1
|
Li X, Yang W, Weng Y, Zhao Y, Chen H, Chen Y, Qiu J, Jiang B, Li C, Lai Y. Scutellarin Alleviates CCl 4-Induced Liver Fibrosis by Regulating Intestinal Flora and PI3K/AKT Signaling Axis. Int J Mol Sci 2025; 26:2997. [PMID: 40243656 PMCID: PMC11989008 DOI: 10.3390/ijms26072997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Liver fibrosis is a pathological manifestation of chronic liver disease developing to the terminal stage, and there is a lack of effective therapeutic drugs in clinical practice. Scutellarin (SCU) is a flavonoid extracted from Erigeron breviscapus (Vaniot.) Hand.-Mazz., which has significant anti-liver-fibrosis efficacy, but its mode of action remains incompletely understood. A liver fibrosis model was built with male Sprague Dawley rats induced with the disease by CCl4 to evaluate the therapeutic effect of drugs. 16S rRNA sequencing and metabolomics were used to analyze the regulatory effects of SCU on intestinal flora and host metabolism; antibiotics were administered to eliminate gut microbiota and fecal microbiota transplantation (FMT) experiments were used to verify the mechanism. The mechanistic basis underlying SCU's hepatic anti-fibrotic effects was screened by network pharmacology combined with transcriptomics, combined with molecular docking, qPCR, and WB verification. The results showed that SCU may play an anti-liver-fibrosis role by correcting the imbalance of gut flora and regulating the linoleic acid and purine metabolic pathways. In addition, SCU can downregulate the levels of proteins and genes related to the PI3K/AKT axis. In summary, SCU alleviates liver fibrosis by reversing intestinal flora imbalance, regulating the metabolic profile, and inhibiting the PI3K/AKT axis.
Collapse
Affiliation(s)
- Xin Li
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan (Cultivation), Dali University, Dali 671000, China; (X.L.); (B.J.)
- College of Pharmacy, Dali University, Dali 671000, China; (W.Y.); (Y.W.); (Y.Z.); (H.C.); (Y.C.); (J.Q.)
| | - Wanqi Yang
- College of Pharmacy, Dali University, Dali 671000, China; (W.Y.); (Y.W.); (Y.Z.); (H.C.); (Y.C.); (J.Q.)
| | - Ying Weng
- College of Pharmacy, Dali University, Dali 671000, China; (W.Y.); (Y.W.); (Y.Z.); (H.C.); (Y.C.); (J.Q.)
| | - Yingying Zhao
- College of Pharmacy, Dali University, Dali 671000, China; (W.Y.); (Y.W.); (Y.Z.); (H.C.); (Y.C.); (J.Q.)
| | - Haidong Chen
- College of Pharmacy, Dali University, Dali 671000, China; (W.Y.); (Y.W.); (Y.Z.); (H.C.); (Y.C.); (J.Q.)
| | - Yang Chen
- College of Pharmacy, Dali University, Dali 671000, China; (W.Y.); (Y.W.); (Y.Z.); (H.C.); (Y.C.); (J.Q.)
| | - Jishuang Qiu
- College of Pharmacy, Dali University, Dali 671000, China; (W.Y.); (Y.W.); (Y.Z.); (H.C.); (Y.C.); (J.Q.)
| | - Bei Jiang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan (Cultivation), Dali University, Dali 671000, China; (X.L.); (B.J.)
| | - Chunyan Li
- College of Pharmacy, Dali University, Dali 671000, China; (W.Y.); (Y.W.); (Y.Z.); (H.C.); (Y.C.); (J.Q.)
| | - Yong Lai
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan (Cultivation), Dali University, Dali 671000, China; (X.L.); (B.J.)
- College of Pharmacy, Dali University, Dali 671000, China; (W.Y.); (Y.W.); (Y.Z.); (H.C.); (Y.C.); (J.Q.)
| |
Collapse
|
2
|
Hu GX, Xie XF, Yuan TH, Shuai M, Zhang JJ, Zhou D, Chen JQ, Ran M, Wang L, Yong-Li, Chen MQ, Ren ZK, Xu JW. Protective effect of water extracts of Veronicastrum latifolium (Hemsl.) Yamazaki on carbon tetrachloride-induced liver fibrosis in mice and its effect on intestinal flora. Fitoterapia 2023; 170:105653. [PMID: 37595643 DOI: 10.1016/j.fitote.2023.105653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Liver fibrosis refers to a reversible event of repair and reconstruction following injury due to various etiologies, and its continuous development will lead to cirrhosis and liver cancer. Abnormal alterations in intestinal microbiota can hasten the development of hepatic fibrosis and damage. Veronicastrum latifolium (Hemsl.) Yamazaki (VLY) is a classic drug applied extensively for managing acute and chronic hepatitis, liver cirrhosis and ascites in ethnic minority areas of Guizhou Province, China, which possesses broad-spectrum pharmacological activities. In view of the crucial role of intestinal microbiota in the development of liver fibrosis, the present study attempted to investigate the effects of VLY aqueous extract on ameliorating CCl4-elicited liver fibrosis in mice and on intestinal microbiota and to explore its possible mechanism. Phytochemical analysis showed that VLY water extract contained a variety of components, particularly rich in organic acids and their derivatives, flavonoids, phenolic acids, nucleotides and their derivatives, carbohydrates and other compounds. VLY water extract remarkably alleviated CCl4-induced liver damage and fibrosis in mice, improved liver histology, and improved liver function abnormalities. VLY water extract also inhibited the activation of hepatic stellate cells and invasion of intrahepatic inflammatory cells. Additionally, sequencing the 16 s rDNA gene revealed that VLY water extract changed the intestinal microbiota composition in liver fibrotic mice. It elevated the Firmicutes/Bacteroidota ratio and enriched the relative Lactobacillus richness, which is capable of mitigating fibrosis and inflammation in impaired liver. In summary, through modulation of inflammation and intestinal microbiota, VLY water extract can reduce the CCl4-elicited liver fibrosis.
