in the vineyards. In this study, 23 vineyards and 7 cellars were sampled over 2 consecutive years in the Bordeaux and Bergerac regions. The impact of geography and farming system and the relation between grape and vat populations were evaluated using a collection of 1374 S. cerevisiae merlot grape isolates and 289 vat isolates analyzed at 17 microsatellites loci. A very high genetic diversity of S. cerevisiae strains was obtained from grape samples, higher in conventional farming system than in organic one. The geographic appellation and the wine estate significantly impact the S. cerevisiae population structure, whereas the type of farming system has a weak global effect. When comparing cellar and vineyard populations, we evidenced the tight connection between the two compartments, based on the high proportion of grape isolates (25%) related to the commercial starters used in the cellar and on the estimation of bidirectional geneflows between the vineyard and the cellar compartments.
Collapse
|
13
|
Saccharomyces cerevisiae Strain Diversity Associated with Spontaneous Fermentations in Organic Wineries from Galicia (NW Spain). FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6030089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Yeast play an essential role in wine quality. The dynamics of yeast strains during fermentation determine the final chemical and sensory characteristics of wines. This study aims to evaluate the Saccharomyces cerevisiae strains diversity in organic wineries from Galicia (NW Spain). Samples from spontaneous fermentations were taken in five wineries over three consecutive years (2013 to 2015). The samples were transported to the laboratory and processed following standard methodology for yeast isolation. S. cerevisiae strains were differentiated by mDNA-RFLPs. A total of 66 different strains were identified. Some of them presented a wide distribution and appeared in several wineries. However, other strains were typical from a specific winery. Similarity analysis using two different statistical tests showed significant differences in strain diversity among wineries. The results also revealed high biodiversity indexes; however, only some strains showed an important incidence in their distribution and frequency. Our findings confirmed that spontaneous fermentation favored the existence of a high S. cerevisiae strain diversity in organic wineries from Galicia. The presence of different yeasts during fermentation, specially winery-specific strains, contribute to increased wine complexity and differentiation.
Collapse
|
14
|
Böhmer M, Smoľak D, Ženišová K, Čaplová Z, Pangallo D, Puškárová A, Bučková M, Cabicarová T, Budiš J, Šoltýs K, Rusňáková D, Kuchta T, Szemes T. Comparison of microbial diversity during two different wine fermentation processes. FEMS Microbiol Lett 2020; 367:5902846. [PMID: 32897314 DOI: 10.1093/femsle/fnaa150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Wine production is a complex procedure in which an important role is played by many microorganisms, particularly yeasts and bacteria. In modern wineries, alcoholic fermentation is usually carried out by adding microbial starter cultures of Saccharomyces cerevisiae strains for precisely controlled production. Nowadays, in the Slovak Republic, autochthonous vinification is getting more popular. The present article deals with the comparison of two vinification approaches, namely spontaneous fermentation and fermentation controlled by a standard commercial S. cerevisiae starter, from the point of view of microbiota dynamics and the chemical characteristics of the wines produced. The dynamics of microbial populations were determined during the fermentation process by a 16S and 28S rRNA next-generation sequencing approach. A profile of the volatile compounds during these fermentation processes was identified by solid-phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS). In summary, the microbial diversity in the m1 phase (initial must) was higher, despite the presence of the starter culture. In the m3 phase (young wine), the microbiome profiles of both batches were very similar. It seems that the crucial phase in order to study the relationship of the microbiome and the resulting product should be based on the m2 phase (fermented must), where the differences between the autochthonous and inoculated batches were more evident.
