1
|
Nasr Azadani H, Nassiri Toosi M, Shahmahmoodi S, Nejati A, Rahimi H, Farahmand M, Keshavarz A, Ghorbani Motlagh F, Samimi-Rad K. New insights into potential biomarkers and their roles in biological processes associated with hepatitis C-related liver cirrhosis by hepatic RNA-seq-based transcriptome profiling. Virus Res 2024; 349:199457. [PMID: 39216827 PMCID: PMC11415974 DOI: 10.1016/j.virusres.2024.199457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chronic hepatitis C virus infection is a major cause of mortality due to liver cirrhosis globally. Despite the advances in recent therapeutic strategies, there is yet a high burden of HCV-related cirrhosis worldwide concerning low coverage of newly developed antiviral therapies, insufficient validity of the current diagnostic methods for cirrhosis, and incomplete understanding of the pathogenesis in this stage of liver disease. Hence we aimed to clarify the molecular events in HCV-related cirrhosis and identify a liver-specific gene signature to potentially improve diagnosis and prognosis of the disease. Through RNA-seq transcriptome profiling of liver samples of Iranian patients with HCV-related cirrhosis, the differentially expressed genes (DEGs) were identified and subjected to functional annotation including biological process (BP) and molecular function (MF) analysis and also KEGG pathway enrichment analysis. Furthermore, the validation of RNA-seq data was investigated for seven candidate genes using qRT-PCR. Moreover, the diagnostic and prognostic power of validated DEGs were analyzed in both forms of individual DEG and combined biomarkers through receiver operating characteristic (ROC) analysis. Finally, we explored the pair-wise correlation of these six validated DEGs in a new approach. We identified 838 significant DEGs (padj ˂0.05) enriching 375 and 15 significant terms subjected to BP and MF, respectively (false discovery rate ˂ 0.01) and 46 significant pathways (p-value ˂ 0.05). Most of these biological processes and pathways were related to inflammation, immune responses, and cellular processes participating somewhat in the pathogenesis of liver disease. Interestingly, some neurological-associated genes and pathways were involved in HCV cirrhosis-related neuropsychiatric disorders. Out of seven candidate genes, six DEGs, including inflammation-related genes ISLR, LTB, ZAP70, KLRB1, and neuronal-related genes MOXD1 and Slitrk3 were significantly confirmed by qRT-PCR. There was a close agreement in the expression change results between RNA-seq and qRT-PCR for our candidate genes except for SAA2-SAA4 (P= 0.8). High validity and reproducibility of six novel DEGs as diagnostic and prognostic biomarkers were observed. We also found several pair-wise correlations between validated DEGs. Our findings indicate that the six genes LTB, ZAP70, KLRB1, ISLR, MOXD1, and Slitrk3 could stand as promising biomarkers for diagnosing of HCV-related cirrhosis. However, further studies are recommended to validate the diagnostic potential of these biomarkers and evaluate their capability as targets for the prevention and treatment of cirrhosis disease.
