1
|
Wikerholmen T, Taule EM, Rigg E, Berle BF, Sættem M, Sarnow K, Saed HS, Sundstrøm T, Thorsen F. Repurposing neuroleptics: clozapine as a novel, adjuvant therapy for melanoma brain metastases. Clin Exp Metastasis 2025; 42:12. [PMID: 39856383 PMCID: PMC11761981 DOI: 10.1007/s10585-025-10328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/01/2025] [Indexed: 01/27/2025]
Abstract
The blood-brain barrier and the distinct brain immunology provide challenges in translating commonly used chemotherapeutics to treat intracranial tumors. Previous reports suggest anti-tumoral effects of antipsychotics, encouraging investigations into potential treatment effects of neuroleptics on brain metastases. For the first time, the therapeutic potential of the antipsychotic drug clozapine in treating melanoma brain metastases (MBM) was investigated using three human MBM cell lines. Through in vitro cell culture and viability experiments, clozapine displayed potent anti-tumoral effects on MBM cells with an exploitable therapeutic window when compared to normal human astrocytes or rat brain organoids. Further, it was shown that clozapine inhibited migration, proliferation, and colony formation in a dose-dependent manner. Through flow cytometry and proteome screening, we found that clozapine induced apoptosis in MBM cells and potentially altered the tumor immunological environment by upregulating proteins such as macrophage inflammatory protein-1 alpha (MIP-1α) and interleukin-8 (IL-8). In conclusion, clozapine shows significant and selective anti-tumoral effects on MBM cell lines in vitro. Further in vivo experiments are warranted to translate these results into clinical use.
Collapse
Affiliation(s)
- Tobias Wikerholmen
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway
| | - Erlend Moen Taule
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway
| | - Emma Rigg
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway
| | - Birgitte Feginn Berle
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway
| | - Magnus Sættem
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway
| | - Katharina Sarnow
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway
- Department of Neurosurgery, Boston Children's Hospital, 300 longwood Ave, Boston, MA, 02115, USA
| | - Halala Sdik Saed
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway
| | - Terje Sundstrøm
- Department of Neurosurgery, Haukeland University Hospital, Haukelandsveien 22, Bergen, 5021, Norway
- Department of Clinical Medicine, University of Bergen, Jonas Lies Vei 87, Bergen, 5009, Norway
| | - Frits Thorsen
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway.
- Department of Neurosurgery, Haukeland University Hospital, Haukelandsveien 22, Bergen, 5021, Norway.
- Department of Clinical Medicine, University of Bergen, Jonas Lies Vei 87, Bergen, 5009, Norway.
- Molecular Imaging Center, Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, Bergen, 5009, Norway.
| |
Collapse
|
2
|
Jakobs M, Tebbe B, Friedel AL, Schönberger T, Engler H, Wilde B, Fandrey J, Hörbelt-Grünheidt T, Schedlowski M. Acute hypoxic conditions preceding endotoxin administration result in an increased proinflammatory cytokine response in healthy men. Am J Physiol Endocrinol Metab 2024; 327:E422-E429. [PMID: 39140976 DOI: 10.1152/ajpendo.00247.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Tissues often experience hypoxia at sites of inflammation due to malperfusion, massive immune cell recruitment, and increased oxygen consumption. Organisms adapt to these hypoxic conditions through the transcriptional activation of various genes. In fact, there is significant crosstalk between the transcriptional responses to hypoxia and inflammatory processes. This interaction, named inflammatory hypoxia, plays a crucial role in various diseases including malignancies, chronic inflammatory lung diseases, and sepsis. To further elucidate the crosstalk between hypoxia and inflammation in vivo and assess its potential for innovative therapies, our study aimed at investigating the impact of acute hypoxic conditions on inflammation-induced immune responses. To this end, we exposed healthy human subjects to hypoxia either before (hypoxia priming) or after a single intravenous (i.v.) injection of 0.4 ng/kg LPS. Our data show that hypoxia exposure prior to LPS injection (hypoxia priming) amplified the proinflammatory response. This was reflected by an increase in body temperature, plasma noradrenaline levels, and the production of proinflammatory cytokines (i.e., IL-6 and TNF-α), compared with LPS control conditions. These effects were not observed when participants were exposed to hypoxia after LPS administration, demonstrating that the interaction between hypoxia and inflammation highly depends on the timing of both stimuli. Our findings suggest that acute hypoxia (i.e., hypoxia priming) modulates transient inflammation, leading to an enhanced proinflammatory response in healthy human subjects. This highlights the need for further investigations to understand the pathology of various hypoxia-inducible factor (HIF)-associated inflammatory diseases and to develop suitable, innovative therapies.NEW & NOTEWORTHY To our knowledge, this is the first in vivo study investigating the effects of hypoxia preceding (hypoxia priming) or following LPS administration on the endotoxin-induced inflammatory response in healthy human subjects. The data show that hypoxia priming amplified the proinflammatory response, reflected by an increased body temperature, increased plasma noradrenaline levels, and higher production of proinflammatory cytokines (i.e., IL-6 and TNF-α) compared with LPS control conditions.
