1
|
Gallego-Durán R, Hadjihambi A, Ampuero J, Rose CF, Jalan R, Romero-Gómez M. Ammonia-induced stress response in liver disease progression and hepatic encephalopathy. Nat Rev Gastroenterol Hepatol 2024; 21:774-791. [PMID: 39251708 DOI: 10.1038/s41575-024-00970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Ammonia levels are orchestrated by a series of complex interrelated pathways in which the urea cycle has a central role. Liver dysfunction leads to an accumulation of ammonia, which is toxic and is strongly associated with disruption of potassium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation, hypoxaemia and dysregulation of neurotransmission. Hyperammonaemia is a hallmark of hepatic encephalopathy and has been strongly associated with liver-related outcomes in patients with cirrhosis and liver failure. In addition to the established role of ammonia as a neurotoxin in the pathogenesis of hepatic encephalopathy, an increasing number of studies suggest that it can lead to hepatic fibrosis progression, sarcopenia, immune dysfunction and cancer. However, elevated systemic ammonia levels are uncommon in patients with metabolic dysfunction-associated steatotic liver disease. A clear causal relationship between ammonia-induced immune dysfunction and risk of infection has not yet been definitively proven. In this Review, we discuss the mechanisms by which ammonia produces its diverse deleterious effects and their clinical relevance in liver diseases, the importance of measuring ammonia levels for the diagnosis of hepatic encephalopathy, the prognosis of patients with cirrhosis and liver failure, and how our knowledge of inter-organ ammonia metabolism is leading to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rocío Gallego-Durán
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Javier Ampuero
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| | - Rajiv Jalan
- Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, London, UK
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Manuel Romero-Gómez
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
| |
Collapse
|
2
|
Thomsen KL, De Chiara F, Rombouts K, Vilstrup H, Andreola F, Mookerjee RP, Jalan R. Ammonia: A novel target for the treatment of non-alcoholic steatohepatitis. Med Hypotheses 2018. [PMID: 29523305 DOI: 10.1016/j.mehy.2018.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver diseases ranging from steatosis, through non-alcoholic steatohepatitis (NASH) to cirrhosis. The development of fibrosis is the most important factor contributing to NASH-associated morbidity and mortality. Hepatic stellate cells (HSCs) are responsible for extracellular matrix deposition in conditions of frank hepatocellular injury and are key cells involved in the development of fibrosis. In experimental models and patients with NASH, urea cycle enzyme gene and protein expression is reduced resulting in functional reduction in the in vivo capacity for ureagenesis and subsequent hyperammonemia at a pre-cirrhotic stage. Ammonia has been shown to activate HSCs in vivo and in vitro. Hyperammonemia in the context of NASH may therefore favour the progression of fibrosis and the disease. We therefore hypothesise that ammonia is a potential target for prevention of fibrosis progression of patients with NASH.
Collapse
Affiliation(s)
- Karen Louise Thomsen
- UCL Institute for Liver and Digestive Health, University College London, United Kingdom; Department of Hepatology & Gastroenterology, Aarhus University Hospital, Denmark
| | - Francesco De Chiara
- UCL Institute for Liver and Digestive Health, University College London, United Kingdom
| | - Krista Rombouts
- UCL Institute for Liver and Digestive Health, University College London, United Kingdom
| | - Hendrik Vilstrup
- Department of Hepatology & Gastroenterology, Aarhus University Hospital, Denmark
| | - Fausto Andreola
- UCL Institute for Liver and Digestive Health, University College London, United Kingdom
| | - Rajeshwar P Mookerjee
- UCL Institute for Liver and Digestive Health, University College London, United Kingdom
| | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, University College London, United Kingdom.