Collapse
Affiliation(s)
- Hossein Nasr Azadani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohssen Nassiri Toosi
- Liver Transplantation Research Center, Imam-Khomeini Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shohreh Shahmahmoodi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nejati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamzeh Rahimi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Farahmand
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Keshavarz
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghorbani Motlagh
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoun Samimi-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Bamford CGG, Aranday-Cortes E, Sanchez-Velazquez R, Mullan C, Kohl A, Patel AH, Wilson SJ, McLauchlan J. A Human and Rhesus Macaque Interferon-Stimulated Gene Screen Shows That Over-Expression of ARHGEF3/XPLN Inhibits Replication of Hepatitis C Virus and Other Flavivirids. Viruses 2022; 14:v14081655. [PMID: 36016278 PMCID: PMC9414520 DOI: 10.3390/v14081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022] Open
Abstract
Natural hepatitis C virus (HCV) infection is restricted to humans, whereas other primates such as rhesus macaques are non-permissive for infection. To identify human and rhesus macaque genes that differ or share the ability to inhibit HCV replication, we conducted a medium-throughput screen of lentivirus-expressed host genes that disrupt replication of HCV subgenomic replicon RNA expressing secreted Gaussia luciferase. A combined total of >800 interferon-stimulated genes (ISGs) were screened. Our findings confirmed established anti-HCV ISGs, such as IRF1, PKR and DDX60. Novel species−specific inhibitors were also identified and independently validated. Using a cell-based system that recapitulates productive HCV infection, we identified that over-expression of the ‘Rho Guanine Nucleotide Exchange Factor 3’ gene (ARHGEF3) from both species inhibits full-length virus replication. Additionally, replication of two mosquito-borne flaviviruses, yellow fever virus (YFV) and Zika virus (ZIKV), were also reduced in cell lines over-expressing ARHGEF3 compared to controls. In conclusion, we ascribe novel antiviral activity to the cellular gene ARHGEF3 that inhibits replication of HCV and other important human viral pathogens belonging to the Flaviviridae, and which is conserved between humans and rhesus macaques.
Collapse
Affiliation(s)
- Connor G. G. Bamford
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Elihu Aranday-Cortes
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
| | - Ricardo Sanchez-Velazquez
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
- BioNTech SE, 55131 Mainz, Germany
| | - Catrina Mullan
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
| | - Sam J. Wilson
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
| | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Bearsden, Glasgow G61 1QH, UK; (C.G.G.B.); (E.A.-C.); (R.S.-V.); (C.M.); (A.K.); (A.H.P.); (S.J.W.)
- Correspondence:
| |
Collapse
|
3
|
Ansari MA, Aranday-Cortes E, Ip CL, da Silva Filipe A, Lau SH, Bamford C, Bonsall D, Trebes A, Piazza P, Sreenu V, Cowton VM, Hudson E, Bowden R, Patel AH, Foster GR, Irving WL, Agarwal K, Thomson EC, Simmonds P, Klenerman P, Holmes C, Barnes E, Spencer CC, McLauchlan J, Pedergnana V. Interferon lambda 4 impacts the genetic diversity of hepatitis C virus. eLife 2019; 8:42463. [PMID: 31478835 PMCID: PMC6721795 DOI: 10.7554/elife.42463] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) is a highly variable pathogen that frequently establishes chronic infection. This genetic variability is affected by the adaptive immune response but the contribution of other host factors is unclear. Here, we examined the role played by interferon lambda-4 (IFN-λ4) on HCV diversity; IFN-λ4 plays a crucial role in spontaneous clearance or establishment of chronicity following acute infection. We performed viral genome-wide association studies using human and viral data from 485 patients of white ancestry infected with HCV genotype 3a. We demonstrate that combinations of host genetic variants, which determine IFN-λ4 protein production and activity, influence amino acid variation across the viral polyprotein - not restricted to specific viral proteins or HLA restricted epitopes - and modulate viral load. We also observed an association with viral di-nucleotide proportions. These results support a direct role for IFN-λ4 in exerting selective pressure across the viral genome, possibly by a novel mechanism.