Collapse
Affiliation(s)
- Marie Jakobs
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
| | - Bastian Tebbe
- Institute of Physiology, University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
| | - Anna Lena Friedel
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
| | - Tina Schönberger
- Institute of Physiology, University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
| | - Joachim Fandrey
- Institute of Physiology, University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
| | - Tina Hörbelt-Grünheidt
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Duisburg, Germany
- Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Huang R, Ding J, Xie WF. Liver cancer. SINUSOIDAL CELLS IN LIVER DISEASES 2024:349-366. [DOI: 10.1016/b978-0-323-95262-0.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Zhao C, Zheng L, Ma Y, Zhang Y, Yue C, Gu F, Niu G, Chen Y. Low-dose metformin suppresses hepatocellular carcinoma metastasis via the AMPK/JNK/IL-8 pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241249445. [PMID: 38679570 PMCID: PMC11057349 DOI: 10.1177/03946320241249445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 03/14/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Metformin, an oral hypoglycemic drug, has been suggested to possess antitumour activity in several types of cancers. Additionally, interleukin-8 (IL-8) has been reported to be involved in the development and metastasis of many cancers. However, the effect of metformin on IL-8 expression in hepatocellular carcinoma (HCC) remains unclear. Therefore, this study aimed to investigate whether metformin could inhibit IL-8 expression to exert an inhibitory effect on HCC progression. MATERIALS AND METHODS The IL-8 levels were measured in the plasma of 159 HCC patients (86 men, 73 women; average age 56 years) and in the culture supernatant of HCC cells (Hep3B and HuH7) using flow cytometry. In addition, the protein expression levels of IL-8 were also validated by the Human Protein Atlas (HPA) database. The prognostic value of IL-8 was evaluated using the Kaplan-Meier Plotter database. The association between IL-8 expression and immune checkpoints was estimated using the TIMER and The Cancer Genome Atlas (TCGA) databases. What's more, bioinformatics analysis, western blotting, and transwell assays were conducted to illustrate the molecular mechanism of metformin (≤1 mM) on IL-8 in HCC. RESULTS IL-8 expression was found to be increased in the plasma of HCC patients, which is consistent with the expression of IL-8 in HCC cells and tissues. High expression of IL-8 was significantly related to poor prognosis. In addition, IL-8 was positively correlated with immune checkpoints in HCC. Notably, we found that low-dose metformin could inhibit the secretion of IL-8 by HCC cells and the migration of HCC cells. Mechanistically, low-dose metformin significantly suppresses HCC metastasis mainly through the AMPK/JNK/IL-8/MMP9 pathway. CONCLUSION The results indicate that low-dose metformin can inhibit HCC metastasis by suppressing IL-8 expression. Targeting the AMPK/JNK/IL-8 axis may be a promising treatment strategy for patients with HCC metastasis.
Collapse
Affiliation(s)
- Chengwen Zhao
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou, China
| | - Lu Zheng
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou, China
| | - Yuting Ma
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou, China
| | - Yue Zhang
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou, China
| | - Chanjuan Yue
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou, China
| | - Feng Gu
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou, China
| | - Guoping Niu
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou, China
| | - Yongqiang Chen
- Department of Clinical Laboratory, Xuzhou Institute of Medical Science, Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Wu Q, You L, Nepovimova E, Heger Z, Wu W, Kuca K, Adam V. Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape. J Hematol Oncol 2022; 15:77. [PMID: 35659268 PMCID: PMC9166526 DOI: 10.1186/s13045-022-01292-6] [Citation(s) in RCA: 207] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia, a common feature of the tumor microenvironment in various types of cancers, weakens cytotoxic T cell function and causes recruitment of regulatory T cells, thereby reducing tumoral immunogenicity. Studies have demonstrated that hypoxia and hypoxia-inducible factors (HIFs) 1 and 2 alpha (HIF1A and HIF2A) are involved in tumor immune escape. Under hypoxia, activation of HIF1A induces a series of signaling events, including through programmed death receptor-1/programmed death ligand-1. Moreover, hypoxia triggers shedding of complex class I chain-associated molecules through nitric oxide signaling impairment to disrupt immune surveillance by natural killer cells. The HIF-1-galactose-3-O-sulfotransferase 1-sulfatide axis enhances tumor immune escape via increased tumor cell-platelet binding. HIF2A upregulates stem cell factor expression to recruit tumor-infiltrating mast cells and increase levels of cytokines interleukin-10 and transforming growth factor-β, resulting in an immunosuppressive tumor microenvironment. Additionally, HIF1A upregulates expression of tumor-associated long noncoding RNAs and suppresses immune cell function, enabling tumor immune escape. Overall, elucidating the underlying mechanisms by which HIFs promote evasion of tumor immune surveillance will allow for targeting HIF in tumor treatment. This review discusses the current knowledge of how hypoxia and HIFs facilitate tumor immune escape, with evidence to date implicating HIF1A as a molecular target in such immune escape. This review provides further insight into the mechanism of tumor immune escape, and strategies for tumor immunotherapy are suggested.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Li You
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic. .,Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic.
| |
Collapse
|
6
|
Kiani AA, Elyasi H, Ghoreyshi S, Nouri N, Safarzadeh A, Nafari A. Study on hypoxia-inducible factor and its roles in immune system. Immunol Med 2021; 44:223-236. [PMID: 33896415 DOI: 10.1080/25785826.2021.1910187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Hypoxia-Inducible Factor-1 (HIF-1) is a dimeric protein complex that plays a significant role in responding to low oxygen or hypoxia concentrations. Chronic inflammation is one of the immune system responses and can increase HIF expression in involved tissues through lowering the oxygen and hypoxia. The HIF factor has many critical roles in immunity, and thus, we reviewed the crucial roles of this factor in the immune system. The results showed various key roles on the immune system, including physical defenses, innate immune (neutrophils apoptosis, macrophages) and inflammatory responses (pyrexia and local heat, iron access, etc.), upregulation in response to microbial infections, cytokines expression (IL-1, IL-2, IL-6, IL-8, IL-12, IL-18, TNF, etc.), drug targeting, etc. The HIF roles in the acquired immune system include: enhance the adaptation of cells (dendritic cells) to new conditions and triggering the signal pathways. The findings of the present review demonstrated that the HIF has important roles in the immune system, including physical defense, innate immune as well as acquired immunity; therefore, it may be considered as a potent drug targeting several diseases such as cancers, infectious diseases, etc.
