1
|
Duailibe JBB, Viau CM, Saffi J, Fernandes SA, Porawski M. Protective effect of long-chain polyunsaturated fatty acids on hepatorenal syndrome in rats. World J Nephrol 2024; 13:95627. [PMID: 39351184 PMCID: PMC11439093 DOI: 10.5527/wjn.v13.i3.95627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Hepatorenal syndrome (HRS) is the most prevalent form of acute kidney injury in cirrhotic patients. It is characterized by reduced renal blood flow and represents the most severe complication in cirrhotic patients with advanced disease. Previous research has indicated that antioxidants can delay the onset of a hyperdynamic circulatory state in cirrhosis and improve renal function in HRS patients. Regular omega-3 supplementation has significantly reduced the risk of liver disease. This supplementation could represent an additional therapy for individuals with HRS. AIM To evaluated the antioxidant effect of omega-3 polyunsaturated fatty acid supplementation on the kidneys of cirrhotic rats. METHODS Secondary biliary cirrhosis was induced in rats by biliary duct ligation (BDL) for 28 d. We used 24 male Wistar rats divided into the following groups: I (control); II (treated with omega-3, 1 g/kg of body weight); III (BDL treated with omega-3, 1 g/kg of body weight); and IV (BDL without treatment). The animals were killed by overdose of anesthetic; the kidneys were dissected, removed, frozen in liquid nitrogen, and stored in a freezer at -80℃ for later analysis. We evaluated oxidative stress, nitric oxide (NO) metabolites, DNA damage by the comet assay, cell viability test, and apoptosis in the kidneys. Data were analyzed by one-way analysis of variance, and means were compared using the Tukey test, with P ≤ 0.05. RESULTS Omega-3 significantly decreased the production of reactive oxygen species (P < 0.001) and lipoperoxidation in the kidneys of cirrhotic rats treated with omega-3 (P < 0.001). The activity of the antioxidant enzymes superoxide dismutase and catalase increased in the BDL+omega-3 group compared to the BDL group (P < 0.01). NO production, DNA damage, and caspase-9 cleavage decreased significantly in the omega-3-treated BDL group. There was an increase in mitochondrial electrochemical potential (P < 0.001) in BDL treated with omega-3 compared to BDL. No changes in the cell survival index in HRS with omega-3 compared to the control group (P > 0.05) were observed. CONCLUSION The study demonstrates that omega-3 can protect cellular integrity and function by increasing antioxidant enzymes, inhibiting the formation of free radicals, and reducing apoptosis.
Collapse
Affiliation(s)
- João Bruno Beretta Duailibe
- Department of Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Cassiana Macagnan Viau
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Jenifer Saffi
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Sabrina Alves Fernandes
- Department of Hepatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Marilene Porawski
- Department of Hepatology and Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil
| |
Collapse
|
2
|
Gil M, Azkargorta M, Fuster C, Martínez-Gómez M, Raurell I, Barberá A, Pericàs JM, Hide D, Elortza F, Genescà J, Martell M. Proteomic Analysis of Dysfunctional Liver Sinusoidal Endothelial Cells Reveals Substantial Differences in Most Common Experimental Models of Chronic Liver Diseases. Int J Mol Sci 2023; 24:11904. [PMID: 37569282 PMCID: PMC10418749 DOI: 10.3390/ijms241511904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Molecular markers of dedifferentiation of dysfunctional liver sinusoidal endothelial cells (LSEC) have not been fully elucidated. We aimed at deciphering the molecular profile of dysfunctional LSEC in different pathological scenarios. Flow cytometry was used to sort CD11b-/CD32b+ and CD11b-/CD32b- LSEC from three rat models of liver disease (bile duct ligation-BDL; inhaled carbon tetrachloride-CCl4; and high fat glucose/fructose diet-HFGFD). A full proteomic profile was performed applying nano-scale liquid chromatography tandem mass spectrometry (nLC-MS) and analyzed with PEAKS software. The percentage of CD32b- LSEC varied across groups, suggesting different capillarization processes. Both CD32+ and CD32b- LSEC from models are different from control LSEC, but differently expressed proteins in CD32b- LSEC are significantly higher. Heatmaps evidenced specific protein expression patterns for each model. Analysis of biological significance comparing dysfunctional CD32b- LSEC with specialized CD32b+ LSEC from controls showed central similarities represented by 45 common down-regulated proteins involved in the suppression of the endocytic machinery and 63 common up-regulated proteins associated with the actin-dependent cytoskeleton reorganization. In summary; substantial differences but also similarities in dysfunctional LSEC from the three most common models of liver disease were found, supporting the idea that LSEC may harbor different protein expression profiles according to the etiology or disease stage.