Collapse
Affiliation(s)
- Guang-Xian Hu
- National joint local engineering laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, China; School of Pharmacy, Guizhou Medical University, China
| | - Xiao-Fen Xie
- National joint local engineering laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, China; School of Basic Medicine, Guizhou Medical University, China
| | - Tian-Hong Yuan
- School of Basic Medicine, Guizhou Medical University, China
| | - Min Shuai
- Department of Pathology, Qiannan Medical College for Nationalities, China
| | - Jin-Juan Zhang
- School of Basic Medicine, Guizhou Medical University, China
| | - Dan Zhou
- National joint local engineering laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, China; School of Basic Medicine, Guizhou Medical University, China
| | - Jiu-Qiong Chen
- National joint local engineering laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, China; School of Pharmacy, Guizhou Medical University, China
| | - Miao Ran
- National joint local engineering laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, China
| | - Lan Wang
- Institute of Medical Science, Guizhou Medical University, China
| | - Yong-Li
- Department of Stomatology, Hunan University of Medicine, China
| | - Mao-Qiong Chen
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, China.
| | - Zhen-Kui Ren
- Department of Laboratory Medicine, The Second People's Hospital of Guizhou Province, China.
| | - Jian-Wei Xu
- National joint local engineering laboratory for Cell Engineering and Biomedicine Technique, Guizhou Province Key Laboratory of Regenerative Medicine, Key Laboratory of Adult Stem Cell Translational Research (Chinese Academy of Medical Sciences), Guizhou Medical University, China; School of Pharmacy, Guizhou Medical University, China.
| |
Collapse
|
3
|
Qu R, Zhang W, Ma Z, Ma Q, Chen M, Lan T, Zhou L, Hu X. Glaucocalyxin A attenuates carbon tetrachloride-induced liver fibrosis and improves the associated gut microbiota imbalance. Chem Biol Drug Des 2023; 102:51-64. [PMID: 37060267 DOI: 10.1111/cbdd.14241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
Liver fibrosis refers to the pathophysiological process of dysplasia on the connective tissue of the liver, caused by a variety of pathogenic factors. Glaucocalyxin A (GLA) has anticoagulation, antibacterial, anti-inflammation, antioxidant and antitumour properties. However, whether GLA ameliorates liver fibrosis or not is still unclear. In this study, a liver fibrosis model was established using male C57BL/6 mice. The mice were treated with 5 and 10 mg/kg GLA via intraperitoneal injection, respectively. The ones that were treated with 5 mg/kg OCA were used as the positive control group. The levels of liver function, liver fibrosis biomarkers and liver pathological changes were then evaluated. We also explored the effects of GLA on inflammatory response and liver cell apoptosis. In addition, we investigated the gut microbiota mechanisms of GLA on liver fibrosis. The results from this study that GLA could significantly decrease the level of liver function (AST, ALT, TBA) and liver fibrosis (HA, LN, PC-III, IV-C). On the other hand, a significant decrease in inflammation levels (IL-1β, TNF-α) were also noted. GLA also improves CCl4-induced pathological liver injuries and collagen deposition, in addition to decreasing apoptosis levels. In addition, an increase in the ratio of Bacteroidetes and Firmicutes in liver disease was also observed. GLA also improves the gut microbiota. In conclusion, GLA attenuates CCl4-induced liver fibrosis and improves the associated gut microbiota imbalance.
Collapse
Affiliation(s)
- Ru Qu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wang Zhang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhuang Ma
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianwen Ma
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Mingju Chen
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Tian Lan
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin Zhou
- School of Life Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuguang Hu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
4
|
Wu J, Zhang D, Zhu B, Wang S, Xu Y, Zhang C, Yang H, Wang S, Liu P, Qin L, Liu W. Rubus chingii Hu. unripe fruits extract ameliorates carbon tetrachloride-induced liver fibrosis and improves the associated gut microbiota imbalance. Chin Med 2022; 17:56. [PMID: 35549741 PMCID: PMC9097331 DOI: 10.1186/s13020-022-00607-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/10/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The unripe fruits of Rubus chingii Hu. ("Fu-peng-zi" in Chinese) is a well-known herbal tonic in traditional Chinese medicine (TCM) for tonifying liver and kidney. However, little is known regarding its therapeutic efficacy against liver fibrosis and the underlying mechanism. METHODS The current research aims to explore the potential of Rubus chingii Hu. unripe fruits extract (RF) in the treatment of liver fibrosis and explore the underlying mechanism. RF was administered (450 and 900 mg·kg- 1 of body weight per day) orally to male C57BL/6 mice with CCl4-induced liver fibrosis for 3 weeks. The histopathological changes and fibrosis stage in liver tissue were assessed using hematoxylin and eosin (H&E) and Sirius red staining. The distribution of α-SMA and Col1A1 in the liver was analyzed to determine the hepatic stellate cells (HSCs) activation using immunohistochemistry and immunofluorescent analysis. Various biochemical markers in serum (ALT, AST) and liver (Hyp, IL1-β, IL6, TNF-α and MCP-1) were observed to assess the liver's injury, fibrosis, and inflammation. In liver tissue, fibrosis-associated proteins including α-SMA, TGF-β1, Smad2/3, p-Smad2/3, and Smad4 were detected through a Western blot assay. Pyrosequencing-based analysis of bacterial 16 S ribosomal RNA from variable regions V3-V4 of fecal samples characterized the gut microbiota. Spearman's rank correlation analysis was performed for the association between altered bacterial genera by RF and pharmacodynamics parameters. RESULTS Three weeks of RF treatment can significantly lower liver inflammatory levels, pathological abnormalities, and collagen fibrous deposition in mice with CCl4-induced liver fibrosis. The expressions of α-SMA and Col1A1 were lowered by RF, while the expression levels of TGF-β/Smads signaling pathway-related proteins, including TGF-β1, p-Smad2/3, and Smad4, were dramatically decreased by RF. The RF treatment significantly increased or reduced 18 different bacterial species, restoring the CCl4-induced gut microbiota imbalance to the normal group's levels. According to correlation analysis, the bacterial genera Bifidobacterium and Turicibacter were the most significant in restoring CCl4-induced liver fibrosis. CONCLUSIONS RF can reduce liver damage and delay the onset of liver fibrosis through modulating TGF-β/Smads signaling pathway. Furthermore, RF's anti-liver fibrosis effect was related to balancing the gut microbial community, partly attained by increasing Bifidobacterium and Turicibacter in liver fibrosis.