Collapse
Affiliation(s)
- M Azim Ansari
- Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Elihu Aranday-Cortes
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Camilla Lc Ip
- Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Siu Hin Lau
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Connor Bamford
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - David Bonsall
- Nuffield Department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, United Kingdom
| | - Amy Trebes
- Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Paolo Piazza
- Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Vattipally Sreenu
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Vanessa M Cowton
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | | | - Emma Hudson
- Nuffield Department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, United Kingdom
| | - Rory Bowden
- Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Graham R Foster
- Blizard Institute, Queen Mary University, London, United Kingdom
| | - William L Irving
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Emma C Thomson
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Peter Simmonds
- Nuffield Department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, United Kingdom
| | - Chris Holmes
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Eleanor Barnes
- Nuffield Department of Medicine and the Oxford NIHR BRC, University of Oxford, Oxford, United Kingdom
| | - Chris Ca Spencer
- Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom
| | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Vincent Pedergnana
- Wellcome Centre Human Genetics, University of Oxford, Oxford, United Kingdom.,Laboratoire MIVEGEC (UMR CNRS 5290, IRD, UM), Montpellier, France
| |
Collapse
|
4
|
Virus Genotype-Dependent Transcriptional Alterations in Lipid Metabolism and Inflammation Pathways in the Hepatitis C Virus-infected Liver. Sci Rep 2019; 9:10596. [PMID: 31332246 PMCID: PMC6646375 DOI: 10.1038/s41598-019-46664-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Despite advances in antiviral therapy, molecular drivers of Hepatitis C Virus (HCV)-related liver disease remain poorly characterised. Chronic infection with HCV genotypes (1 and 3) differ in presentation of liver steatosis and virological response to therapies, both to interferon and direct acting antivirals. To understand what drives these clinically important differences, liver expression profiles of patients with HCV Genotype 1 or 3 infection (n = 26 and 33), alcoholic liver disease (n = 8), and no liver disease (n = 10) were analysed using transcriptome-wide microarrays. In progressive liver disease, HCV genotype was the major contributor to altered liver gene expression with 2151 genes differentially expressed >1.5-fold between HCV Genotype 1 and 3. In contrast, only 6 genes were altered between the HCV genotypes in advanced liver disease. Induction of lipogenic, lipolytic, and interferon stimulated gene pathways were enriched in Genotype 1 injury whilst a broad range of immune-associated pathways were associated with Genotype 3 injury. The results are consistent with greater lipid turnover in HCV Genotype 1 patients. Moreover, the lower activity in inflammatory pathways associated with HCV genotype 1 is consistent with relative resistance to interferon-based therapy. This data provides a molecular framework to explain the clinical manifestations of HCV-associated liver disease.
Collapse
|
5
|
A polymorphic residue that attenuates the antiviral potential of interferon lambda 4 in hominid lineages. PLoS Pathog 2018; 14:e1007307. [PMID: 30308076 PMCID: PMC6181419 DOI: 10.1371/journal.ppat.1007307] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
As antimicrobial signalling molecules, type III or lambda interferons (IFNλs) are critical for defence against infection by diverse pathogens, including bacteria, fungi and viruses. Counter-intuitively, expression of one member of the family, IFNλ4, is associated with decreased clearance of hepatitis C virus (HCV) in the human population; by contrast, a natural frameshift mutation that abrogates IFNλ4 production improves HCV clearance. To further understand how genetic variation between and within species affects IFNλ4 function, we screened a panel of all known extant coding variants of human IFNλ4 for their antiviral potential and identify three that substantially affect activity: P70S, L79F and K154E. The most notable variant was K154E, which was found in African Congo