Collapse
Affiliation(s)
- Mar Gil
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, BRTA (Basque Research & Technology Alliance), Bizkaia Science and Technology Park, 48160 Derio, Spain; (M.A.); (F.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Carla Fuster
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
| | - María Martínez-Gómez
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
| | - Imma Raurell
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Aurora Barberá
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
| | - Juan Manuel Pericàs
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Diana Hide
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, BRTA (Basque Research & Technology Alliance), Bizkaia Science and Technology Park, 48160 Derio, Spain; (M.A.); (F.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Joan Genescà
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - María Martell
- Liver Diseases, Vall d’Hebron Institut de Recerca (VHIR), Liver Unit, Hospital Universitari Vall d’Hebron (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (M.G.); (C.F.); (M.M.-G.); (I.R.); (A.B.); (J.M.P.); (D.H.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
3
|
Bejjani A, Zhang Y, Behrens A, Murray B, Shah N. Droxidopa in the Management of Hepatorenal Syndrome. J Pharm Pract 2022:8971900221087974. [PMID: 35426352 DOI: 10.1177/08971900221087974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Hepatorenal syndrome (HRS) is renal dysfunction associated with the hemodynamic consequences of advanced liver disease and cirrhosis. HRS is associated with a high mortality, and there remain high failure rates with first-line therapy aimed at improving perfusion. We report the use of droxidopa, an oral norepinephrine precursor, to aid in the management of HRS-AKI refractory to first-line therapy. SUMMARY A 51-year-old Caucasian male with alcohol-related cirrhosis presented with 1-week history of pre-syncope and falls. He was found to have acute kidney injury meeting diagnostic criteria of HRS based on absence of identifiable contributing factors. After no response to volume expansion, medical management was initiated with midodrine and octreotide and eventually escalated to norepinephrine intravenous infusion. The patient's renal function and urine output improved initially on norepinephrine, but worsened when attempting to wean to a suitable outpatient regimen, becoming dependent upon norepinephrine. On day 13 of hospitalization, droxidopa was initiated at a dose of 100 mg three times daily and titrated to a dose of 400 mg three times daily. Norepinephrine infusion was weaned and discontinued on day 16 of hospitalization. The patient remained hemodynamically stable and was able to be discharged on droxidopa 400 mg three times daily, midodrine 20 mg three times day, and octreotide 200 mcg three times daily. CONCLUSION Droxidopa, an oral norepinephrine precursor, presents a novel adjunctive agent for management of HRS refractory to first-line medical management.