Collapse
Affiliation(s)
- Jianjun Wu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Dingqi Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Bo Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Siqi Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Yongbin Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Congcong Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Hailing Yang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Luping Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
5
|
Dietary Fiber Modulates the Fermentation Patterns of Cyanidin-3- O-Glucoside in a Fiber-Type Dependent Manner. Foods 2021; 10:foods10061386. [PMID: 34208433 PMCID: PMC8235204 DOI: 10.3390/foods10061386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
The interactions between cell-wall polysaccharides and polyphenols in the gastrointestinal tract have attracted extensive attention. We hypothesized that dietary fiber modulates the fermentation patterns of cyanidin-3-O-glucoside (C3G) in a fiber-type-dependent manner. In the present study, the effects of four dietary fibers (fructose-oligosaccharides, pectin, β-glucan and arabinoxylan) on the modulation of C3G fermentation patterns were investigated through in vitro fermentation inoculated with human feces. The changes in gas volume, pH, total carbohydrate content, metabolites of C3G, antioxidant activity, and microbial community distribution during in vitro fermentation were analyzed. After 24 h of fermentation, the gas volume and total carbohydrate contents of the four dietary-fiber-supplemented groups respectively increased and decreased to varying degrees. The results showed that the C3G metabolites after in vitro fermentation mainly included cyanidin, protocatechuic acid, 2,4,6-trihydroxybenzoic acid, and 2,4,6-trihydroxybenzaldehyde. Supplementation of dietary fibers changed the proportions of C3G metabolites depending on the structures. Dietary fibers increased the production of short-chain fatty acids and the relative abundance of gut microbiota Bifidobacterium and Lactobacillus, thus potentially maintaining colonic health to a certain extent. In conclusion, the used dietary fibers modulate the fermentation patterns of C3G in a fiber-type-dependent manner.
Collapse
|
6
|
Ma JQ, Sun YZ, Ming QL, Tian ZK, Zhang YJ, Liu CM. Effects of gastrodin against carbon tetrachloride induced kidney inflammation and fibrosis in mice associated with the AMPK/Nrf2/HMGB1 pathway. Food Funct 2020; 11:4615-4624. [DOI: 10.1039/d0fo00711k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gastrodin (GAS), the main phenolic glycoside extracted from Gastrodia elata Blume, exhibits potential renoprotective properties.
Collapse
Affiliation(s)
- Jie-Qiong Ma
- School of Chemistry Engineering
- Sichuan University of Science and Engineering
- Zigong City
- PR China
| | - Yun-Zhi Sun
- College of Integrated Chinese and Western Medicine
- Shandong Liming Polytechnic Vocational College
- Jinan City
- PR China
| | - Qing-Lei Ming
- School of Life Science
- Jiangsu Normal University
- Xuzhou City
- PR China
| | - Zhi-Kai Tian
- School of Life Science
- Jiangsu Normal University
- Xuzhou City
- PR China
| | - Yu-Jia Zhang
- School of Life Science
- Jiangsu Normal University
- Xuzhou City
- PR China
| | - Chan-Min Liu
- School of Life Science
- Jiangsu Normal University
- Xuzhou City
- PR China
| |
Collapse
|
7
|
Abd El-Hack ME, Samak DH, Noreldin AE, El-Naggar K, Abdo M. Probiotics and plant-derived compounds as eco-friendly agents to inhibit microbial toxins in poultry feed: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31971-31986. [PMID: 30229484 DOI: 10.1007/s11356-018-3197-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Some of pathogenic bacteria and fungi have the ability to produce fetal toxins which may be the direct causes of cytotoxicity or cellular dysfunction in the colonization site. Biological and non-biological environmental factors, challenge and microbes influence the effect of toxins on these pathogens. Modern research mentions that many natural materials can reduce the production of toxins in pathogenic microbes. However, researches that explain the mechanical theories of their effects are meager. This review aimed to discuss the ameliorative potential role of plant-derived compounds and probiotics to reduce the toxin production of food-borne microbes either in poultry bodies or poultry feedstuff. Moreover, studies that highlight their own toxicological mechanisms have been discussed. Adding natural additives to feed has a clear positive effect on the enzymatic and microbiological appearance of the small intestine without any adverse effect on the liver. Studies in this respect were proposed to clarify the effects of these natural additives for feed. In conclusion, it could be suggested that the incorporation of probiotics, herbal extracts, and herbs in the poultry diets has some beneficial effects on productive performance, without a positive impact on economic efficiency. In addition, the use of these natural additives in feed has a useful impact on the microbiological appearance of the small intestine and do not have any adverse impacts on intestinal absorption or liver activity as evidenced by histological examination.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Dalia H Samak
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdo
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| |
Collapse
|
8
|
Research progress on human microecology and infectious diseases. INFECTION INTERNATIONAL 2018. [DOI: 10.2478/ii-2018-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractHuman microecology has been extensively investigated. Similar to an important physiologically functioning organ of the human body, the microecological system is one of the leading systems for environmental survival, health, genetics, disease, and aging. It is also an essential carrier for drug metabolism and microbial resistance. The occurrence, development, and deterioration of many infectious diseases are closely related to human microecological systems. This study mainly focuses on the changes in microbial groups associated with various infectious diseases to explore the relevant role of human microecology in the development of infectious diseases and its breakthrough implications in future accurate treatments of infectious diseases.