Collapse
Affiliation(s)
- Miroslav Böhmer
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.,Science park, Comenius University in Bratislava, Ilkovičova 8, 841 04 Bratislava, Slovakia
| | - Dávid Smoľak
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.,Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Katarína Ženišová
- Department of Microbiology, Molecular Biology and Biotechnology, Food Research Institute, National Agricultural and Food Centre, Priemyselná 4, 824 75 Bratislava, Slovakia
| | - Zuzana Čaplová
- Department of Microbiology, Molecular Biology and Biotechnology, Food Research Institute, National Agricultural and Food Centre, Priemyselná 4, 824 75 Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Andrea Puškárová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Tereza Cabicarová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Jaroslav Budiš
- Science park, Comenius University in Bratislava, Ilkovičova 8, 841 04 Bratislava, Slovakia.,Geneton Ltd., 841 04 Bratislava, Slovakia.,Slovak Centre of Scientific and Technical Information, Lamačská cesta 8/A, 811 04 Bratislava, Slovakia
| | - Katarína Šoltýs
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.,Science park, Comenius University in Bratislava, Ilkovičova 8, 841 04 Bratislava, Slovakia
| | - Diana Rusňáková
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.,Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Tomáš Kuchta
- Department of Microbiology, Molecular Biology and Biotechnology, Food Research Institute, National Agricultural and Food Centre, Priemyselná 4, 824 75 Bratislava, Slovakia
| | - Tomáš Szemes
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.,Science park, Comenius University in Bratislava, Ilkovičova 8, 841 04 Bratislava, Slovakia.,Geneton Ltd., 841 04 Bratislava, Slovakia
| |
Collapse
|
15
|
Abstract
Yeast inoculation is a widespread practice in winemaking in order to control the must fermentation. However, the use of indigenous wine yeasts can enrich wine quality and differentiate wine styles. Yeast cream preparation (CRY), recently accepted by the International Organization of Vine and Wine, could allow an easier usage of autochthonous yeasts. This work aimed at investigating the actual Italian wine industry’s attitude towards the available formulations of commercial wine yeasts with attention to CRY. Moreover, this study evaluated the perception of wineries toward indigenous yeasts in both winemaking and marketing viewpoints. Data show different levels of knowledge and use about the available yeast formulations. In general, there is not a predominantly positive or negative participants’ opinion regarding the use of indigenous yeasts. Wineries using CRY (4% of the sample) mainly adopt them as a part of the production in order to compare the wines with the ones traditionally obtained with commercial yeasts. CRY is perceived by some interviewees as a potential tool to increase communication and product differentiation. This survey could have anticipated future trends in the use of yeast formulations, determined by the market demands for diversified, unique, and environmentally sustainable products, that can allow an accessible application of precision enology.
Collapse
|
16
|
Abstract
In order to select Saccharomyces cerevisiae starter strains for ‘‘Merwah’’ wine production, three strains (M.6.16, M.10.16, and M.4.17) previously isolated from ‘‘Merwah’’ must and characterized at the lab scale were tested in pilot-scale fermentation in a Lebanese winery during the 2019 vintage. The three inoculated musts were compared to that obtained with a spontaneous fermentation. During the fermentations, must samples were taken to evaluate the dominance of the inoculated strains, and at the end of fermentation, the obtained wines were subjected to chemical and sensorial characterization. Molecular monitoring by interdelta analysis revealed that only M.4.17 was able to complete the fermentation and dominate over the wild yeasts. Based on the analysis of principal technological parameters (i.e., residual sugar, fermentative vigor, sulfur production, and acetic acid) and sensorial analysis of the wines obtained, M.4.17 was selected as an adequate starter for the production of typical ‘‘Merwah’’ wine.
Collapse
|
17
|
Feghali N, Albertin W, Tabet E, Rizk Z, Bianco A, Zara G, Masneuf-Pomarede I, Budroni M. Genetic and Phenotypic Characterisation of a Saccharomyces cerevisiae Population of 'Merwah' White Wine. Microorganisms 2019; 7:microorganisms7110492. [PMID: 31717787 PMCID: PMC6920927 DOI: 10.3390/microorganisms7110492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/16/2022] Open
Abstract
The study of yeast biodiversity represents an important step in the preservation of the local heritage, and this work in particular has an innovative character since no further studies have investigated 'Merwah', one of the main grape varieties used in winemaking in Lebanon. To gain deeper knowledge of the genetic diversity and population structure of native Saccharomyces cerevisiae wine strains, 202 isolates were collected during spontaneous alcoholic fermentation of eight must/wine samples of cultivar 'Merwah', over two consecutive years (2016, 2017) in a traditional winery in Mount Lebanon (1400 m a.s.l.). The isolates were identified as S. cerevisiae on the basis of their morphology and preliminary sequence analysis of their internal transcribed spacer (ITS) PCR. They were then characterised at the strain level by interdelta PCR and genotyped using multiplex PCR reactions of 12 microsatellite markers. High genetic diversity was observed for the studied population. To select potential yeast starter strains from this population, micro-fermentations were carried out for 22 S. cerevisiae strains that were selected as representative of the 'Merwah' wine yeast population in order to determine their technological and oenological properties. Three indigenous yeast strains might represent candidates for pilot-scale fermentation in the winery, based on relevant features such as high fermentation vigour, low production of volatile acidity and H2S and low residual sugar content at the end of alcoholic fermentation.