rainforest ‘Pygmy’ hunter-gatherers. K154E greatly enhanced in vitro activity in a range of antiviral (HCV, Zika virus, influenza virus and encephalomyocarditis virus) and gene expression assays. Remarkably, E154 is the ancestral residue in mammalian IFNλ4s and is extremely well conserved, yet K154 has been fixed throughout evolution of the hominid genus Homo, including Neanderthals. Compared to chimpanzee IFNλ4, the human orthologue had reduced activity due to amino acid K154. Comparison of published gene expression data from humans and chimpanzees showed that this difference in activity between K154 and E154 in IFNλ4 correlates with differences in antiviral gene expression in vivo during HCV infection. Mechanistically, our data show that the human-specific K154 negatively affects IFNλ4 activity through a novel means by reducing its secretion and potency. We thus demonstrate that attenuated activity of IFNλ4 is conserved among humans and postulate that differences in IFNλ4 activity between species contribute to distinct host-specific responses to—and outcomes of—infection, such as HCV infection. The driver of reduced IFNλ4 antiviral activity in humans remains unknown but likely arose between 6 million and 360,000 years ago in Africa. Natural genetic variation and its influence on the outcome of viral infection is a topical area given the wealth of genetic data now available. However, understanding how clinical phenotype is affected by genetic variation at the molecular level is often lacking yet critical for any insight into immunity and disease. It is known that variants in the antiviral ‘interferon lambda 4’ (IFNL4) gene significantly influence outcome of hepatitis C virus (HCV) infection in humans. Counter-intuitively, those producing IFNL4 have greater risk of establishing chronic HCV infection, compared to individuals with an inactive variant, although the underlying mechanisms remain poorly understood. From a comprehensive screen of all natural human variants, we show that the most common form of IFNλ4 is less able to protect human cells from pathogenic virus infection than the equivalent protein from our closest living relative the chimpanzee. This is as a result of a single amino acid substitution that impedes its release from cells and reduces antiviral gene expression. Our observed differences in activity correlated with divergent host responses in HCV-infected livers from humans and chimpanzees. We suggest that human IFNL4 evolution places humans at a disadvantage when infected with pathogens such as HCV.
Collapse
|
6
|
Ramnath D, Irvine KM, Lukowski SW, Horsfall LU, Loh Z, Clouston AD, Patel PJ, Fagan KJ, Iyer A, Lampe G, Stow JL, Schroder K, Fairlie DP, Powell JE, Powell EE, Sweet MJ. Hepatic expression profiling identifies steatosis-independent and steatosis-driven advanced fibrosis genes. JCI Insight 2018; 3:120274. [PMID: 30046009 DOI: 10.1172/jci.insight.120274] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/12/2018] [Indexed: 12/23/2022] Open
Abstract
Chronic liver disease (CLD) is associated with tissue-destructive fibrosis. Considering that common mechanisms drive fibrosis across etiologies, and that steatosis is an important cofactor for pathology, we performed RNA sequencing on liver biopsies of patients with different fibrosis stages, resulting from infection with hepatitis C virus (HCV) (with or without steatosis) or fatty liver disease. In combination with enhanced liver fibrosis score correlation analysis, we reveal a common set of genes associated with advanced fibrosis, as exemplified by those encoding the transcription factor ETS-homologous factor (EHF) and the extracellular matrix protein versican (VCAN). We identified 17 fibrosis-associated genes as candidate EHF targets and demonstrated that EHF regulates multiple fibrosis-associated genes, including VCAN, in hepatic stellate cells. Serum VCAN levels were also elevated in advanced fibrosis patients. Comparing biopsies from patients with HCV with or without steatosis, we identified a steatosis-enriched gene set associated with advanced fibrosis, validating follistatin-like protein 1 (FSTL1) as an exemplar of this profile. In patients with advanced fibrosis, serum FSTL1 levels were elevated in those with steatosis (versus those without). Liver Fstl1 mRNA levels were also elevated in murine CLD models. We thus reveal a common gene signature for CLD-associated liver fibrosis and potential biomarkers and/or targets for steatosis-associated liver fibrosis.