Collapse
Affiliation(s)
- Ali Asghar Kiani
- Department of Laboratory Sciences, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Hossein Elyasi
- Student Research Committee, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Shadiyeh Ghoreyshi
- Student Research Committee, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Negar Nouri
- Student Research Committee, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Ali Safarzadeh
- Student Research Committee, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Amirhossein Nafari
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Zhang C, Gao Y, Du C, Markowitz GJ, Fu J, Zhang Z, Liu C, Qin W, Wang H, Wang F, Yang P. Hepatitis B-Induced IL8 Promotes Hepatocellular Carcinoma Venous Metastasis and Intrahepatic Treg Accumulation. Cancer Res 2021; 81:2386-2398. [PMID: 33653774 DOI: 10.1158/0008-5472.can-20-3453] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/18/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
Hepatitis B-associated hepatocellular carcinoma (HCC) is often accompanied by severe vascular invasion and portal vein tumor thrombus, leading to a poor prognosis. However, the underlying mechanism of this disease remains obscure. In this study, we demonstrate that the hepatitis B virus (HBV)-encoded gene HBx induces high IL8 production through MEK-ERK signal activation, leading to enhanced endothelial permeability to facilitate tumor vascular invasion. In a vascular metastatic model using a tail vein injection in a transgenic mouse with selective expression of human CXCR1 in the endothelium, activation of the IL8-CXCR1 cascade by overexpression of IL8 in tumor cells dramatically enhanced liver metastasis. Mechanistically, IL8 selectively induced GARP-latent-TGFβ in liver sinusoidal endothelial cells and subsequently provoked preferential regulatory T-cell polarization to suppress antitumor immunity. Collectively, these findings reveal a hepatitis B-associated IL8-CXCR1 signaling axis that mediates vascular invasion and local microenvironmental immune escape of HCC to induce intrahepatic metastasis, which may serve as potential therapeutic targets for HBV-associated HCC. SIGNIFICANCE: This study identifies a hepatitis B-induced IL8/CXCR1/TGFβ signaling cascade that suppresses antitumor immunity and enhances metastasis in hepatocellular carcinoma, providing new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Changlu Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yanan Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Chengzhi Du
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Geoffrey J Markowitz
- Department of Cardiothoracic Surgery and Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, New York
| | - Jing Fu
- National Center for Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhenxing Zhang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Chunliang Liu
- National Center for Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wenhao Qin
- National Center for Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hongyang Wang
- National Center for Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Fan Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China. .,Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Pengyuan Yang
- School of Life Sciences, University of Science and Technology of China, Hefei, China. .,CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Wang LL, Liao C, Li XQ, Dai R, Ren QW, Shi HL, Wang XP, Feng XS, Chao X. Systems Pharmacology-Based Identification of Mechanisms of Action of Bolbostemma paniculatum for the Treatment of Hepatocellular Carcinoma. Med Sci Monit 2021; 27:e927624. [PMID: 33436534 PMCID: PMC7812697 DOI: 10.12659/msm.927624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Traditional Chinese medicine has widely used Bolbostemma paniculatum to treat diseases, including cancer, but its underlying mechanisms remain unclear. The present study aimed to elucidate the potential pharmacological mechanisms of “Tu Bei Mu” (TBM), the Chinese name for Bolbostemmatis Rhizoma, the dry tuber of B. paniculatum, for the treatment of hepatocellular carcinoma (HCC). Material/Methods The active components and putative therapeutic targets of TBM were explored using SwissTargetPrediction, Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and Search Tool for Interactions of Chemicals (STITCH). The HCC-related target database was built using DrugBank, DisGeNet, Online Mendelian Inheritance in Man (OMIM), and Therapeutic Target Database (TTD). A protein–protein interaction network of the common targets was constructed, based on the matches between TBM potential targets and HCC-related targets, using Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the cluster networks were used to elucidate the biological functions of TBM. Results Pharmacological network diagrams of the TBM compound-target network and HCC-related target network were successfully constructed. A total of 22 active components, 191 predicted biological targets of TBM, and 3775 HCC-related targets were identified. Through construction of an HCC-related target database and a protein–protein interaction network of the common targets, TBM was predicted to be effective in treating HCC mainly through the PI3K-Akt, HIF-1, p53, and PPAR signaling pathways. Conclusions The PI3K/Akt, HIF1, p53, and PPAR pathways may play vital roles in TBM treatment of HCC. Also, the potential anti-cancer effect of TBM on HCC appears to stem from the synergetic effect of multiple targets and mechanisms.
Collapse
Affiliation(s)
- Lan-Lan Wang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| | - Chen Liao
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming, Yunnan, China (mainland)
| | - Xiao-Qiang Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Rong Dai
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming, Yunnan, China (mainland)
| | - Qing-Wei Ren
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| | - Hai-Long Shi
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| | - Xiao-Ping Wang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| | - Xue-Song Feng
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| | - Xu Chao
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland).,The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
9
|
Effect and Molecular Mechanisms of Jiedu Recipe on Hypoxia-Induced Angiogenesis after Transcatheter Arterial Chemoembolization in Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6529376. [PMID: 33505496 PMCID: PMC7815394 DOI: 10.1155/2021/6529376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 07/23/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022]
Abstract
Transcatheter arterial chemoembolization (TACE) is one of the effective treatment methods for hepatocellular carcinoma (HCC) in middle and late phases. However, TACE-induced hypoxia may promote the angiogenesis and section of some cytokines, such as IL-8, and, thereby, lead to tumor metastasis. Therefore, we investigated the effect of Jiedu Recipe (JR), which has been demonstrated as an effective Traditional Chinese Medicine (TCM) recipe on HCC, on TACE-induced cytokines upregulation and hypoxia-induced angiogenesis. A total of 88 hepatocellular carcinoma (HCC) patients treated with TACE were enrolled and divided into a JR group or control group. TACE induced significant increases of neutrophil lymphocyte ratio (NLR), platelet lymphocyte ratio (PLR), IL-1β, IL-2R, IL-6, and IL-8. JR treatment significantly inhibited the elevation of IL-8 compared with control. In vitro, JR significantly inhibited the hypoxia-induced overexpression of IL-8, HIF-1α, and VEGF mRNA in Huh 7 cells. ELISA assay demonstrated the effect of JR on IL-8 expression. Both hypoxia and IL-8 may promote angiogenesis which was suppressed by JR. Western blot showed that IL-8 upregulated the expression of phosphorylation of AKT, ERK, NF-κB, and VEGFR, which were inhibited by JR. On the other hand, effects of IL-8 on the increase of p-AKT and p-ERK were also blocked by LY294002 and U0126, respectively. In conclusion, our results indicated that JR may inhibit hypoxia-induced angiogenesis through suppressing IL-8/HIF-1α/PI3K and MAPK/ERK pathways after TACE in HCC patients.
