1
|
Sivasankar C, Lloren KKS, Lee JH. Deciphering the Interrelationship of arnT Involved in Lipid-A Alteration with the Virulence of Salmonella Typhimurium. Int J Mol Sci 2024; 25:2760. [PMID: 38474006 DOI: 10.3390/ijms25052760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The lipopolysaccharide (LPS) that resides on the outermost surface and protects Gram-negative bacteria from host defenses is one of the key components leading to Salmonella infection, particularly the endotoxic lipid A domain of LPS. Lipid A modifications have been associated with several genes such as the arnT that encodes 4-amino-4-deoxy-L-arabinose transferase, which can be critical for bacteria to resist cationic antimicrobial peptides and interfere with host immune recognition. However, the association of arnT with virulence is not completely understood. Thus, this study aimed to elucidate the interrelationship of the major lipid A modification gene arnT with Salmonella Typhimurium virulence. We observed that the arnT-deficient S. Typhimurium (JOL2943), compared to the wild type (JOL401), displayed a significant decrease in several virulence phenotypes such as polymyxin B resistance, intracellular survival, swarming, and biofilm and extracellular polymeric substance (EPS) production. Interestingly, the cell-surface hydrophobicity, adhesion, and invasion characteristics remained unaffected. Additionally, LPS isolated from the mutant induced notably lower levels of endotoxicity-related cytokines in RAW and Hela cells and mice, particularly IL-1β with a nine-fold decrease, than WT. In terms of in vivo colonization, JOL2943 showed diminished presence in internal organs such as the spleen and liver by more than 60%, while ileal infectivity remained similar to JOL401. Overall, the arnT deletion rendered the strain less virulent, with low endotoxicity, maintained gut infectivity, and reduced colonization in internal organs. With these ideal characteristics, it can be further explored as a potential attenuated Salmonella strain for therapeutics or vaccine delivery systems.
Collapse
Affiliation(s)
- Chandran Sivasankar
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| | | | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
2
|
Zhang Q, Yan W, Zhu Y, Jing N, Wang S, Yuan Y, Ma B, Xu J, Chu Y, Zhang J, Ma Q, Wang B, Xu W, Zhu L, Sun Y, Shi C, Fang J, Li Y, Liu S. Evaluation of Commercial Products for Colistin and Polymyxin B Susceptibility Testing for mcr-Positive and Negative Escherichia coli and Klebsiella pneumoniae in China. Infect Drug Resist 2023; 16:1171-1181. [PMID: 36875227 PMCID: PMC9983573 DOI: 10.2147/idr.s400772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Purpose To evaluate the performance of five widespread commercial products for colistin and polymyxin B susceptibility testing in China for mcr-positive and -negative Escherichia coli and Klebsiella pneumoniae. Methods A total of 132 E. coli and 83 K. pneumoniae strains (including 68 mcr-1-positive E. coli and 28 mcr-8-positive K. pneumoniae) were collected. We analysed the performance of colistin susceptibility (with Vitek 2 and Phoenix M50) and the performance of polymyxin B susceptibility (with DL-96II, MA120, and a Polymyxin B Susceptibility Test strip; POL E-strip). Broth microdilution was used as the gold standard. Categorical agreement (CA), essential agreement (EA), major error (ME), and very major error (VME) were calculated for comparisons. Results For E. coli, the total CA, EA, ME, and VME to colistin were as follows: Vitek 2, 98.5%/98.5%/0%/2.9%; and Phoenix M50, 98.5%/97.7%/0%/2.9%. The total CA, EA, ME, and VME to polymyxin B were as follows: POL E-strip, 99.2%/63.6%/1.6%/0%; MA120, 70.0%/-/0%/58.8%; and DL-96II, 80.2%/-/1.6%/36.8%. Only Vitek 2 and Phoenix M50 presented satisfactory performances for mcr-1-positive E. coli. For K. pneumoniae, the total CA, EA, ME, and VME to colistin were as follows: Vitek 2, 73.2%/72.0%/0%/61.6%; and Phoenix M50, 74.7%/74.7%/0%/58.3%. The total CA, EA, ME, and VME to polymyxin B were as follows: POL E-strip, 91.6%/74.7%/2.1%/16.7%; MA120, 92.8%/-/2.1%/13.9%; and DL-96II, 92.2%/-/2.1%/8.3%. All systems were unsatisfactory for mcr-8-positive K. pneumoniae. When the susceptibility of mcr-negative strains was tested, all systems presented excellent performance. Conclusion Vitek 2 and Phoenix M50 with colistin for E. coli showed acceptable performance regardless of mcr-1 expression, while DL-96II, MA120, and the POL E-strip performed worse for mcr-1-positive strains. Furthermore, mcr-8 greatly affected the performance of all systems with both colistin and polymyxin B for K. pneumoniae isolates.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, and People's Hospital of Henan University, Zhengzhou, People's Republic of China
| | - Wenjuan Yan
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, and People's Hospital of Henan University, Zhengzhou, People's Republic of China
| | - Yingjie Zhu
- Department of Clinical Microbiology, Henan No.3 Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Nan Jing
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, and People's Hospital of Henan University, Zhengzhou, People's Republic of China
| | - Shanmei Wang
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, and People's Hospital of Henan University, Zhengzhou, People's Republic of China
| | - Youhua Yuan
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, and People's Hospital of Henan University, Zhengzhou, People's Republic of China
| | - Bing Ma
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, and People's Hospital of Henan University, Zhengzhou, People's Republic of China
| | - Junhong Xu