| |
Collapse
|
3
|
Bosoi CR, Oliveira MM, Ochoa-Sanchez R, Tremblay M, Ten Have GA, Deutz NE, Rose CF, Bemeur C. The bile duct ligated rat: A relevant model to study muscle mass loss in cirrhosis. Metab Brain Dis 2017; 32:513-518. [PMID: 27981407 DOI: 10.1007/s11011-016-9937-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/30/2016] [Indexed: 02/07/2023]
Abstract
Muscle mass loss and hepatic encephalopathy (complex neuropsychiatric disorder) are serious complications of chronic liver disease (cirrhosis) which impact negatively on clinical outcome and quality of life and increase mortality. Liver disease leads to hyperammonemia and ammonia toxicity is believed to play a major role in the pathogenesis of hepatic encephalopathy. However, the effects of ammonia are not brain-specific and therefore may also affect other organs and tissues including muscle. The precise pathophysiological mechanisms underlying muscle wasting in chronic liver disease remains to be elucidated. In the present study, we characterized body composition as well as muscle protein synthesis in cirrhotic rats with hepatic encephalopathy using the 6-week bile duct ligation (BDL) model which recapitulates the main features of cirrhosis. Compared to sham-operated control animals, BDL rats display significant decreased gain in body weight, altered body composition, decreased gastrocnemius muscle mass and circumference as well as altered muscle morphology. Muscle protein synthesis was also significantly reduced in BDL rats compared to control animals. These findings demonstrate that the 6-week BDL experimental rat is a relevant model to study liver disease-induced muscle mass loss.
Collapse
Affiliation(s)
- Cristina R Bosoi
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montréal, Canada
| | - Mariana M Oliveira
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montréal, Canada
| | | | - Mélanie Tremblay
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montréal, Canada
| | - Gabriella A Ten Have
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Nicolaas E Deutz
- Center for Translational Research in Aging & Longevity, Department of Health & Kinesiology, Texas A&M University, College Station, TX, USA
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montréal, Canada
| | - Chantal Bemeur
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montréal, Canada.
- Département de nutrition, Faculté de médecine, Université de Montréal, CP 6128 Succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
4
|
Davuluri G, Krokowski D, Guan BJ, Kumar A, Thapaliya S, Singh D, Hatzoglou M, Dasarathy S. Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of l-leucine in cirrhosis. J Hepatol 2016; 65:929-937. [PMID: 27318325 PMCID: PMC5069194 DOI: 10.1016/j.jhep.2016.06.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Increased skeletal muscle ammonia uptake with loss of muscle mass adversely affects clinical outcomes in cirrhosis. Hyperammonemia causes reduced protein synthesis and sarcopenia but the cellular responses to impaired proteostasis and molecular mechanism of l-leucine induced adaptation to ammonia induced stress were determined. METHODS Response to activation of amino acid deficiency sensor, GCN2, in the skeletal muscle from cirrhotic patients and the portacaval anastomosis (PCA) rat were quantified. During hyperammonemia and l-leucine supplementation, protein synthesis, phosphorylation of eIF2α, mTORC1 signaling, l-leucine transport and response to l-leucine supplementation were quantified. Adaptation to cellular stress via ATF4 and its target GADD34 were also determined. RESULTS Activation of the eIF2α kinase GCN2 and impaired mTORC1 signaling were observed in skeletal muscle from cirrhotic patients and PCA rats. Ammonia activated GCN2 mediated eIF2α phosphorylation (eIF2α-P) and impaired mTORC1 signaling that inhibit protein synthesis in myotubes and MEFs. Adaptation to ammonia induced stress did not involve translational reprogramming by activation transcription factor 4 (ATF4) dependent induction of the eIF2α-P phosphatase subunit GADD34. Instead, ammonia increased expression of the leucine/glutamine exchanger SLC7A5, l-leucine uptake and intracellular l-leucine levels, the latter not being sufficient to rescue the inhibition of protein synthesis, due to potentially enhanced mitochondrial sequestration of l-leucine. l-leucine supplementation rescued protein synthesis inhibition caused by hyperammonemia. CONCLUSIONS Response to hyperammonemia is reminiscent of the cellular response to amino acid starvation, but lacks the adaptive ATF4 dependent integrated stress response (ISR). Instead, hyperammonemia-induced l-leucine uptake was an adaptive response to the GCN2-mediated decreased protein synthesis. LAY SUMMARY Sarcopenia or skeletal muscle loss is the most frequent complication in cirrhosis but there are no treatments because the cause(s) of muscle loss in liver disease are not known. Results from laboratory experiments in animals and muscle cells were validated in human patients with cirrhosis to show that ammonia plays a key role in causing muscle loss in patients with cirrhosis. We identified a novel stress response to ammonia in the muscle that decreases muscle protein content that can be reversed by supplementation with the amino acid l-leucine.
