1
|
Wu X, Wang H, Xiong J, Yang GX, Hu JF, Zhu Q, Chen Z. Staphylococcus aureus biofilm: Formulation, regulatory, and emerging natural products-derived therapeutics. Biofilm 2024; 7:100175. [PMID: 38298832 PMCID: PMC10827693 DOI: 10.1016/j.bioflm.2023.100175] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024] Open
Abstract
Staphylococcus aureus can readily form biofilm which enhances the drug-resistance, resulting in life-threatening infections involving different organs. Biofilm formation occurs due to a series of developmental events including bacterial adhesion, aggregation, biofilm maturation, and dispersion, which are controlled by multiple regulatory systems. Rapidly increasing research and development outcomes on natural products targeting S. aureus biofilm formation and/or regulation led to an emergent application of active phytochemicals and combinations. This review aimed at providing an in-depth understanding of biofilm formation and regulation mechanisms for S. aureus, outlining the most important antibiofilm strategies and potential targets of natural products, and summarizing the latest progress in combating S. aureus biofilm with plant-derived natural products. These findings provided further evidence for novel antibiofilm drugs research and clinical therapies.
Collapse
Affiliation(s)
- Xiying Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Huan Wang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Juan Xiong
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Guo-Xun Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Zhejiang, 318000, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| |
Collapse
|
2
|
Nirmal N, Koirala P, Khanashyam AC, Panichayupakaranant P, Septama AW. Combined effect of brazilin-rich extract and lawsone methyl ether against infection-causing bacteria. Saudi J Biol Sci 2024; 31:103999. [PMID: 38646564 PMCID: PMC11031759 DOI: 10.1016/j.sjbs.2024.103999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024] Open
Abstract
Bacterial contamination and infection widely affect the food, pharmaceutical and biomedical industries. Additionally, these bacteria developed resistance to synthetic antibiotics causing public health danger, globally. Natural plant extracts (NPE) are suitable alternatives to synthetic antibiotics to tackle antimicrobial resistance problems. Furthermore, a blend or combination of different NPEs exerts a wide spectrum of antimicrobial activity. Therefore, the combined effect of brazilin-rich extract (BRE) and lawsome methyl ether (LME) against infection-causing common bacteria were evaluated. BRE had a lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against most of the Gram-negative bacteria (Salmonella typhi, Salmonella typhimurium and Pseudomonas aeruginosa) while LME was active against most of the Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, and Staphylococcus epidermidis). The combination of BRE and LME at 2:1 and 1:1 concentration significantly reduced the MIC value of each compound as compared to either BRE or LME concentration alone (P < 0.05). Further time-kill kinetics revealed a 3.0-3.5 log reduction in Gram-positive bacteria and a 2.5-3.0 log reduction in Gram-negative bacteria during 120 min of incubation, respectively. Therefore, a combination of BRE and LME was recommended as natural antibacterial to synthetic antibiotics for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Anandu Chandra Khanashyam
- Deaprtment of Food Science and Nutrition, University of Minnesota, 1334 Eckles Ave, St Paul, MN 55108, United States
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkla Thailand
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), KST Soekarno, Cibinong, Jawa Barat, 16911, Indonesia
| |
Collapse
|
3
|
Nittayananta W, Wongwitthayakool P, Srichana T, Setthanurakkul C, Yampuen P, Terachinda P, Deebunjerd T, Tachapiriyakun J. α-Mangostin and lawsone methyl ether in tooth gel synergistically increase its antimicrobial and antibiofilm formation effects in vitro. BMC Oral Health 2023; 23:840. [PMID: 37940906 PMCID: PMC10631194 DOI: 10.1186/s12903-023-03511-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVES α-Mangostin (α-MG) and lawsone methyl ether (LME) show antimicrobial and anti-biofilm activities. The objectives of this study were to develop a herbal tooth gel containing α-MG and LME plus fluoride and determine its antimicrobial, anti-biofilm formation, anti-cancer, anti-inflammatory, wound healing, and enamel microhardness effects. METHODS Antimicrobial assays against Streptococcus mutans, Porphyromonas gingivalis, and Candida albicans were performed. The microbes' ultrastructural morphology was assessed using Transmission Electron Microscopy. The effect on microbial biofilm formation was tested by a broth microdilution. Cell viability was assessed with MTT assay. The anti-inflammatory effect was investigated by measuring inhibition of nitric oxide production. Enamel microhardness was measured via Vickers microhardness testing. The enamel chemical composition was investigated with Fourier Transform Spectrometer. The enamel surface morphology and fluoride content were examined by Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy. RESULTS The results show synergistic effects of α-MG and LME on antimicrobial activity and antibiofilm formation without cytotoxicity at a therapeutic dose. At a higher dose, the tooth gel inhibited proliferation of cancer cell line. Enamel microhardness was increased after brushing with the tooth gel plus fluoride. A large amount of fluoride was detected on the enamel surface. CONCLUSION The tooth gel containing α-MG and LME synergized its antimicrobial activity and antibiofilm formation and inhibited oral cancer cell proliferation. Incorporating fluoride into the tooth gel increased enamel microhardness. Thus, the herbal tooth gel containing α-MG and LME plus fluoride may be useful for preventing dental caries and promoting oral health.
Collapse
Affiliation(s)
| | | | - Teerapol Srichana
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | | | | | | | | |
Collapse
|
4
|
Mone NS, Syed S, Ravichandiran P, Satpute SK, Kim AR, Yoo DJ. How Structure-Function Relationships of 1,4-Naphthoquinones Combat Antimicrobial Resistance in Multidrug-Resistant (MDR) Pathogens. ChemMedChem 2023; 18:e202200471. [PMID: 36316281 DOI: 10.1002/cmdc.202200471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Antimicrobial resistance (AMR) is one of the top ten health-related threats worldwide. Among several antimicrobial agents, naphthoquinones (NQs) of plant/chemical origin possess enormous structural and functional diversity and are effective against multidrug-resistant (MDR) pathogens. 1,4-NQs possess alkyl, hydroxyl, halide, and metal groups as side chains on their double-ring structure, predominantly at the C-2, C-3, C-5, and C-8 positions. Among 1,4-NQs, hydroxyl groups at either C-2 or C-5 exhibit significant antibacterial activity against Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. (ESKAPE) and MDR categories. 1,4-NQs exhibit antibacterial activities like plasmids curing, reactive oxygen species generation, efflux pumps inhibition, anti-DNA gyrase activity, membrane permeabilization, and biofilm inhibition. This review emphasizes the structure-function relationships of 1,4-NQs against ESKAPE and MDR pathogens based on a literature review of studies published in the last 15 years. Overall, 1,4-NQs have great potential for counteracting the antimicrobial resistance of MDR pathogens.
Collapse
Affiliation(s)
- Nishigandha S Mone
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Sahil Syed
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Present address: Analytical, HP Green R&D Centre, Hindustan Petroleum Corporation Limited, KIADB Industrial Area, Devangundi, Hoskote, Bengaluru, 562114, Karnataka, India
| | - Surekha K Satpute
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Ae Rhan Kim
- Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
5
|
Bazmi RR, Panichayupakaranant P. Synergistic interactions between artocarpin-rich extract, lawsone methyl ether and ampicillin on anti-MRSA and their antibiofilm formation. Lett Appl Microbiol 2022; 75:470. [PMID: 35488773 DOI: 10.1111/lam.13726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 02/05/2023]
|