Collapse
|
9
|
Takemura S, Azuma H, Osada-Oka M, Kubo S, Shibata T, Minamiyama Y. S-allyl-glutathione improves experimental liver fibrosis by regulating Kupffer cell activation in rats. Am J Physiol Gastrointest Liver Physiol 2018; 314:G150-G163. [PMID: 28971836 DOI: 10.1152/ajpgi.00023.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
S-allyl-glutathione (SAG) is one of the metabolites of diallyl sulfide (DAS), a component of garlic. DAS has shown preventative effects on carcinogenesis in animal models. However, whether synthetic SAG can improve liver fibrosis has not been investigated. We examined the potential preventive effects of SAG on acute and chronic models of liver fibrosis by chronic carbon tetrachloride (CCl4) administration. SAG inhibited liver fibrogenesis induced by CCl4 in a dose-dependent manner and reduced heat shock protein-47 (HSP47), a collagen-specific chaperone, and other fibrosis markers. In fibrosis regression models, after administration of either CCl4 for 9 wk or dimethyl nitrosamine (DMN) for 6 wk, SAG markedly accelerated fibrolysis in both models. In the regression stage of DMN-treated liver, SAG normalized the ratio of M2 phenotype (expression of mannose receptor) in Kupffer cells (KCs). Consistent with these results, the culture supernatants of SAG-treated M2-phenotype KCs inhibited collagen-α1(I) chain (COL1A1) mRNA expression in primary culture-activated rat hepatic stellate cells (HSCs). However, SAG did not directly inhibit HSC activation. In an acute model of CCl4 single injection, SAG inhibited hepatic injury dose dependently consistent with the inhibited the elevation of the bilirubin and ALT levels. These findings suggest that SAG could improve the fibrogenic and fibrolysis cascade via the regulation of excess activated and polarized KCs. SAG may also serve as a preventive and therapeutic agent in fibrosis of other organs for which current clinical therapy is unavailable. NEW & NOTEWORTHY S-allyl-glutathione (SAG) is a metabolite of diallyl sulfide, a component of garlic. SAG increased hepatic glutathione levels and GSH-to-GSSG ratio in normal rats. SAG treatment before or after liver fibrosis from chronic CCl4 administration improved liver fibrosis and regression. SAG decreased heat shock protein-47 (HSP47), a collagen-specific chaperone, and other fibrosis markers in CCl4-treated livers. SAG-treated Kupffer cell conditioned medium also inhibited collagen-α1(I) chain (COL1A1) mRNA expression and other markers in primary culture hepatic stellate cells.
Collapse
Affiliation(s)
- Shigekazu Takemura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka City University , Osaka , Japan
| | - Hideki Azuma
- Department of Applied and Bioapplied Chemistry, Graduate School of Engineering, Osaka City University , Osaka , Japan
| | - Mayuko Osada-Oka
- Food Hygiene and Environmental Health Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University , Kyoto , Japan
| | - Shoji Kubo
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka City University , Osaka , Japan
| | - Toshihiko Shibata
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka City University , Osaka , Japan
| | - Yukiko Minamiyama
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka City University , Osaka , Japan.,Food Hygiene and Environmental Health Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University , Kyoto , Japan
| |
Collapse
|
10
|
Different Dietary Proportions of Fish Oil Regulate Inflammatory Factors but Do Not Change Intestinal Tight Junction ZO-1 Expression in Ethanol-Fed Rats. Mediators Inflamm 2017; 2017:5801768. [PMID: 29386752 PMCID: PMC5745723 DOI: 10.1155/2017/5801768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/30/2017] [Accepted: 10/15/2017] [Indexed: 12/18/2022] Open
Abstract
Sixty male Wistar rats were fed a control or an ethanol-containing diet in groups C or E. The fat compositions were adjusted with 25% or 57% fish oil substituted for olive oil in groups CF25, CF57, EF25, and EF57. Hepatic thiobarbituric acid-reactive substance (TBARS) levels, cytochrome P450 2E1 protein expression, and tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, and IL-10 levels, as well as intracellular adhesion molecule (ICAM)-1 levels were significantly elevated, whereas plasma adiponectin level was significantly reduced in group E (p < 0.05). Hepatic histopathological scores of fatty change and inflammation, in group E were significantly higher than those of group C (p < 0.05). Hepatic TBARS, plasma ICAM-1, and hepatic TNF-α, IL-1β, and IL-10 levels were significantly lower, and plasma adiponectin levels were significantly higher in groups EF25 and EF57 than those in group E (p < 0.05). The immunoreactive area of the intestinal tight junction protein, ZO-1, showed no change between groups C and E. Only group CF57 displayed a significantly higher ZO-1 immunoreactive area compared to group C (p = 0.0415). 25% or 57% fish oil substituted for dietary olive oil could prevent ethanol-induced liver damage in rats, but the mechanism might not be related to intestinal tight junction ZO-1 expression.