Collapse
Affiliation(s)
- Gangarao Davuluri
- Departments of Pathobiology, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| | - Dawid Krokowski
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland OH
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland OH
| | - Avinash Kumar
- Departments of Pathobiology, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| | - Samjhana Thapaliya
- Departments of Pathobiology, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| | - Dharmvir Singh
- Departments of Pathobiology, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland OH
| | - Srinivasan Dasarathy
- Departments of Pathobiology, Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| |
Collapse
|
5
|
Brannelly NT, Hamilton-Shield JP, Killard AJ. The Measurement of Ammonia in Human Breath and its Potential in Clinical Diagnostics. Crit Rev Anal Chem 2016; 46:490-501. [PMID: 26907707 DOI: 10.1080/10408347.2016.1153949] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ammonia is an important component of metabolism and is involved in many physiological processes. During normal physiology, levels of blood ammonia are between 11 and 50 µM. Elevated blood ammonia levels are associated with a variety of pathological conditions such as liver and kidney dysfunction, Reye's syndrome and a variety of inborn errors of metabolism including urea cycle disorders (UCD), organic acidaemias and hyperinsulinism/hyperammonaemia syndrome in which ammonia may reach levels in excess of 1 mM. It is highly neurotoxic and so effective measurement is critical for assessing and monitoring disease severity and treatment. Ammonia is also a potential biomarker in exercise physiology and studies of drug metabolism. Current ammonia testing is based on blood sampling, which is inconvenient and can be subject to significant analytical errors due to the quality of the sample draw, its handling and preparation for analysis. Blood ammonia is in gaseous equilibrium with the lungs. Recent research has demonstrated the potential use of breath ammonia as a non-invasive means of measuring systemic ammonia. This requires measurement of ammonia in real breath samples with associated temperature, humidity and gas characteristics at concentrations between 50 and several thousand parts per billion. This review explores the diagnostic applications of ammonia measurement and the impact that the move from blood to breath analysis could have on how these processes and diseases are studied and managed.
Collapse
Affiliation(s)
- N T Brannelly
- a Department of Biological Biomedical and Analytical Science , University of the West of England , Bristol , UK
| | | | - A J Killard
- a Department of Biological Biomedical and Analytical Science , University of the West of England , Bristol , UK
| |
Collapse
|
6
|
Gao X, Fan L, Li H, Li J, Liu X, Sun R, Yu Z. Hepatic injury is associated with cell cycle arrest and apoptosis with alteration of cyclin A and D1 in ammonium chloride-induced hyperammonemic rats. Exp Ther Med 2015; 11:427-434. [PMID: 26893626 PMCID: PMC4733954 DOI: 10.3892/etm.2015.2931] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 11/05/2015] [Indexed: 12/16/2022] Open
Abstract
Hyperammonemia is considered to be central to the pathophysiology of hepatic encephalopathy in patients exhibiting hepatic failure (HF). It has previously been determined that hyperammonemia is a serious metabolic disorder commonly observed in patients with HF. However, it is unclear whether hyperammonemia has a direct adverse effect on hepatic cells or serves as a cause and effect of HF. The present study investigated whether hepatic injury is caused by hyperammonemia, and aimed to provide an insight into the causes and mechanisms of HF. Hyperammonemic rats were established via intragastric administration of ammonium chloride solution. Hepatic tissues were assessed using biochemistry, histology, immunohistochemistry, flow cytometry (FCM), semi-quantitative reverse transcription-polymerase chain reaction and western blot analysis. Hyperammonemic rats exhibited significantly increased levels of liver function markers, including alanine transaminase (P<0.01), aspartate aminotransferase (P<0.01), blood ammonia (P<0.01) and direct bilirubin (P<0.05), which indicated hepatic injury. A pathological assessment revealed mild hydropic degeneration, but no necrosis or inflammatory cell infiltration. However, terminal deoxynucleotidyl transferase dUTP nick end-labeling assays confirmed a significant increase in the rate of cellular apoptosis in hyperammonemic rat livers (P<0.01). FCM analysis revealed that there were significantly more cells in the S phase and fewer in the G2/M phase (P<0.01), and the expression levels of cyclin A and D1 mRNA and proteins were significantly increased (P<0.01). In summary, cell cycle arrest, apoptosis and an alteration of cyclin A and D1 levels were all markers of hyperammonemia-induced hepatic injury. These findings provide an insight into the potential mechanisms underlying hyperammonemia-induced hepatic injury, and may be used as potential targets for treating or preventing hepatic damage caused by hyperammonemia, including hepatic encephalopathy.
Collapse
Affiliation(s)
- Xiaojuan Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lei Fan
- Department of Pharmacy, Children's Hospital of Zhengzhou City, Zhengzhou, Henan 450053, P.R. China
| | - Hua Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaorui Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ranran Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|