Collapse
|
10
|
Li X, Zhang Q, Nasser MI, Xu L, Zhang X, Zhu P, He Q, Zhao M. Oxygen homeostasis and cardiovascular disease: A role for HIF? Biomed Pharmacother 2020; 128:110338. [PMID: 32526454 DOI: 10.1016/j.biopha.2020.110338] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 12/17/2022] Open
Abstract
Hypoxia, the decline of tissue oxygen stress, plays a role in mediating cellular processes. Cardiovascular disease, relatively widespread with increased mortality, is closely correlated with oxygen homeostasis regulation. Besides, hypoxia-inducible factor-1(HIF-1) is reported to be a crucial component in regulating systemic hypoxia-induced physiological and pathological modifications like oxidative stress, damage, angiogenesis, vascular remodeling, inflammatory reaction, and metabolic remodeling. In addition, HIF1 controls the movement, proliferation, apoptosis, differentiation and activity of numerous core cells, such as cardiomyocytes, endothelial cells (ECs), smooth muscle cells (SMCs), and macrophages. Here we review the molecular regulation of HIF-1 in cardiovascular diseases, intended to improve therapeutic approaches for clinical diagnoses. Better knowledge of the oxygen balance control and the signal mechanisms involved is important to advance the development of hypoxia-related diseases.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan Province 410013, China
| | - Quyan Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan Province 410013, China
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Linyong Xu
- Xiangya School of Life Science, Central South University, Changsha, Hunan Province 410013, China
| | - Xueyan Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan Province 410013, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China.
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China.
| |
Collapse
|
11
|
James NE, Emerson JB, Borgstadt AD, Beffa L, Oliver MT, Hovanesian V, Urh A, Singh RK, Rowswell-Turner R, DiSilvestro PA, Ou J, Moore RG, Ribeiro JR. The biomarker HE4 (WFDC2) promotes a pro-angiogenic and immunosuppressive tumor microenvironment via regulation of STAT3 target genes. Sci Rep 2020; 10:8558. [PMID: 32444701 PMCID: PMC7244765 DOI: 10.1038/s41598-020-65353-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a highly lethal gynecologic malignancy arising from the fallopian tubes that has a high rate of chemoresistant recurrence and low five-year survival rate. The ovarian cancer biomarker HE4 is known to promote proliferation, metastasis, chemoresistance, and suppression of cytotoxic lymphocytes. In this study, we sought to examine the effects of HE4 on signaling within diverse cell types that compose the tumor microenvironment. HE4 was found to activate STAT3 signaling and promote upregulation of the pro-angiogenic STAT3 target genes IL8 and HIF1A in immune cells, ovarian cancer cells, and endothelial cells. Moreover, HE4 promoted increases in tube formation in an in vitro model of angiogenesis, which was also dependent upon STAT3 signaling. Clinically, HE4 and IL8 levels positively correlated in ovarian cancer patient tissue. Furthermore, HE4 serum levels correlated with microvascular density in EOC tissue and inversely correlated with cytotoxic T cell infiltration, suggesting that HE4 may cause deregulated blood vessel formation and suppress proper T cell trafficking in tumors. Collectively, this study shows for the first time that HE4 has the ability to affect signaling events and gene expression in multiple cell types of the tumor microenvironment, which could contribute to angiogenesis and altered immunogenic responses in ovarian cancer.
Collapse
Affiliation(s)
- Nicole E James
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA
| | - Jenna B Emerson
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA.,Warren-Alpert Medical School of Brown University, Providence, RI, USA
| | - Ashley D Borgstadt
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA.,Warren-Alpert Medical School of Brown University, Providence, RI, USA
| | - Lindsey Beffa
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA.,Warren-Alpert Medical School of Brown University, Providence, RI, USA
| | - Matthew T Oliver
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA.,Warren-Alpert Medical School of Brown University, Providence, RI, USA
| | - Virginia Hovanesian
- Rhode Island Hospital, Digital Imaging and Analysis Core Facility, Providence, RI, USA
| | - Anze Urh
- Northwell Health Physician Partners Gynecologic Oncology, Brightwaters, NY, USA
| | - Rakesh K Singh
- University of Rochester Medical Center, Rochester, NY, USA
| | | | - Paul A DiSilvestro
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA.,Warren-Alpert Medical School of Brown University, Providence, RI, USA
| | - Joyce Ou
- Warren-Alpert Medical School of Brown University, Providence, RI, USA.,Women and Infants Hospital, Department of Pathology, Providence, RI, USA
| | | | - Jennifer R Ribeiro
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women's Oncology, Providence, RI, USA. .,Warren-Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
12
|
Yang H, Xuefeng Y, Jianhua X. Systematic review of the roles of interleukins in hepatocellular carcinoma. Clin Chim Acta 2020; 506:33-43. [PMID: 32142718 DOI: 10.1016/j.cca.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer with high morbidity and mortality that is often accompanied by immune system disorders and local lymphocyte infiltration. Tumor-infiltrating lymphocytes, cancer cells, stromal cells, and the numerous cytokines they produce, such as chemokines, interferons, tumor necrosis factors, and interleukins, collectively constitute the tumor microenvironment. As a main type of immune effector, interleukin plays opposing roles in regulating tumor cell progression, adhesion, and migration according to its different subtypes. Many reports have concentrated on the roles that interleukins play in HCC, but understanding them systematically remains challenging. This study reviewed the current data to comprehensively summarize the relationships between HCC progression and human interleukin gene families.
Collapse
Affiliation(s)
- Hu Yang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China; Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, China
| | - Yang Xuefeng
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan 421002, China
| | - Xiao Jianhua
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
13
|
Wen J, Zhao Z, Huang L, Wang L, Miao Y, Wu J. IL-8 promotes cell migration through regulating EMT by activating the Wnt/β-catenin pathway in ovarian cancer. J Cell Mol Med 2019; 24:1588-1598. [PMID: 31793192 PMCID: PMC6991660 DOI: 10.1111/jcmm.14848] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Interleukin‐8 (IL‐8), as an inflammatory chemokine, has been previously shown to contribute to tumorigenesis in several malignancies including the ovarian cancer. However, little is known about how IL‐8 promotes the metastasis and invasion of ovarian cancers cells. In this study, we found that IL‐8 and its receptors CXCR1 and CXCR2 were up‐regulated in advanced ovarian serous cancer tissues. Furthermore, the level of IL‐8 and its receptors CXCR1 and CXCR2 expression were associated with ovarian cancer stage, grade and lymph node metastasis. In vitro, IL‐8 promoted ovarian cancer cell migration, initiated the epithelial‐mesenchymal transition (EMT) program and activated Wnt/β‐catenin signalling. However, when treated with Reparixin (inhibitor of both IL‐8 receptors CXCR1 and CXCR2), effect of both endogenous and exogenous IL‐8 was reversed. Together, our results indicated that IL‐8 triggered ovarian cancer cells migration partly through Wnt/β‐catenin pathway mediated EMT, and IL‐8 may be an important molecule in the invasion and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Jirui Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhiwei Zhao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Liwei Huang
- West China School of Stomatology Medicine, Sichuan University, Chengdu, China
| | - Ling Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yali Miao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Petrillo M, Patella F, Pesapane F, Suter MB, Ierardi AM, Angileri SA, Floridi C, de Filippo M, Carrafiello G. Hypoxia and tumor angiogenesis in the era of hepatocellular carcinoma transarterial loco-regional treatments. Future Oncol 2018; 14:2957-2967. [DOI: 10.2217/fon-2017-0739] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review focuses upon interactions and potential therapeutic targets in the ‘vicious cycle’ between hypoxia and neoangiogenesis following treatment of hepatocellular carcinoma with transarterial loco-regional therapies. Biomarkers correlated with angiogenesis have been studied by many authors as prognostic determinants following transarterial intrahepatic therapy. According to these results future therapies directed toward specific factors related to angiogenesis could play a significant role in preventing local tumor recurrence and remote metastasis.
