1
|
Park HJ, Choi J, Kim H, Yang DY, An TH, Lee EW, Han BS, Lee SC, Kim WK, Bae KH, Oh KJ. Cellular heterogeneity and plasticity during NAFLD progression. Front Mol Biosci 2023; 10:1221669. [PMID: 37635938 PMCID: PMC10450943 DOI: 10.3389/fmolb.2023.1221669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that can progress to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis, and hepatocellular carcinoma (HCC). NAFLD ranges from simple steatosis (or nonalcoholic fatty liver [NAFL]) to NASH as a progressive form of NAFL, which is characterized by steatosis, lobular inflammation, and hepatocellular ballooning with or without fibrosis. Because of the complex pathophysiological mechanism and the heterogeneity of NAFLD, including its wide spectrum of clinical and histological characteristics, no specific therapeutic drugs have been approved for NAFLD. The heterogeneity of NAFLD is closely associated with cellular plasticity, which describes the ability of cells to acquire new identities or change their phenotypes in response to environmental stimuli. The liver consists of parenchymal cells including hepatocytes and cholangiocytes and nonparenchymal cells including Kupffer cells, hepatic stellate cells, and endothelial cells, all of which have specialized functions. This heterogeneous cell population has cellular plasticity to adapt to environmental changes. During NAFLD progression, these cells can exert diverse and complex responses at multiple levels following exposure to a variety of stimuli, including fatty acids, inflammation, and oxidative stress. Therefore, this review provides insights into NAFLD heterogeneity by addressing the cellular plasticity and metabolic adaptation of hepatocytes, cholangiocytes, hepatic stellate cells, and Kupffer cells during NAFLD progression.
Collapse
Affiliation(s)
- Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Juyong Choi
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Da-Yeon Yang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Baek-Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
2
|
Lee HJ, Mun SJ, Jung CR, Kang HM, Kwon JE, Ryu JS, Ahn HS, Kwon OS, Ahn J, Moon KS, Son MJ, Chung KS. In vitro modeling of liver fibrosis with 3D co-culture system using a novel human hepatic stellate cell line. Biotechnol Bioeng 2023; 120:1241-1253. [PMID: 36639871 DOI: 10.1002/bit.28333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Hepatic stellate cells (HSCs) play an important role in liver fibrosis; however, owing to the heterogeneity and limited supply of primary HSCs, the development of in vitro liver fibrosis models has been impeded. In this study, we established and characterized a novel human HSC line (LSC-1), and applied it to various types of three-dimensional (3D) co-culture systems with differentiated HepaRG cells. Furthermore, we compared LSC-1 with a commercially available HSC line on conventional monolayer culture. LSC-1 exhibited an overall upregulation of the expression of fibrogenic genes along with increased levels of matrix and adhesion proteins, suggesting a myofibroblast-like or transdifferentiated state. However, activated states reverted to a quiescent-like phenotype when cultured in different 3D culture formats with a relatively soft microenvironment. Additionally, LSC-1 exerted an overall positive effect on co-cultured differentiated HepaRG, which significantly increased hepatic functionality upon long-term cultivation compared with that achieved with other HSC line. In 3D spheroid culture, LSC-1 exhibited enhanced responsiveness to transforming growth factor beta 1 exposure that is caused by a different matrix-related protein expression mechanism. Therefore, the LSC-1 line developed in this study provides a reliable candidate model that can be used to address unmet needs, such as development of antifibrotic therapies.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seon Ju Mun
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Cho-Rok Jung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Hyun-Mi Kang
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jae-Eun Kwon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Jae-Sung Ryu
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hyo-Suk Ahn
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Ok-Seon Kwon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jiwon Ahn
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kyung-Sik Moon
- General and Applied Toxicology Research Center, Korea Institute of Toxicology (KIT), Daejeon, Republic of Korea
| | - Myung Jin Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Kyung-Sook Chung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
3
|
Tian Y, Zhan Y, Jiang Q, Lu W, Li X. Expression and function of PDGF-C in development and stem cells. Open Biol 2021; 11:210268. [PMID: 34847773 PMCID: PMC8633783 DOI: 10.1098/rsob.210268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Platelet-derived growth factor C (PDGF-C) is a relatively new member of the PDGF family, discovered nearly 20 years after the finding of platelet-derived growth factor A (PDGF-A) and platelet-derived growth factor B (PDGF-B). PDGF-C is generally expressed in most organs and cell types. Studies from the past 20 years have demonstrated critical roles of PDGF-C in numerous biological, physiological and pathological processes, such as development, angiogenesis, tumour growth, tissue remodelling, wound healing, atherosclerosis, fibrosis, stem/progenitor cell regulation and metabolism. Understanding PDGF-C expression and activities thus will be of great importance to various research disciplines. In this review, however, we mainly discuss the expression and functions of PDGF-C and its receptors in development and stem cells.