Collapse
Affiliation(s)
- Divya Ramnath
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Centre for Liver Disease Research and.,Faculty of Medicine, Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Samuel W Lukowski
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Leigh U Horsfall
- Centre for Liver Disease Research and.,Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Zhixuan Loh
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Preya J Patel
- Centre for Liver Disease Research and.,Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | - Abishek Iyer
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Guy Lampe
- Pathology Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Joseph E Powell
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.,Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Elizabeth E Powell
- Centre for Liver Disease Research and.,Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and.,IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Domingues P, Bamford CGG, Boutell C, McLauchlan J. Inhibition of hepatitis C virus RNA replication by ISG15 does not require its conjugation to protein substrates by the HERC5 E3 ligase. J Gen Virol 2016; 96:3236-3242. [PMID: 26361997 PMCID: PMC4806579 DOI: 10.1099/jgv.0.000283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic infection of the liver by hepatitis C virus (HCV) induces a range of host factors including IFN-stimulated genes such as ISG15. ISG15 functions as an antiviral factor that limits virus replication. Previous studies have suggested that ISG15 could influence HCV replication in both a positive and a negative manner. In this report, we determined the effect of ISG15 on HCV RNA replication in two independent cell lines that support viral genome synthesis by inhibiting ISG15 expression through small interfering RNA, short-hairpin RNA and CRISPR/Cas9 gene knockout approaches. Our results demonstrated that ISG15 impairs HCV RNA replication in both the presence and absence of IFN stimulation, consistent with an antiviral role for ISG15 during HCV infection. ISG15 conjugation to protein substrates typically requires the E3 ligase, HERC5. Our results showed that the inhibitory effect of ISG15 on HCV RNA replication does not require its conjugation to substrates by HERC5.
Collapse
Affiliation(s)
- Patricia Domingues
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Connor G G Bamford
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| |
Collapse
|
8
|
Broering R, Trippler M, Werner M, Real CI, Megger DA, Bracht T, Schweinsberg V, Sitek B, Eisenacher M, Meyer HE, Baba HA, Weber F, Hoffmann AC, Gerken G, Schlaak JF. Hepatic expression of proteasome subunit alpha type-6 is upregulated during viral hepatitis and putatively regulates the expression of ISG15 ubiquitin-like modifier, a proviral host gene in hepatitis C virus infection. J Viral Hepat 2016; 23:375-86. [PMID: 26833585 DOI: 10.1111/jvh.12508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 12/19/2015] [Indexed: 12/12/2022]
Abstract
The interferon-stimulated gene 15 (ISG15) plays an important role in the pathogenesis of hepatitis C virus (HCV) infection. ISG15-regulated proteins have previously been identified that putatively affect this proviral interaction. The present observational study aimed to elucidate the relation between ISG15 and these host factors during HCV infection. Transcriptomic and proteomic analyses were performed using liver samples of HCV-infected (n = 54) and uninfected (n = 10) or HBV-infected controls (n = 23). Primary human hepatocytes (PHH) were treated with Toll-like receptor ligands, interferons and kinase inhibitors. Expression of ISG15 and proteasome subunit alpha type-6 (PSMA6) was suppressed in subgenomic HCV replicon cell lines using specific siRNAs. Comparison of hepatic expression patterns revealed significantly increased signals for ISG15, IFIT1, HNRNPK and PSMA6 on the protein level as well as ISG15, IFIT1 and PSMA6 on the mRNA level in HCV-infected patients. In contrast to interferon-stimulated genes, PSMA6 expression occurred independent of HCV load and genotype. In PHH, the expression of ISG15 and PSMA6 was distinctly induced by poly(I:C), depending on IRF3 activation or PI3K/AKT signalling, respectively. Suppression of PSMA6 in HCV replicon cells led to significant induction of ISG15 expression, thus combined knock-down of both genes abrogated the antiviral effect induced by the separate suppression of ISG15. These data indicate that hepatic expression of PSMA6, which is upregulated during viral hepatitis, likely depends on TLR3 activation. PSMA6 affects the expression of immunoregulatory ISG15, a proviral factor in the pathogenesis of HCV infection. Therefore, the proteasome might be involved in the enigmatic interaction between ISG15 and HCV.