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, and People's Hospital of Henan University, Zhengzhou, People's Republic of China
| | - Yafei Chu
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, and People's Hospital of Henan University, Zhengzhou, People's Republic of China
| | - Jiangfeng Zhang
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, and People's Hospital of Henan University, Zhengzhou, People's Republic of China
| | - Qiong Ma
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, and People's Hospital of Henan University, Zhengzhou, People's Republic of China
| | - Baoya Wang
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, and People's Hospital of Henan University, Zhengzhou, People's Republic of China
| | - Wenbo Xu
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, and People's Hospital of Henan University, Zhengzhou, People's Republic of China
| | - Liqiang Zhu
- Department of Clinical Microbiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ying Sun
- Department of Clinical Microbiology, Henan No.3 Provincial People's Hospital, Zhengzhou, People's Republic of China
| | - Caiqin Shi
- Department of Microbiology Laboratory, KingMed Diagnostics Group Co., Ltd, Zhengzhou, People's Republic of China
| | - Juan Fang
- Department of Research and Development, Autobio Diagnostics Co., Ltd, Zhengzhou, People's Republic of China
| | - Yi Li
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, and People's Hospital of Henan University, Zhengzhou, People's Republic of China
| | - Shengqun Liu
- Department of Anesthesia and Perioperative Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, and People's Hospital of Henan University, Zhengzhou, People's Republic of China
| |
Collapse
|
3
|
Yan W, Zhang Q, Zhu Y, Jing N, Yuan Y, Zhang Y, Ren S, Hu D, Zhao W, Zhang X, Shi C, Wang M, Li Y. Molecular Mechanism of Polymyxin Resistance in Multidrug-Resistant Klebsiella pneumoniae and Escherichia coli Isolates from Henan Province, China: A Multicenter Study. Infect Drug Resist 2021; 14:2657-2666. [PMID: 34285518 PMCID: PMC8285567 DOI: 10.2147/idr.s314490] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate polymyxin-resistant Klebsiella pneumoniae and Escherichia coli prevalence and characteristics in the Henan province, China. Materials and Methods A total of 2301 bacterial isolates collected at six hospitals were assessed. Their response to polymyxin was evaluated by minimum inhibitory concentration (MIC) analysis, and the mobilized colistin resistance (mcr) and carbapenemase gene were explored. Mutations on mgrB, phoPQ, pmrAB, and crrAB in polymyxin-resistant K. pneumoniae were detected by PCR. phoP, phoQ, pmrK, pmrA, pmrB, and pmrC transcriptional levels were quantified by RT-qPCR. Pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing were performed to determine the phylogenetic relationship between the polymyxin-resistant isolates. Results Of the E. coli and K. pneumoniae isolates identified, 0.3% and 1.4% were polymyxin-resistant, respectively, with MICs of 4–64 μg/mL. All polymyxin-resistant isolates were susceptible to tigecycline. Four E. coli isolates were mcr-1-positive and one was carbapenem-resistant, carrying blaNDM-5 and mcr-1. One K. pneumoniae isolate was mcr-1-positive and nine were carbapenem-resistant (PRCRKP), carrying blaKPC-2 but not mcr-1. The five E. coli isolates belonged to four sequence types (ST2, ST132, ST632, and ST983). All PRCRKP isolates belonged to ST11. However, all 16 isolates belonged to different PFGE types with <95% genetic similarity. Insertion sequences in mgrB were detected in nine (81.8%) polymyxin-resistant K. pneumoniae samples. Colistin resistance was linked with pmrHFIJKLM operon upregulation, with phoP, phoQ, and pmrK being overexpressed in all but one of the polymyxin-resistant K. pneumoniae samples. Furthermore, 33.3% of patients carrying polymyxin-resistant isolates had previously used polymyxin, and 66.7% patients displayed good clinical outcomes. Conclusion The K. pneumoniae polymyxin resistance rate was slightly higher than that of E. coli and mcr-1 was more common in E. coli than in K. pneumoniae. Moreover, the insertion of ISkpn14 into mgrB may be the main contributor to polymyxin-resistance in K. pneumoniae in Henan.
Collapse
Affiliation(s)
- Wenjuan Yan
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, People's Republic of China
| | - Qi Zhang
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, People's Republic of China
| | - Yingjie Zhu
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, People's Republic of China
| | - Nan Jing
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, People's Republic of China
| | - Youhua Yuan
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, People's Republic of China
| | - Yi Zhang
- Department of Clinical Laboratory, Zhengzhou Central Hospital, Affiliated to Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Siying Ren
- Department of Clinical Laboratory, Kaifeng People's Hospital, Kaifeng, Henan, People's Republic of China
| | - Dongmei Hu
- Department of Clinical Laboratory, Zhumadian First People's Hospital, Zhumadian, People's Republic of China
| | - Wenmin Zhao
- Department of Clinical Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, People's Republic of China
| | - Xiaojuan Zhang
- Department of Clinical Laboratory, Gongyi People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Caiqin Shi
- Department of Microbiology Laboratory, KingMed Diagnostics, Zhengzhou, Henan, People's Republic of China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yi Li
- Department of Clinical Microbiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|