Collapse
Affiliation(s)
- Mario Petrillo
- Diagnostic & Interventional Radiology Service, San Paolo Hospital, Milan, Italy
| | - Francesca Patella
- Postgraduation School of Radiodiagnostic of Milan, Department of Health Sciences, Milan, Italy
| | - Filippo Pesapane
- Postgraduation School of Radiodiagnostic of Milan, Department of Health Sciences, Milan, Italy
| | - Matteo B Suter
- Department of Medical Oncology, ASST Sette laghi, Varese, Italy
| | - Anna M Ierardi
- Diagnostic & Interventional Radiology Service, San Paolo Hospital, Milan, Italy
| | | | - Chiara Floridi
- Department of Diagnostic & Interventional Radiology Fatebenefratelli Hospital, Milan, Italy
| | - Massimo de Filippo
- Department of Medicine & Surgery Via Gramsci Azienda Ospedaliero Universitaria di Parma, 14 Parma, Italy
| | | |
Collapse
|
15
|
Benkheil M, Paeshuyse J, Neyts J, Van Haele M, Roskams T, Liekens S. HCV-induced EGFR-ERK signaling promotes a pro-inflammatory and pro-angiogenic signature contributing to liver cancer pathogenesis. Biochem Pharmacol 2018; 155:305-315. [PMID: 30012461 DOI: 10.1016/j.bcp.2018.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
HCV is a major risk factor for hepatocellular carcinoma (HCC). HCC development in chronically infected HCV patients has until now been attributed to persistent inflammation and interference of viral proteins with host cell signaling. Since activation of the epidermal growth factor receptor (EGFR) presents a crucial step in HCV entry, we aimed at investigating whether EGFR signaling may contribute to the pathogenesis of HCV-related HCC. By applying microarray analysis, we generated a gene expression signature for secreted proteins in HCV-infected hepatoma cells. This gene signature was enriched for inflammatory and angiogenic processes; both crucially involved in HCC development. RT-qPCR analysis, conducted on the entire list of upregulated genes, confirmed induction of 11 genes (AREG, IL8, CCL20, CSF1, GDF15, IGFBP1, VNN3, THBS1 and PAI-1) in a virus titer- and replication-dependent manner. EGFR activation in hepatoma cells largely mimicked the gene signature seen in the infectious HCV model. Further, the EGFR-ERK pathway, but not Akt signaling, was responsible for this gene expression profile. Finally, microarray analysis conducted on clinical data from the GEO database, revealed that our validated gene expression profile is significantly represented in livers of patients with HCV-related liver pathogenesis (cirrhosis and HCC) compared to healthy livers. Taken together, our data indicate that persistent activation of EGFR-ERK signaling in chronically infected HCV patients may induce a specific pro-inflammatory and pro-angiogenic signature that presents a new mechanism by which HCV can promote liver cancer pathogenesis. A better understanding of the key factors in HCV-related oncogenesis, may efficiently direct HCC drug development.
Collapse
Affiliation(s)
- Mohammed Benkheil
- Laboratory of Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven (KU Leuven), Belgium.
| | - Jan Paeshuyse
- Division Animal and Human Health Engineering, Department of Biosystems (BIOSYST), University of Leuven (KU Leuven), Belgium
| | - Johan Neyts
- Laboratory of Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven (KU Leuven), Belgium
| | - Matthias Van Haele
- Translational Cell & Tissue Research, Department of Imaging & Pathology, University of Leuven (KU Leuven), Belgium
| | - Tania Roskams
- Translational Cell & Tissue Research, Department of Imaging & Pathology, University of Leuven (KU Leuven), Belgium
| | - Sandra Liekens
- Laboratory of Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven (KU Leuven), Belgium
| |
Collapse
|
16
|
Regulation of Tumor Progression by Programmed Necrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3537471. [PMID: 29636841 PMCID: PMC5831895 DOI: 10.1155/2018/3537471] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose) deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1), which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s) in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness.
Collapse
|
17
|
Choi SH, Lee SW, Ok M, Kim KS, Kim S, Ahn SH. Gene Expression Profiling of Hepatocellular Carcinoma Derived Cancer Stem Like Cell under Hypoxia. Yonsei Med J 2017; 58:925-933. [PMID: 28792135 PMCID: PMC5552646 DOI: 10.3349/ymj.2017.58.5.925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/17/2017] [Accepted: 05/22/2017] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Cancer stem like cells (CSCs), with unlimited self-renewal potential and other stem cell characteristics, occur in several cancers including hepatocellular carcinoma (HCC). Although CSCs can initiate tumors, malignant proliferation, relapse and multi-drug resistance, the ways how to activate them still remain unknown. This study aims to evaluate whether CSC acquire tumorigenic characters under tumor hypoxia, analyzed by microarray analysis. MATERIALS AND METHODS CSCs were purified from HCC patients and Affymetrix microarray was used to investigate their gene expression profiles. The results were validated by real-time polymerase chain reaction (PCR). RESULTS The results of the microarray indicated that 18 genes were up-regulated and 10 genes were down-regulated in CSCs. Several genes were identified to be significantly involved in the regulation of CSCs such as HCC. Furthermore, the up-regulated genes were related with metabolism, angiogenesis and hypoxia, whereas the down-regulated genes were related with apoptosis and inflammation. CONCLUSION The results may help to understand the mechanisms of tumor development through CSCs which acquired their distinctive tumorogenic properties by hypoxic stimulation.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Division of Bioconvergence, Drug and Disease Target Group, Korea Basic Science Institute, Ochang, Korea
| | - Sang Woo Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Minseon Ok
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Sik Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- BK21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Yonsei University Health System, Seoul, Korea
| | | | - Sang Hoon Ahn
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- BK21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Yonsei University Health System, Seoul, Korea.