Collapse
Affiliation(s)
- R Broering
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - M Trippler
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - M Werner
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - C I Real
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - D A Megger
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - T Bracht
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - V Schweinsberg
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - B Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - M Eisenacher
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - H E Meyer
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany.,Leibniz Institute for Analytical Sciences - ISAS, Dortmund, Germany
| | - H A Baba
- Department of Pathology and Neuropathology, University Hospital of Essen, Essen, Germany
| | - F Weber
- Department of General, Visceral and Transplantation Surgery, University Hospital of Essen, Essen, Germany
| | - A-C Hoffmann
- Department of Medicine (Cancer Research), Molecular Oncology Risk-Profile Evaluation, University Hospital of Essen, Essen, Germany
| | - G Gerken
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - J F Schlaak
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Gondeau C, Pageaux GP, Larrey D. Hepatitis C virus infection: Are there still specific problems with genotype 3? World J Gastroenterol 2015; 21:12101-13. [PMID: 26576095 PMCID: PMC4641128 DOI: 10.3748/wjg.v21.i42.12101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/07/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection is one of the most common causes of chronic liver disease and the main indication for liver transplantation worldwide. As promising specific treatments have been introduced for genotype 1, clinicians and researchers are now focusing on patients infected by non-genotype 1 HCV, particularly genotype 3. Indeed, in the golden era of direct-acting antiviral drugs, genotype 3 infections are no longer considered as easy to treat and are associated with higher risk of developing severe liver injuries, such as cirrhosis and hepatocellular carcinoma. Moreover, HCV genotype 3 accounts for 40% of all HCV infections in Asia and is the most frequent genotype among HCV-positive injecting drug users in several countries. Here, we review recent data on HCV genotype 3 infection/treatment, including clinical aspects and the underlying genotype-specific molecular mechanisms.
Collapse
|
10
|
Hydes TJ, Moesker B, Traherne JA, Ashraf S, Alexander GJ, Dimitrov BD, Woelk CH, Trowsdale J, Khakoo SI. The interaction of genetic determinants in the outcome of HCV infection: evidence for discrete immunological pathways. TISSUE ANTIGENS 2015; 86:267-75. [PMID: 26381047 PMCID: PMC4858811 DOI: 10.1111/tan.12650] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/05/2015] [Accepted: 08/10/2015] [Indexed: 12/15/2022]
Abstract
Diversity within the innate and adaptive immune response to hepatitis C is important in determining spontaneous resolution (SR) and treatment response. The aim of this study was to analyze how these variables interact in combination; furthering our understanding of the mechanisms that drive successful immunological clearance. Multivariate analysis was performed on retrospectively collected data for 357 patients previously genotyped for interferon (IFN)-λ3/4, killer cell immunoglobulin (KIR), human leukocyte antigen (HLA) class I and II and tapasin. High resolution KIR genotyping was performed for individuals with chronic infection and haplotypes determined. Outcomes for SR, IFN response and cirrhosis were examined. Statistical analysis included univariate methods, χ(2) test for trend, multivariate logistic regression, synergy and principal component analysis (PCA). Although KIR2DL3:HLA-C1C1 (P = 0.027), IFN-λ3/4 rs12979860 CC (P = 0.027), tapasin G in individuals with aspartate at residue 114 of HLA-B (TapG:HLA-B(114D) ) (P = 0.007) and HLA-DRB1*04:01 (P = 0.014) were associated with SR with a strong additive influence (χ(2) test for trend P < 0.0001); favorable polymorphisms did not interact synergistically, nor did patients cluster by outcome. In the treatment cohort, IFN-λ3/4 rs12979860 CC was protective in hepatitis C virus (HCV) G1 infection and KIR2DL3:HLA-C1 in HCV G2/3. In common with SR, variables did not interact synergistically. Polymorphisms predictive of viral clearance did not predict disease progression. In summary, different individuals resolve HCV infection using discrete and non-interacting immunological pathways. These pathways are influenced by viral genotype. This work provides novel insights into the complexity of the interaction between host and viral factors in determining the outcome of HCV infection.
Collapse
Affiliation(s)
- T J Hydes
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - B Moesker
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - J A Traherne
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - S Ashraf
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - G J Alexander
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - B D Dimitrov
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Academic Unit of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - C H Woelk
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - J Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - S I Khakoo
- Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|