1
|
Liu W, Bao Y, Li K, Yang N, He P, He C, Liu J. The diversity of planktonic bacteria driven by environmental factors in different mariculture areas in the East China Sea. MARINE POLLUTION BULLETIN 2024; 201:116136. [PMID: 38382319 DOI: 10.1016/j.marpolbul.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Planktonic bacteria play a crucial role in sustaining the ecological balance of aquatic ecosystems. However, their seasonal variations in different aquaculture areas within the East China Sea, along with their correlation to environmental factors, have not been extensively explored. In this study, each area with 3 sample points were set up to represent the fish aquaculture area, shellfish aquaculture area and non-aquaculture area. In 2019, we undertook four marine surveys along the Xiasanhengshan uninhabited island, during which we gathered surface seawater samples for both physicochemical analysis and high-throughput sequencing. This allowed us to obtain data about the physicochemical properties and microbial composition in each surveyed region. A short-term eutrophication phenomenon was present in the sea, and the spatial and temporal distribution of planktonic bacteria differed based on the mariculture area. At the phylum level, Proteobacteria accounted for >50 % of the community abundance in winter, spring, and autumn, while Cyanobacteria accounted for >30 % of the community abundance in summer. Because Cyanobacteria blooms are likely in summer, the relationship between Cyanobacteria and environmental factors was studied. Redundancy analysis showed that Cyanobacteria were consistently positively correlated with phosphate. Eutrophication and abnormal proliferation of Cyanobacteria in the study area necessitate ameliorations in the mariculture structure. The variation of genus in Proteobacteria is consistent with that of eutrophication, so some genera in Proteobacteria have the potential to become biological indicator species.
Collapse
Affiliation(s)
- Wei Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Yanlin Bao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Jiangsu Environmental Protection Group Co., Ltd, Nanjing 210036, China
| | - Kejun Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Na Yang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Jinlin Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
2
|
Zhang X, Hua J, Song Z, Li K. A review: Marine aquaculture impacts marine microbial communities. AIMS Microbiol 2024; 10:239-254. [PMID: 38919720 PMCID: PMC11194620 DOI: 10.3934/microbiol.2024012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 06/27/2024] Open
Abstract
Marine aquaculture is key for protein production but disrupts marine ecosystems by releasing excess feed and pharmaceuticals, thus affecting marine microbes. Though vital, its environmental impact often remains overlooked. This article delves into mariculture's effects on marine microbes, including bacteria, fungi, viruses, and antibiotic-resistance genes in seawater and sediments. It highlights how different mariculture practices-open, pond, and cage culture-affect these microbial communities. Mariculture's release of nutrients, antibiotics, and heavy metals alters the microbial composition, diversity, and functions. Integrated multi-trophic aquaculture, a promising sustainable approach, is still developing and needs refinement. A deep understanding of mariculture's impact on microbial ecosystems is crucial to minimize pollution and foster sustainable practices, paving the way for the industry's sustainable advancement.
Collapse
Affiliation(s)
| | | | | | - Kejun Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Li K, Guan W, He P, Li K. Comparison of bacterial communities on the surface of concrete breakwater structures and ambient bacterioplankton. Lett Appl Microbiol 2022; 75:1193-1202. [PMID: 35831926 DOI: 10.1111/lam.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/03/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
Breakwater structures made of concrete are used widely around the world, and the bacteria living on these surfaces can cause the concrete to deteriorate. In this study, we collected bacterial biofilms from concrete breakwater structures located along the coast of an island, a mainland coast, and a freshwater riverbank as well as planktonic water samples from each site, and we analyzed their bacterial community structures using Illumina sequencing. At the phylum level, Proteobacteria and Actinobacteria dominated planktonic samples, whereas Cyanobacteria, Proteobacteria, and Bacteroidetes dominated the biofilm samples. High Cyanobacteria abundance was found in all biofilm samples. Bacterial communities significantly varied between planktonic and biofilm samples and between biofilm samples from seawater and freshwater. Only a small number of bacterial operational taxonomic units were shared by planktonic and biofilm samples from each sampling site. The permanganate index in ambient water had a more significant impact on biofilm bacterial communities than on planktonic samples. Additionally, ammonia nitrogen and total nitrogen contents were positively correlated and salinity was negatively correlated with bacterial beta diversity in biofilm samples.
Collapse
Affiliation(s)
- Kui Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Weibing Guan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Kejun Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Hou Y, Li B, Xu G, Li D, Zhang C, Jia R, Li Q, Zhu J. Dynamic and Assembly of Benthic Bacterial Community in an Industrial-Scale In-Pond Raceway Recirculating Culture System. Front Microbiol 2022; 12:797817. [PMID: 35003028 PMCID: PMC8733461 DOI: 10.3389/fmicb.2021.797817] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
To reduce water utilization, limit environmental pollution, and guarantee aquatic production and quality, the in-pond raceway recirculating culture system (IPRS) has been developed and is widely used. The effectiveness and sustainability of IPRSs rely on a good understanding of the ecological processes related to bacterial communities in the purification area. In this study, we investigated the dynamics and assembly mechanisms of benthic bacterial communities in the purification area of an industrial-scale IRPS. We found significant temporal and spatial variations in the sediment characteristics and benthic bacterial communities of the IPRS, although correlation analyses revealed a very limited relationship between them. Among the different culture stages, we identified numerous benthic bacteria with different abundances. Abundances of the phyla Bacteroidota and Desulfobacterota decreased whereas those of Myxococcota and Gemmatimonadota increased as the culture cycle progressed. Co-occurrence networks revealed that the bacterial community was less complex but more stable in the IPRS at the final stage compared with the initial stage. The neutral community model (NCM) showed that stochastic processes were the dominant ecological processes shaping the assembly of the benthic bacterial community. The null model suggested that homogenizing dispersal was more powerful than dispersal limitation and drift in regulating the assembly of the community. These findings indicate that the benthic microbial communities in purification areas of the IPRS may not be affected by the deposited wastes, and a more stable benthic microbial communities were formed and mainly driven by stochastic processes. However, the benthic microbial communities in the purification area at the end of the culturing stage was characterized by potentially inhibited organic matter degradation and carbon and sulfur cycling abilities, which was not corresponding to the purification area’s function. From this point on, the IPRS, especially the purification area was needed to be further optimized and improved.