Collapse
|
11
|
Tetz GV, Ruggles KV, Zhou H, Heguy A, Tsirigos A, Tetz V. Bacteriophages as potential new mammalian pathogens. Sci Rep 2017; 7:7043. [PMID: 28765534 PMCID: PMC5539208 DOI: 10.1038/s41598-017-07278-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022] Open
Abstract
Increased intestinal permeability and translocation of gut bacteria trigger various polyaetiological diseases associated with chronic inflammation and underlie a variety of poorly treatable pathologies. Previous studies have established a primary role of the microbiota composition and intestinal permeability in such pathologies. Using a rat model, we examined the effects of exposure to a bacteriophage cocktail on intestinal permeability and relative abundance of taxonomic units in the gut bacterial community. There was an increase in markers of impaired gut permeability, such as the lactulose/mannitol ratio, plasma endotoxin concentrations, and serum levels of inflammation-related cytokines, following the bacteriophage challenge. We observed significant differences in the alpha diversity of faecal bacterial species and found that richness and diversity index values increased following the bacteriophage challenge. There was a reduction in the abundance of Blautia, Catenibacterium, Lactobacillus, and Faecalibacterium species and an increase in Butyrivibrio, Oscillospira and Ruminococcus after bacteriophage administration. These findings provide novel insights into the role of bacteriophages as potentially pathogenic for mammals and their possible implication in the development of diseases associated with increased intestinal permeability.
Collapse
Affiliation(s)
- George V Tetz
- Human Microbiology Institute, New York, NY, 10027, USA.
| | - Kelly V Ruggles
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA.,Applied Bioinformatics Laboratories, New York University Medical Center, New York, NY, 10016, USA
| | - Hua Zhou
- Applied Bioinformatics Laboratories, New York University Medical Center, New York, NY, 10016, USA
| | - Adriana Heguy
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA.,Genome Technology Center, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY, 10016, USA
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, New York University Medical Center, New York, NY, 10016, USA.,Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Victor Tetz
- Human Microbiology Institute, New York, NY, 10027, USA
| |
Collapse
|
12
|
Shi D, Lv L, Fang D, Wu W, Hu C, Xu L, Chen Y, Guo J, Hu X, Li A, Guo F, Ye J, Li Y, Andayani D, Li L. Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 prevents CCl 4-induced liver cirrhosis by protecting the intestinal barrier in rats. Sci Rep 2017; 7:6927. [PMID: 28761060 PMCID: PMC5537250 DOI: 10.1038/s41598-017-07091-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/21/2017] [Indexed: 02/08/2023] Open
Abstract
Alterations in the gut microbiome have been reported in liver cirrhosis, and probiotic interventions are considered a potential treatment strategy. This study aimed to evaluate the effects and mechanisms of Lactobacillus salivarius LI01, Pediococcus pentosaceus LI05, Lactobacillus rhamnosus GG, Clostridium butyricum MIYAIRI and Bacillus licheniformis Zhengchangsheng on CCl4-induced cirrhotic rats. Only administration of LI01 or LI05 prevented liver fibrosis and down-regulated the hepatic expression of profibrogenic genes. Serum endotoxins, bacterial translocations (BTs), and destruction of intestinal mucosal ultrastructure were reduced in rats treated with LI01 or LI05, indicating maintenance of the gut barrier as a mechanism; this was further confirmed by the reduction of not only hepatic inflammatory cytokines, such as TNF-α, IL-6, and IL-17A, but also hepatic TLR2, TLR4, TLR5 and TLR9. Metagenomic sequencing of 16S rRNA gene showed an increase in potential beneficial bacteria, such as Elusimicrobium and Prevotella, and a decrease in pathogenic bacteria, such as Escherichia. These alterations in gut microbiome were correlated with profibrogenic genes, gut barrier markers and inflammatory cytokines. In conclusion, L. salivarius LI01 and P. pentosaceus LI05 attenuated liver fibrosis by protecting the intestinal barrier and promoting microbiome health. These results suggest novel strategies for the prevention of liver cirrhosis.
Collapse
Affiliation(s)
- Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Lichen Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Jing Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Xinjun Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Ang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Feifei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Dewi Andayani
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China.