| |
Collapse
|
18
|
Alfaro C, Sanmamed MF, Rodríguez-Ruiz ME, Teijeira Á, Oñate C, González Á, Ponz M, Schalper KA, Pérez-Gracia JL, Melero I. Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat Rev 2017; 60:24-31. [PMID: 28866366 DOI: 10.1016/j.ctrv.2017.08.004] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 12/23/2022]
Abstract
Interleukin-8 (CXCL8) was originally described asa chemokine whose main function is the attraction of a polymorphonuclear inflammatory leukocyte infiltrate acting on CXCR1/2. Recently, it has been found that tumors very frequently coopt the production of this chemokine, which in this malignant context exerts different pro-tumoral functions. Reportedly, these include angiogenesis, survival signaling for cancer stem cells and attraction of myeloid cells endowed with the ability to immunosuppress and locally provide growth factors. Given the fact that in cancer patients IL-8 is mainly produced by tumor cells themselves, its serum concentration has been shown to correlate with tumor burden. Thus, IL-8 serum concentrations have been shown to be useful asa pharmacodynamic biomarker to early detect response to immunotherapy. Finally, because of the roles that IL-8 plays in favoring tumor progression, several therapeutic strategies are being developed to interfere with its functions. Such interventions hold promise, especially for therapeutic combinations in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Carlos Alfaro
- Immunology and Immunotherapy, Centre for Applied Medical Research (CIMA), Pamplona, Spain; Department of Oncology, University Clinic of Navarra, Pamplona, Spain; CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, Spain.
| | - Miguel F Sanmamed
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Álvaro Teijeira
- Immunology and Immunotherapy, Centre for Applied Medical Research (CIMA), Pamplona, Spain; CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, Spain
| | - Carmen Oñate
- Immunology and Immunotherapy, Centre for Applied Medical Research (CIMA), Pamplona, Spain
| | - Álvaro González
- CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, Spain; Department of Biochemistry, University Clinic of Navarra, Pamplona, Spain
| | - Mariano Ponz
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain
| | - Kurt A Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - José L Pérez-Gracia
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, Spain
| | - Ignacio Melero
- Immunology and Immunotherapy, Centre for Applied Medical Research (CIMA), Pamplona, Spain; Department of Oncology, University Clinic of Navarra, Pamplona, Spain; CIBERONC, Centro de Investigación Biomédica en Red de Cáncer, Spain.
| |
Collapse
|
19
|
Choi SH, Kim H, Lee HG, Kim BK, Park JY, Kim DY, Ahn SH, Han KH, Kim SU. Dickkopf-1 induces angiogenesis via VEGF receptor 2 regulation independent of the Wnt signaling pathway. Oncotarget 2017; 8:58974-58984. [PMID: 28938611 PMCID: PMC5601707 DOI: 10.18632/oncotarget.19769] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 07/18/2017] [Indexed: 11/25/2022] Open
Abstract
Tumor angiogenesis is essential for invasive tumor growth and metastasis. Dickkopf-1 (DKK-1), an antagonist of Wnt signaling, participates in tumor development and progression. We evaluated whether DKK-1 stimulation induces angiogenesis and the endothelial-mesenchymal transition (EnMT). Human umbilical vein endothelial cells (HUVECs) were stimulated with recombinant DKK-1 (rDDK-1) or conditioned medium from a culture of DKK-1-transfected 293 cells. Following stimulation, the expression levels of angiogenesis-related factors and EnMT related markers were determined by immunoblot assays. In addition, the effects of exogenous DKK-1 on angiogenesis and EnMT were assessed by tube-formation, cell invasion, and wound-healing assays. Human hepatoma cells, such as Hep3B and Huh-7, showed high levels of DKK-1 expression, whereas 293 cells and HUVECs showed little or no DKK-1 expression. Increased endothelial cell tube formation and invasiveness were observed in HUVECs treated with concentrated conditioned medium from DKK-1-overexpressing 293 cells or rDKK-1. DKK-1-stimulated HUVECs also exhibited increased motility in wound-healing assays. Furthermore, the expression levels of angiogenesis-related factors, including vascular endothelial growth factor receptor 2 and vascular endothelial-cadherin, were increased in DKK-1-stimulated HUVECs. The expression of EnMT markers, such as vimentin and Twist, was also increased in DKK-1-stimulated HUVECs. However, no significant change in β-catenin or GSK3β expression was observed. Our in vitro data suggest that DKK-1 can enhance angiogenesis and EnMT by HUVECs independent of the Wnt signaling pathway. Modulation of DKK-1 expression may facilitate development of novel strategies to control tumor angiogenesis and metastasis.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Division of Bioconvergence Analysis, Drug and Disease Target Group, Korea Basic Science Institute, Daejeon, Korea
| | - Hyemi Kim
- Department of Microbiology and Immunology, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Plus Project for Medical Sciences, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Gyu Lee
- Department of Microbiology and Immunology, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Korea
| | - Jun Yong Park
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Korea
| | - Do Young Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Korea
| | - Kwang-Hyub Han
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Liver Cirrhosis Clinical Research Center, Seoul, Korea
| |
Collapse
|
20
|
Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 2017; 20:409-426. [PMID: 28660302 DOI: 10.1007/s10456-017-9562-9] [Citation(s) in RCA: 1000] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/21/2017] [Indexed: 12/27/2022]
Abstract
Tumor blood vessels are a key target for cancer therapeutic management. Tumor cells secrete high levels of pro-angiogenic factors which contribute to the creation of an abnormal vascular network characterized by disorganized, immature and permeable blood vessels, resulting in poorly perfused tumors. The hypoxic microenvironment created by impaired tumor perfusion can promote the selection of more invasive and aggressive tumor cells and can also impede the tumor-killing action of immune cells. Furthermore, abnormal tumor perfusion also reduces the diffusion of chemotherapeutic drugs and radiotherapy efficiency. To fight against this defective phenotype, the normalization of the tumor vasculature has emerged as a new therapeutic strategy. Vascular normalization, by restoring proper tumor perfusion and oxygenation, could limit tumor cell invasiveness and improve the effectiveness of anticancer treatments. In this review, we investigate the mechanisms involved in tumor angiogenesis and describe strategies used to achieve vascular normalization.