Collapse
Affiliation(s)
- Andrea Bejjani
- Department of Pharmacy, 537791University of North Carolina Health, Chapel Hill, NC, USA
| | - Youqi Zhang
- Department of Pharmacy, 537791University of North Carolina Health, Chapel Hill, NC, USA
| | - Allison Behrens
- Department of Pharmacy, 537791University of North Carolina Health, Chapel Hill, NC, USA
| | - Brian Murray
- Department of Pharmacy, 537791University of North Carolina Health, Chapel Hill, NC, USA
| | - Neil Shah
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Lv Y, Li Y, Liu N, Dong Y, Deng J. Investigation into imbalance of Th1/Th2 cells in cirrhotic, hypersplenic rats. J Int Med Res 2019; 48:300060519889441. [PMID: 31852338 PMCID: PMC7783262 DOI: 10.1177/0300060519889441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objectives To evaluate the Th1/Th2 cell profile in spleens of cirrhotic and hypersplenic
rats by investigating the expression of Th1-associated chemokine receptors
CXCR3, CCR5 and Th2-associated chemokine receptor CCR3. Methods Experimental liver cirrhosis and hypersplenism were induced in rats by the
intragastric administration of carbon tetrachloride (CCl4; 40%
solution [0.3 ml/100g, twice/week for 8 weeks]) and confirmed by pathology
and hemogram. Presence of the three chemokine receptors was investigated by
real-time polymerase chain reaction (RT-PCR), immunohistochemical staining,
and western blot analysis. Results By comparison with control animals (n=10), RT-PCR demonstrated that CXCR3 and
CCR5-mRNA levels were significantly elevated in the hypersplenic rats (n=26)
and CCR3-mRNA levels were lower. Immunohistochemical staining showed that by
comparison with controls, the mean density of the Th1-associated CXCR3 and
CCR5 receptors was significantly increased but there was no difference
between groups in Th2-associated CCR3 receptors. Western blot analysis
showed that by comparison with controls, hypersplenic rats had higher levels
of CXCR3 and CCR5 protein but lower levels of CCR3 protein. Conclusions The abnormal expression of Th1-associated chemokine receptors in spleens of
rats with cirrhosis and hypersplenism induced by CCL4 suggests that a
functional imbalance between Th1/Th2 cells may play a role in the
pathogenesis of hypersplenism.
Collapse
Affiliation(s)
- Yunfu Lv
- Department of General Surgery, Hainan General Hospital, Haikou, China
| | - Yejuan Li
- Reproductive Medical Centre, Hainan Women and Children's Medical Centre, Haikou, China
| | - Ning Liu
- Department of General Surgery, Hainan General Hospital, Haikou, China
| | - Yonghong Dong
- Department of General Surgery, Shanxi Provincial People's Hospital, Haikou 030001, China
| | - Jie Deng
- Department of General Surgery, Hainan General Hospital, Haikou, China
| |
Collapse
|
5
|
A Nitric Oxide-Donating Statin Decreases Portal Pressure with a Better Toxicity Profile than Conventional Statins in Cirrhotic Rats. Sci Rep 2017; 7:40461. [PMID: 28084470 PMCID: PMC5233977 DOI: 10.1038/srep40461] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/08/2016] [Indexed: 02/06/2023] Open
Abstract
Statins present many beneficial effects in chronic liver disease, but concerns about safety exist. We evaluated the hepatic effects of a nitric oxide-releasing atorvastatin (NCX 6560) compared to conventional statins. Simvastatin, atorvastatin and NCX 6560 were evaluated in four-week bile duct-ligated rats (BDL) simulating decompensated cirrhosis and in thirteen-week carbon tetrachloride (CCl4) intoxicated rats, a model of early cirrhosis. In the BDL model, simvastatin treated rats showed high mortality and the remaining animals presented muscular and hepatic toxicity. At equivalent doses, NCX 6560 eliminated hepatic toxicity and reduced muscular toxicity (60–74%) caused by atorvastatin in the more advanced BDL model; toxicity was minimal in the CCl4 model. Atorvastatin and NCX 6560 similarly reduced portal pressure without changing systemic hemodynamics in both models. Atorvastatin and NCX 6560 caused a mild decrease in liver fibrosis and inflammation and a significant increase in intrahepatic cyclic guanosine monophosphate. NCX 6560 induced a higher intrahepatic vasoprotective profile (activated endothelial nitric oxide synthase and decreased platelet/endothelial cell adhesion molecule-1), especially in the CCl4 model, suggesting a higher benefit in early cirrhosis. In conclusion, NCX 6560 improves the liver profile and portal hypertension of cirrhotic rats similarly to conventional statins, but with a much better safety profile.
Collapse
|