| |
Collapse
|
13
|
Abstract
Background This study investigated the protective effect of aplysin on the liver and its influence on inflammation and the gut microbiota in rats with ethanol-induced liver injury. Methods Male Sprague-Dawley rats were randomly assigned to an alcohol-containing liquid diet, control liquid diet or treatment with aplysin for 8 weeks. Hepatic and intestinal histopathological analysis was performed, and cytokine levels and the intestinal mucosal barrier were assessed. Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) and 16S rDNA high-throughput sequencing were performed to provide an overview of the gut microbiota composition. Results Chronic alcohol exposure caused liver damage in rats. Serum aspartate aminotransferase (AST), aminotransferase (ALT), alkaline phosphatase (ALP) and triglyceride (TG) activities in liver tissue were higher than in the control group. Alcohol administration elevated the levels of serum transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) and reduced interleukin-10 (IL-10) levels compared with those of control rats. In addition, the levels of plasma endotoxin, diamine oxidase (DAO), and fatty acid-binding protein 2 (FABP2) in the alcohol group were higher than in the control group. The results of ERIC-PCR indicated that aplysin treatment shifted the overall structure of the ethanol-disrupted gut microbiota toward that of the control group. One hundred twenty to 190 genera of bacteria were detected by high throughput sequencing. Alcohol-induced changes in the gut microbial composition were detected at the genus level. These alcohol-induced effects could be reversed with aplysin treatment. Conclusions These results suggest that aplysin exerts a protective effect on ethanol-induced hepatic injury in rats by normalizing fecal microbiota composition and repairing intestinal barrier function.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The importance of the gut microbiome in human health is being increasingly recognized. The purpose of this review is to examine the existing literature pertaining to alterations in the gut microbiome and the utility of microbiome restoration therapies in gastrointestinal disorders. RECENT FINDINGS Imbalance and maladaptation of the microbiome, termed dysbiosis, has been associated with several disease states such as irritable bowel syndrome, Clostridium difficile infection, inflammatory bowel diseases, nonalcoholic fatty liver disease, and obesity among others. The possibility of restoration of normal microbiota has become an attractive concept for diseases in which the normal microbiome is perturbed. The rationale of using fecal microbiota transplantation to treat disease has been validated by its successful use in treating recurrent Clostridium difficile infection, which occurs as a result of decreased microbial diversity in the gut, most often in the setting of recent antibiotic treatment. Similar strategies may be applicable to other disorders. SUMMARY Alterations in the gut microbiome are associated with several disorders, and microbiome restoration based therapies such as fecal microbiota transplantation may be an adjunct to conventional treatments but more investigation is needed.
Collapse
Affiliation(s)
- Thomas Malikowski
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
15
|
Awan SJ, Baig MT, Yaqub F, Tayyeb A, Ali G. In vitro differentiated hepatic oval-like cells enhance hepatic regeneration in CCl 4 -induced hepatic injury. Cell Biol Int 2016; 41:51-61. [PMID: 27805290 DOI: 10.1002/cbin.10699] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/29/2016] [Indexed: 02/06/2023]
Abstract
Hepatic oval cells are likely to be activated during advanced stage of liver fibrosis to reconstruct damaged hepatic tissue. However, their scarcity, difficulties in isolation, and in vitro expansion hampered their transplantation in fibrotic liver. This study was aimed to investigate the repair potential of in vitro differentiated hepatic oval-like cells in CCl4 -induced liver fibrosis. BMSCs and oval cells were isolated and characterized from C57BL/6 GFP+ mice. BMSCs were differentiated into oval cells by preconditioning with HGF, EGF, SCF, and LIF and analyzed for the oval cells-specific genes. Efficiency of oval cells to reduce hepatocyte injury was studied by determining cell viability, release of LDH, and biochemical tests in a co-culture system. Further, in vivo repair potential of differentiated oval cells was determined in CCl4 -induced fibrotic model by gene expression analysis, biochemical tests, mason trichrome, and Sirius red staining. Differentiated oval cells expressed hepatic oval cells-specific markers AFP, ALB, CK8, CK18, CK19. These differentiated cells when co-cultured with injured hepatocytes showed significant hepato-protection as measured by reduction in apoptosis, LDH release, and improvement in liver functions. Transplantation of differentiated oval cells like cells in fibrotic livers exhibited enhanced homing, reduced liver fibrosis, and improved liver functions by augmenting hepatic microenvironment by improved liver functions. This preconditioning strategy to differentiate BMSCs into oval cell leads to improved survival and homing of transplanted cells. In addition, reduction in fibrosis and functional improvement in mice with CCl4 -induced liver fibrosis was achieved.
Collapse
Affiliation(s)
- Sana Javaid Awan
- National Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Maria Tayyab Baig
- National Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Faiza Yaqub
- National Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Asima Tayyeb
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Gibran Ali
- National Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
16
|
Zhang ZL, Duan ZJ. Gut-liver axis: An important target for prevention and treatment of liver diseases. Shijie Huaren Xiaohua Zazhi 2016; 24:3454-3460. [DOI: 10.11569/wcjd.v24.i23.3454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human intestine harbors a complex and diverse community of microbes that promote metabolism and digestion in their symbiotic relationship with the host. Liver diseases have long been associated with qualitative (dysbiotic) and quantitative (overgrowth) changes in the intestinal microbiota. Extrinsic factors, such as diet and alcohol, contribute to intestinal microbiota dysbiosis. Dysbiosis results in intestinal inflammation, intestinal barrier breakdown, and translocation of microbial products in animal models, further aggravating hepatic injury and inflammation. Microbial metabolites produced in a dysbiotic intestinal environment and host factors are equally important in the pathogenesis of liver diseases. In the current review, we discuss the progress in understanding the role of gut-liver axis dysfunction in the progression of non-alcoholic fatty liver disease, alcoholic liver disease and cirrhosis, and the potential application value of the restoration of intestinal homeostasis in the prevention and treatment of liver diseases.