Collapse
|
21
|
Zhao Z, Wang S, Lin Y, Miao Y, Zeng Y, Nie Y, Guo P, Jiang G, Wu J. Epithelial-mesenchymal transition in cancer: Role of the IL-8/IL-8R axis. Oncol Lett 2017; 13:4577-4584. [PMID: 28599458 DOI: 10.3892/ol.2017.6034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process that is associated with cancer metastasis and invasion. In cancer, EMT promotes cell motility, invasion and distant metastasis. Interleukin (IL)-8 is highly expressed in tumors and may induce EMT. The IL-8/IL-8R axis has a vital role in EMT in carcinoma, which is regulated by several signaling pathways, including the transforming growth factor β-spleen associated tyrosine kinase/Src-AKT/extracellular signal-regulated kinase, p38/Jun N-terminal kinase-activating transcription factor-2, phosphoinositide 3-kinase/AKT, nuclear factor-κB and Wnt signaling pathways. Blocking the IL-8/IL-8R signaling pathway may be a novel strategy to reduce metastasis and improve patient survival rates. This review will cover IL-8-IL-8R signaling pathway in tumor epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Zhiwei Zhao
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shichao Wang
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yingbo Lin
- Department of Oncology and Pathology, Karolinska Institute, Cancer Centre Karolinska, SE-171 76 Stockholm, Sweden
| | - Yali Miao
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ye Zeng
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongmei Nie
- School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Peng Guo
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guangyao Jiang
- Outpatient Building, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiang Wu
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
22
|
Choi SH, Park JY. Regulation of the hypoxic tumor environment in hepatocellular carcinoma using RNA interference. Cancer Cell Int 2017; 17:3. [PMID: 28053598 PMCID: PMC5209894 DOI: 10.1186/s12935-016-0374-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/21/2016] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Hypoxia is the condition where tumor cells have been deprived of oxygen and has been shown to have a role of tumor development in the hepatocellular carcinoma (HCC). METHODS Using PubMed online database and Google scholar web site, the terms "angiogenesis", "apoptosis", "RNA interference" and/or "hepatocellular carcinoma (HCC)" were searched and analyzed. RESULTS The hypoxia inducible factors (HIFs) are transcriptional regulators that affect a homeostatic response to oxidative stress and have been identified as a key transcription activator of angiogenesis, survival, and metabolism. Cytokines, such as IL-8, also controlled endothelia cells survival and angiogenesis. IL-8 was also overexpressed under hypoxia and induced tumor angiogenesis and growth. CONCLUSION Therefore, regulation of HIFs and IL-8 controlled the tumor microenvironment in terms of tumor angiogenesis and apoptosis. The review summarizes the results of regulation of the hypoxic tumor environment.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Division of Bioconvergence Analysis, Drug and Disease Target Group, Korea Basic Science Institute, Daejeon, Korea
| | - Jun Yong Park
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Abstract
Radiation therapy is the primary treatment in nasopharyngeal carcinoma (NPC), and the effect of radiation therapy is strongly related to the oxygen content of cancer cells. That means, it is imperative to balance the interactions between radiotherapy and anti-angiogenesis therapy when giving combination therapy to improve clinical outcomes. The complicated mechanisms between antiangiogenic agents and radiation involve many interactions between the cancer cells, vasculature, and cancer stroma. The proliferation and metastasis of cancer depends on angiogenesis, while rapid growth of cancers will cause hypoxia, which contributes to radioresistance. Antiangiogenic agents can modulate the cancer blood flow and oxygenation through target cancer vasculature, leading to increased radiosensitivity. This study discusses the mechanisms of the synergistic effect of the antiangiogenic therapy with radiation therapy in metastatic NPC, and reviews the data supporting this strategy as a promising treatment for metastatic NPC.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Oncology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China. E-mail.
| | | |
Collapse
|
24
|
Treps L, Conradi LC, Harjes U, Carmeliet P. Manipulating Angiogenesis by Targeting Endothelial Metabolism: Hitting the Engine Rather than the Drivers-A New Perspective? Pharmacol Rev 2016; 68:872-87. [PMID: 27363442 DOI: 10.1124/pr.116.012492] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Excessive angiogenesis (i.e., the formation of new blood vessels) contributes to different pathologies, among them cancer and ocular disorders. Conversely, dysfunction of endothelial cells (ECs) contributes to cardiovascular complications, as is the case in diabetes. Inhibition of pathologic angiogenesis in blinding eye disease and cancer by targeting growth factors such as vascular endothelial growth factor has become an accepted therapeutic strategy. However, recent studies also unveiled the emerging importance of EC metabolism in controlling angiogenesis. In this overview, we will discuss recent insights in the metabolic regulation of angiogenesis, focusing on the best-characterized metabolic pathways, and highlight deregulation of EC metabolism in cancer and diabetes. We will give an outlook on how targeting EC metabolism can be used for blocking pathologic angiogenesis and for normalizing EC dysfunction.