Collapse
Affiliation(s)
- Yiran Hou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Bing Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Da Li
- Ocean and Fishery Research Institute of Rizhao, Rizhao, China
| | - Chengfeng Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Quanjie Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jian Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| |
Collapse
|
5
|
Zhao S, He W, He P, Li K. Comparison of planktonic bacterial communities indoor and outdoor of aquaculture greenhouses. J Appl Microbiol 2021; 132:2605-2612. [PMID: 34919750 DOI: 10.1111/jam.15414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023]
Abstract
AIMS Greenhouses are widely used in agriculture systems to shield crops from unfavourable weather to achieve a year-round food supply. In recent years, aquaculture ponds have been placed in greenhouses in many regions. The impacts of the greenhouses on planktonic bacterial communities should be uncovered. METHODS AND RESULTS In this study, two polyolefin film greenhouses accommodating aquaculture ponds were established and planktonic bacterial communities were compared from samples taken in aquaculture ponds inside and outside the greenhouses, using Illumina 16S rRNA sequencing. CONCLUSIONS The results showed there were significant variations in bacterial community structure between indoor and outdoor samples. Obvious differences were also found between two greenhouses, whereas the differences in indoor samples were weaker than outdoor samples. Significantly higher temperature (in summer), pH and permanganate index were found in the outdoor pond samples. Results of redundancy analysis showed that Proteobacteria and Bacteroidota were positively related to the dissolved oxygen, total nitrogen and total phosphorus, and Actinobacteriota were positively related to pH, temperature and permanganate index, whereas Cyanobacteria were positively related to the salinity, conductivity, total dissolved solids and ammonia nitrogen. SIGNIFICANCE AND IMPACT OF THE STUDY The results of this study revealed that greenhouses significantly influenced planktonic bacterial communities in aquaculture ponds. This study is expected to provide a scientific basis for aquaculture in greenhouses.
Collapse
Affiliation(s)
- Shuang Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Wenhui He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Kejun Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
6
|
Li K, Zhao S, Guan W, Li KJ. Planktonic bacteria in white shrimp (Litopenaeus vannamei) and channel catfish (Letalurus punetaus) aquaculture ponds in a salt-alkaline region. Lett Appl Microbiol 2021; 74:212-219. [PMID: 34778977 DOI: 10.1111/lam.13600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023]
Abstract
Aquaculture in salt-alkaline regions is encouraged in China, and culture of many aquatic species has been introduced into these areas. In this study, we cultured two species, white shrimp (Litopenaeus vannamei) and channel catfish (Letalurus punetaus) separately in aquaculture ponds in a salt-alkaline region in northwest China and assessed the impacts of the aquaculture operations on the planktonic bacterial community in the culture ponds. Culture of both species decreased the planktonic bacterial diversity and altered the bacterial community structure in the aquaculture ponds compared with the source water. Among the 10 dominant bacterial phyla, 8 were significantly correlated with environmental parameters; the exception was Actinobacteriota, the most dominant phylum, and Firmicutes. Proteobacteria and Bacteroidota abundances showed significant positive correlations with alkalinity, whereas Patescibacteria, Cyanobacteria, Planctomycetota, and Verrucomicrobiota abundance were positively correlated with salinity. Linear regression analysis showed that alkalinity was positively correlated with bacterial beta diversity and salinity was negatively correlated with that. In addition, white shrimp aquaculture significantly lowered the alkalinity, which suggests that culture of this species in inland salt-alkaline regions is a potential dealkalization solution.
Collapse
Affiliation(s)
- K Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - S Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - W Guan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - K J Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
7
|
Guan W, Li K, Zhao S, Li K. A high abundance of Firmicutes in the intestine of chinese mitten crabs (Eriocheir sinensis) cultured in an alkaline region. AMB Express 2021; 11:141. [PMID: 34693464 PMCID: PMC8542526 DOI: 10.1186/s13568-021-01301-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022] Open
Abstract
The Chinese mitten crab (Eriocheir sinensis) is a popular aquaculture product in East Asia, especially in China. In the last decade, rice-crab co-culture has rapidly expanded in China. Under this model, crabs are raised in rice fields instead of in traditional aquaculture ponds. In this study, we cultured two varieties of Chinese mitten crabs (Changjiang and Liaohe) in an alkaline region in northwest China and used Illumina MiSeq sequencing to compare the intestinal bacterial alpha diversity and community structure between traditional and co-culture aquaculture models, between two crab varieties, and between female and male crabs. Significant variations in intestinal bacterial communities were found between crab varieties and between female and male crabs but not between aquaculture models. These results show that rice-crab co-culture operations did not obviously impact the crab intestinal bacterial community compared with traditional pond aquaculture. Firmicutes was the most abundant bacterial phylum in the crab intestines (78%, relative abundance). Three dominant operational taxonomic units (OTUs) represented 73.2% of Firmicutes sequences and 56.8% of all sequences. A dominant OTU assigned as Firmicutes that was negatively correlated with crab body length, width, and weight was found in the source water for the experimental area. The results of this study suggest that the aquaculture of Chinese mitten crabs in alkaline regions requires more study to improve cultivation techniques.
Collapse
|