Collapse
|
17
|
Fish Oil Reduces Hepatic Injury by Maintaining Normal Intestinal Permeability and Microbiota in Chronic Ethanol-Fed Rats. Gastroenterol Res Pract 2016; 2016:4694726. [PMID: 27143963 PMCID: PMC4842064 DOI: 10.1155/2016/4694726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/08/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to investigate the ameliorative effects of fish oil on hepatic injury in ethanol-fed rats based on the intestinal permeability and microbiota. Rats were assigned to 6 groups and fed either a control diet or an ethanol diet such as C (control), CF25 (control with 25% fish oil), CF57 (control with 57% fish oil), E (ethanol), EF25 (ethanol with 25% fish oil), and EF57 (ethanol with 57% fish oil) groups. Rats were sacrificed at the end of 8 weeks. Plasma aspartate aminotransferase (AST) and aminotransferase (ALT) activities, hepatic cytokines, and plasma endotoxin levels were significantly higher in the E group. In addition, hepatic histopathological analysis scores in the E group were significantly elevated. Rats in the E group also showed increased intestinal permeability and decreased numbers of fecal Bifidobacterium. However, plasma AST and ALT activities and hepatic cytokine levels were significantly lower in the EF25 and EF57 groups. Histological changes and intestinal permeability were also improved in the EF25 and EF57 groups. The fecal Escherichia coli numbers were significantly lower, but fecal Bifidobacterium numbers were significantly higher in the EF25 and EF57 groups.
Collapse
|
18
|
Asgharian A, Askari G, Esmailzade A, Feizi A, Mohammadi V. The Effect of Symbiotic Supplementation on Liver Enzymes, C-reactive Protein and Ultrasound Findings in Patients with Non-alcoholic Fatty Liver Disease: A Clinical Trial. Int J Prev Med 2016; 7:59. [PMID: 27076897 PMCID: PMC4809112 DOI: 10.4103/2008-7802.178533] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/22/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Regarding to the growing prevalence of nonalcoholic fatty liver disease (NAFLD), concentrating on various strategies to its prevention and management seems necessary. The aim of this study was to determine the effects of symbiotic on C-reactive protein (CRP), liver enzymes, and ultrasound findings in patients with NAFLD. METHODS Eighty NAFLD patients were enrolled in this randomized, double-blind, placebo-controlled clinical trial. Participants received symbiotic in form of a 500 mg capsule (containing seven species of probiotic bacteria and fructooligosaccharides) or a placebo capsule daily for 8 weeks. Ultrasound grading, CRP, and liver enzymes were evaluated at the baseline and the end of the study. RESULTS In the symbiotic group, ultrasound grade decreased significantly compared to baseline (P < 0.005) but symbiotic supplementation was not associated with changes in alanine aminotransferase (ALT) and aspartate transaminase (AST) levels. In the placebo group, there was no significant change in steatosis grade whereas ALT and AST levels were significantly increased (P = 0.002, P = 0.02, respectively). CRP values remained static in either group. CONCLUSIONS Symbiotic supplementation improved steatosis in NAFLD patients and might be useful in the management of NAFLD or protective against its progression.
Collapse
Affiliation(s)
- Atefe Asgharian
- Department of Community Nutrition, Food Security Research Centre, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Treatment Affair, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, Food Security Research Centre, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Endocrine and Metabolism Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Esmailzade
- Department of Community Nutrition, Food Security Research Centre, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Community Nutrition, Food Security Research Centre, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Endocrine and Metabolism Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Mohammadi
- Department of Community Nutrition, Food Security Research Centre, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Haque TR, Barritt AS. Intestinal microbiota in liver disease. Best Pract Res Clin Gastroenterol 2016; 30:133-42. [PMID: 27048904 DOI: 10.1016/j.bpg.2016.02.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/05/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota have emerged as a topic of intense interest in gastroenterology and hepatology. The liver is on the front line as the first filter of nutrients, toxins and bacterial metabolites from the intestines and we are becoming increasingly aware of interactions among the gut, liver and immune system as important mediators of liver health and disease. Manipulating the microbiota with therapeutic intent is a rapidly expanding field. In this review, we will describe what is known about the contribution of intestinal microbiota to liver homeostasis; the role of dysbiosis in the pathogenesis of liver disease including alcoholic and non-alcoholic fatty liver disease, cirrhosis and hepatocellular carcinoma; and the therapeutic manifestations of altering intestinal microbiota via antibiotics, prebiotics, probiotics and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Tanvir R Haque
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA.
| | - A Sidney Barritt
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
20
|
Morais CA, de Rosso VV, Estadella D, Pisani LP. Anthocyanins as inflammatory modulators and the role of the gut microbiota. J Nutr Biochem 2015; 33:1-7. [PMID: 27260462 DOI: 10.1016/j.jnutbio.2015.11.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022]
Abstract
The health benefits of consuming fruits that are rich in polyphenols, especially anthocyanins, have been the focus of recent in vitro and in vivo investigations. Thus, greater attention is being directed to the reduction of the inflammatory process associated with the intestinal microbiota and the mechanism underlying these effects because the microbiota has been closely associated with the metabolism of these compounds in the gastrointestinal tract. Further interest lies in the ability of these metabolites to modulate the growth of specific intestinal bacteria. Thus, this review examines studies involving the action of the anthocyanins that are present in many fruits and their effect in the modulating the inflammatory process associated with the interaction between the host and the gut microbiota. The findings of both in vitro and in vivo studies suggest a potential antiinflammatory effect of these compounds, which seem to inhibit activation of the signaling pathway mediated by the transcription factor NFκB. This effect is associated with modulation of a beneficial gut microbiota, particularly an increase in Bifidobacterium strains.