Collapse
Affiliation(s)
- Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, and Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, and Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, and Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, and Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| |
Collapse
|
25
|
Vandewynckel YP, Laukens D, Devisscher L, Bogaerts E, Paridaens A, Van den Bussche A, Raevens S, Verhelst X, Van Steenkiste C, Jonckx B, Libbrecht L, Geerts A, Carmeliet P, Van Vlierberghe H. Placental growth factor inhibition modulates the interplay between hypoxia and unfolded protein response in hepatocellular carcinoma. BMC Cancer 2016; 16:9. [PMID: 26753564 PMCID: PMC4707726 DOI: 10.1186/s12885-015-1990-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. We previously showed that the inhibition of placental growth factor (PlGF) exerts antitumour effects and induces vessel normalisation, possibly reducing hypoxia. However, the exact mechanism underlying these effects remains unclear. Because hypoxia and endoplasmic reticulum stress, which activates the unfolded protein response (UPR), have been implicated in HCC progression, we assessed the interactions between PlGF and these microenvironmental stresses. Methods PlGF knockout mice and validated monoclonal anti-PlGF antibodies were used in a diethylnitrosamine-induced mouse model for HCC. We examined the interactions among hypoxia, UPR activation and PlGF induction in HCC cells. Results Both the genetic and pharmacological inhibitions of PlGF reduced the chaperone levels and the activation of the PKR-like endoplasmic reticulum kinase (PERK) pathway of the UPR in diethylnitrosamine-induced HCC. Furthermore, we identified that tumour hypoxia was attenuated, as shown by reduced pimonidazole binding. Interestingly, hypoxic exposure markedly activated the PERK pathway in HCC cells in vitro, suggesting that PlGF inhibition may diminish PERK activation by improving oxygen delivery. We also found that PlGF expression is upregulated by different chemical UPR inducers via activation of the inositol-requiring enzyme 1 pathway in HCC cells. Conclusions PlGF inhibition attenuates PERK activation, likely by tempering hypoxia in HCC via vessel normalisation. The UPR, in turn, is able to regulate PlGF expression, suggesting the existence of a feedback mechanism for hypoxia-mediated UPR that promotes the expression of the angiogenic factor PlGF. These findings have important implications for our understanding of the effect of therapies normalising tumour vasculature. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1990-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yves-Paul Vandewynckel
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Debby Laukens
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Lindsey Devisscher
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Eliene Bogaerts
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Annelies Paridaens
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Anja Van den Bussche
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Sarah Raevens
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Xavier Verhelst
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Christophe Van Steenkiste
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | | | - Louis Libbrecht
- Department of Pathology, Ghent University Hospital, Ghent, Belgium.
| | - Anja Geerts
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Centre, KU Leuven, Leuven, Belgium. .,Laboratory of Angiogenesis & Neurovascular Link, Vesalius Research Centre, VIB, Leuven, Belgium.
| | - Hans Van Vlierberghe
- Department of Hepatology and Gastroenterology, Ghent University Hospital, De Pintelaan 185, 1K12IE, B-9000, Ghent, Belgium.
| |
Collapse
|
26
|
Choi SH, Park JY, Kang W, Kim SU, Kim DY, Ahn SH, Ro SW, Han KH. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells. Apoptosis 2016; 21:85-95. [PMID: 26467924 DOI: 10.1007/s10495-015-1185-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.
- Yonsei Liver Center, Yonsei University Health System, Seoul, Korea.
| | - Wonseok Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Yonsei University Health System, Seoul, Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Yonsei University Health System, Seoul, Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Yonsei University Health System, Seoul, Korea
| | - Simon Wonsang Ro
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang-Hyub Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Yonsei University Health System, Seoul, Korea
| |
Collapse
|
27
|
Finlay J, Roberts CM, Dong J, Zink JI, Tamanoi F, Glackin CA. Mesoporous silica nanoparticle delivery of chemically modified siRNA against TWIST1 leads to reduced tumor burden. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1657-66. [PMID: 26115637 DOI: 10.1016/j.nano.2015.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/18/2015] [Accepted: 05/30/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Growth and progression of solid tumors depend on the integration of multiple pro-growth and survival signals, including the induction of angiogenesis. TWIST1 is a transcription factor whose reactivation in tumors leads to epithelial to mesenchymal transition (EMT), including increased cancer cell stemness, survival, and invasiveness. Additionally, TWIST1 drives angiogenesis via activation of IL-8 and CCL2, independent of VEGF signaling. In this work, results suggest that chemically modified siRNA against TWIST1 reverses EMT both in vitro and in vivo. siRNA delivery with a polyethyleneimine-coated mesoporous silica nanoparticle (MSN) led to reduction of TWIST1 target genes and migratory potential in vitro. In mice bearing xenograft tumors, weekly intravenous injections of the siRNA-nanoparticle complexes resulted in decreased tumor burden together with a loss of CCL2 suggesting a possible anti-angiogenic response. Therapeutic use of TWIST1 siRNA delivered via MSNs has the potential to inhibit tumor growth and progression in many solid tumor types. FROM THE CLINICAL EDITOR Tumor progression and metastasis eventually lead to patient mortality in the clinical setting. In other studies, it has been found that TWIST1, a transcription factor, if reactivated in tumors, would lead to downstream events including angiogenesis and result in poor prognosis in cancer patients. In this article, the authors were able to show that when siRNA against TWIST1 was delivered via mesoporous silica nanoparticle, there was tumor reduction in an in-vivo model. The results have opened up a new avenue for further research in this field.
Collapse
Affiliation(s)
- James Finlay
- Division of Comparative Medicine and, Irell & Manella Graduate School of Biological Sciences, City of Hope, Beckman Research Institute, Duarte, CA, USA.
| | - Cai M Roberts
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Beckman Research Institute, Duarte, CA, USA.
| | - Juyao Dong
- Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Fuyuhiko Tamanoi
- Department of Microbiology Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Carlotta A Glackin
- Department of Neurosciences, City of Hope, Beckman Research Institute, Duarte, CA, USA.
| |
Collapse
|
28
|
Dong R, Zheng S. Interleukin-8: A critical chemokine in biliary atresia. J Gastroenterol Hepatol 2015; 30:970-6. [PMID: 25611432 DOI: 10.1111/jgh.12900] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2015] [Indexed: 12/15/2022]
Abstract
Biliary atresia (BA) is characterized by periductular inflammation and fibrosis and is associated with the progressive obliteration of the bile ducts. The induction and maintenance of systemic and local inflammatory responses plays a pivotal role in this process. Interleukin-8 (IL-8) is an important mediator of inflammation and the immune response in human disease. IL-8 is overexpressed in BA, and its expression positively correlates with inflammation and liver fibrosis. In this review, we focus on the available evidence, recent insights, and future clinical and preclinical possibilities regarding the role of IL-8 in BA.
Collapse
Affiliation(s)
- Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, China
| | | |
Collapse
|