Collapse
Affiliation(s)
- Nadine Feghali
- Department of Agricultural Science, University of Sassari, 07100 Sassari, Italy; (N.F.); (A.B.); (G.Z.)
- UR Œnologie EA 4577, USC 1366 INRA, University of Bordeaux, Villenave d’Ornon, 33882 Bordeaux, France; (W.A.); (I.M.-P.)
- Faculty of Agricultural Sciences-CRFA, Lebanese University, Ghazir, Lebanon;
| | - Warren Albertin
- UR Œnologie EA 4577, USC 1366 INRA, University of Bordeaux, Villenave d’Ornon, 33882 Bordeaux, France; (W.A.); (I.M.-P.)
| | - Edouard Tabet
- Faculty of Agricultural Sciences-CRFA, Lebanese University, Ghazir, Lebanon;
| | - Ziad Rizk
- Lebanese Agricultural Research Institute (LARI), 90-1965 Fanar, Lebanon;
| | - Angela Bianco
- Department of Agricultural Science, University of Sassari, 07100 Sassari, Italy; (N.F.); (A.B.); (G.Z.)
| | - Giacomo Zara
- Department of Agricultural Science, University of Sassari, 07100 Sassari, Italy; (N.F.); (A.B.); (G.Z.)
| | - Isabelle Masneuf-Pomarede
- UR Œnologie EA 4577, USC 1366 INRA, University of Bordeaux, Villenave d’Ornon, 33882 Bordeaux, France; (W.A.); (I.M.-P.)
| | - Marilena Budroni
- Department of Agricultural Science, University of Sassari, 07100 Sassari, Italy; (N.F.); (A.B.); (G.Z.)
- Correspondence: ; Tel.: +39-329-1710128
| |
Collapse
|
18
|
The Biodiversity of Saccharomyces cerevisiae in Spontaneous Wine Fermentation: The Occurrence and Persistence of Winery-Strains. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5040086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Saccharomyces cerevisiae populations occurring in spontaneous wine fermentations display a high polymorphism, although few strains are generally able to dominate the fermentative process. Recent studies have suggested that these indigenous S. cerevisiae strains are representative of a specific oenological ecosystem, being associated to a given wine-producing area or a single winery. In contrast, according to other ecological studies, no correlation between genotypic and phenotypic groups of the native S. cerevisiae strains and their origin was found. In this work, several S. cerevisiae strains were isolated in consecutive years from spontaneous fermentations carried out in the same wineries located in different oenological areas in Tuscany, and their persistence was assessed by molecular methods. Some predominant S. cerevisiae strains persisted in different fermentations in the same winery from one year to another and they seemed to be representative of a single winery rather than of an oenological area. Therefore, data suggested the idea of the “winery effect” or a microbial terroir at a smaller scale. The use of these typical strains as starter yeasts could provide wines with the distinctive characteristics of a particular winery or sub-zone.
Collapse
|
19
|
Looking at the Origin: Some Insights into the General and Fermentative Microbiota of Vineyard Soils. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5030078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In winemaking processes, there is a current tendency to develop spontaneous fermentations taking advantage of the metabolic diversity of derived from the great microbial diversity present in grape musts. This enological practice enhances wine complexity, but undesirable consequences or deviations could appear on wine quality. Soil is a reservoir of important microorganisms for different beneficial processes, especially for plant nutrition, but it is also the origin of many of the phytopathogenic microorganisms that affect vines. In this study, a meta-taxonomic analysis of the microbial communities inhabiting vineyard soils was realized. A significant impact of the soil type and climate aspects (seasonal patterns) was observed in terms of alpha and beta bacterial diversity, but fungal populations appeared as more stable communities in vineyard soils, especially in terms of alpha diversity. Focusing on the presence and abundance of wine-related microorganisms present in the studied soils, some seasonal and soil-dependent patterns were observed. The Lactobacillaceae family, containing species responsible for the malolactic fermentation, was only present in non-calcareous soils samples and during the summer season. The study of wine-related fungi indicated that the Debaryomycetaceae family dominates the winter yeast population, whereas the Saccharomycetaceae family, containing the most important fermentative yeast species for winemaking, was detected as dominant in summer.
Collapse
|