Collapse
Affiliation(s)
- Carina Almeida Morais
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de, São Paulo, Santos, SP, Brazil.
| | - Veridiana Vera de Rosso
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de, São Paulo, Santos, SP, Brazil.
| | - Débora Estadella
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de, São Paulo, Santos, SP, Brazil.
| | - Luciana Pellegrini Pisani
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de, São Paulo, Santos, SP, Brazil.
| |
Collapse
|
21
|
Oral administration of Saccharomyces boulardii ameliorates carbon tetrachloride-induced liver fibrosis in rats via reducing intestinal permeability and modulating gut microbial composition. Inflammation 2015; 38:170-9. [PMID: 25227279 DOI: 10.1007/s10753-014-0019-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To investigate the effects of orally administrated Saccharomyces boulardii (S. boulardii) on the progress of carbon tetrachloride (CCl4)-induced liver fibrosis, 34 male Wistar rats were randomly divided into four experimental groups including the control group (n = 8), the cirrhotic group (n = 10), the preventive group (n = 8), and the treatment group (n = 8). Results showed that the liver expression levels of collagen, type I, alpha 1 (Col1A1), alpha smooth muscle actin (αSMA), transforming growth factor beta (TGF-β) and the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and malondialdehyde (MDA) increased significantly in cirrhotic rats compared with control and decreased by S. boulardii administration. Treatment of S. boulardii also attenuated the increased endotoxin levels and pro-inflammatory cytokines in CCl4-treated rats. And, these were associated with the changes of intestinal permeability and fecal microbial composition. Our study suggested that oral administration of S. boulardii can promote the liver function of CCl4-treated rats, and the preventive treatment of this probiotic yeast may decelerate the progress of liver fibrosis.
Collapse
|
22
|
Pisacane V, Callegari ML, Puglisi E, Dallolio G, Rebecchi A. Microbial analyses of traditional Italian salami reveal microorganisms transfer from the natural casing to the meat matrix. Int J Food Microbiol 2015; 207:57-65. [DOI: 10.1016/j.ijfoodmicro.2015.04.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 02/19/2015] [Accepted: 04/19/2015] [Indexed: 11/27/2022]
|
23
|
Sánchez E, Nieto JC, Boullosa A, Vidal S, Sancho FJ, Rossi G, Sancho-Bru P, Oms R, Mirelis B, Juárez C, Guarner C, Soriano G. VSL#3 probiotic treatment decreases bacterial translocation in rats with carbon tetrachloride-induced cirrhosis. Liver Int 2015; 35:735-745. [PMID: 24750552 DOI: 10.1111/liv.12566] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Probiotics can prevent pathological bacterial translocation in cirrhosis by modulating intestinal microbiota and improving gut barrier and immune disturbances. To evaluate the effect of probiotic VSL#3 on bacterial translocation, intestinal microbiota, gut barrier and inflammatory response in rats with experimental cirrhosis. METHODS Forty-six Sprague-Dawley rats with CCl4 -induced cirrhosis were randomized into two groups: VSL#3 group (n = 22) that received VSL#3 in drinking water, and water group (n = 24) that received water only. Treatment began at week 6 of cirrhosis induction and continued until laparotomy, performed 1 week after development of ascites or at week 20. A control group included 11 healthy rats. At this study end, we evaluated bacterial translocation, intestinal flora, intestinal barrier (ileal claudin-2 and 4, β-defensin-1, occludin and malondialdehyde as index of oxidative damage) and serum cytokines. RESULTS Mortality during this study was similar in the VSL#3 group (10/22, 45%) and the water group (10/24, 42%) (P = 1). The incidence of bacterial translocation was 1/12 (8%) in the VSL#3 group, 7/14 (50%) in the water group (P = 0.03 vs. VSL#3 group) and 0/11 in the control group (P = 0.008 vs. water group). The concentration of ileal and caecal enterobacteria and enterococci was similar in the two groups of cirrhotic rats. The ileal occludin concentration was higher and ileal malondialdehyde and serum levels of TNF-α were lower in the VSL#3 group than in the water group (P < 0.05). CONCLUSIONS VSL#3 decreases bacterial translocation, the pro-inflammatory state and ileal oxidative damage and increases ileal occludin expression in rats with experimental cirrhosis.
Collapse
Affiliation(s)
- Elisabet Sánchez
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Plaza-Diaz J, Gomez-Llorente C, Fontana L, Gil A. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J Gastroenterol 2014; 20:15632-15649. [PMID: 25400447 PMCID: PMC4229528 DOI: 10.3748/wjg.v20.i42.15632] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/04/2014] [Accepted: 06/21/2014] [Indexed: 02/06/2023] Open
Abstract
The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms "probiotics" and "gene expression" combined with "intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and interleukins and lead mainly to an anti-inflammatory response in cultured enterocytes. In addition, the interaction of commensal bacteria and probiotics with the surface of antigen-presenting cells in vitro results in the downregulation of pro-inflammatory genes that are linked to inflammatory signaling pathways, whereas other anti-inflammatory genes are upregulated. The effects of probiotics have been extensively investigated in animal models ranging from fish to mice, rats and piglets. These bacteria induce a tolerogenic and hyporesponsive immune response in which many genes that are related to the immune system, in particular those genes expressing anti-inflammatory cytokines, are upregulated. By contrast, information related to gene expression in human intestinal cells mediated by the action of probiotics is scarce. There is a need for further clinical studies that evaluate the mechanism of action of probiotics both in healthy humans and in patients with chronic diseases. These types of clinical studies are necessary for addressing the influence of these microorganisms in gene expression for different pathways, particularly those that are associated with the immune response, and to better understand the role that probiotics might have in the prevention and treatment of disease.
Collapse
|
25
|
Cheng C, Huang C, Ma TT, Xu T, Wang YR, Zhang L, Jun L. New surprises of suppressor of cytokine signalling in liver fibrosis. Expert Opin Ther Targets 2014; 18:415-26. [DOI: 10.1517/14728222.2014.885953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|