Collapse
Affiliation(s)
- Yi Tian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Ying Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Qin Jiang
- Ophthalmic Department, Affiliated Eye Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| |
Collapse
|
4
|
Nara H, Watanabe R. Anti-Inflammatory Effect of Muscle-Derived Interleukin-6 and Its Involvement in Lipid Metabolism. Int J Mol Sci 2021; 22:ijms22189889. [PMID: 34576053 PMCID: PMC8471880 DOI: 10.3390/ijms22189889] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Interleukin (IL)-6 has been studied since its discovery for its role in health and diseases. It is one of the most important pro-inflammatory cytokines. IL-6 was reported as an exacerbating factor in coronavirus disease. In recent years, it has become clear that the function of muscle-derived IL-6 is different from what has been reported so far. Exercise is accompanied by skeletal muscle contraction, during which, several bioactive substances, collectively named myokines, are secreted from the muscles. Many reports have shown that IL-6 is the most abundant myokine. Interestingly, it was indicated that IL-6 plays opposing roles as a myokine and as a pro-inflammatory cytokine. In this review, we discuss why IL-6 has different functions, the signaling mode of hyper-IL-6 via soluble IL-6 receptor (sIL-6R), and the involvement of soluble glycoprotein 130 in the suppressive effect of hyper-IL-6. Furthermore, the involvement of a disintegrin and metalloprotease family molecules in the secretion of sIL-6R is described. One of the functions of muscle-derived IL-6 is lipid metabolism in the liver. However, the differences between the functions of IL-6 as a pro-inflammatory cytokine and the functions of muscle-derived IL-6 are unclear. Although the involvement of myokines in lipid metabolism in adipocytes was previously discussed, little is known about the direct relationship between nonalcoholic fatty liver disease and muscle-derived IL-6. This review is the first to discuss the relationship between the function of IL-6 in diseases and the function of muscle-derived IL-6, focusing on IL-6 signaling and lipid metabolism in the liver.
Collapse
|
5
|
Arab JP, Cabrera D, Sehrawat TS, Jalan-Sakrikar N, Verma VK, Simonetto D, Cao S, Yaqoob U, Leon J, Freire M, Vargas JI, De Assuncao TM, Kwon JH, Guo Y, Kostallari E, Cai Q, Kisseleva T, Oh Y, Arrese M, Huebert RC, Shah VH. Hepatic stellate cell activation promotes alcohol-induced steatohepatitis through Igfbp3 and SerpinA12. J Hepatol 2020; 73:149-160. [PMID: 32087348 PMCID: PMC7305991 DOI: 10.1016/j.jhep.2020.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Steatohepatitis drives fibrogenesis in alcohol-related liver disease. Recent studies have suggested that hepatic stellate cells (HSCs) may regulate the parenchymal cell injury and inflammation that precedes liver fibrosis, although the mechanism remains incompletely defined. Neuropilin-1 (NRP-1) and synectin are membrane proteins implicated in HSC activation. In this study, we disrupted NRP-1 and synectin as models to evaluate the role of HSC activation on the development of steatohepatitis in response to alcohol feeding in mice. METHODS Mice with HSC-selective deletion of NRP (ColCre/Nrp1loxP) or synectin (ColCre/synectinloxP) vs. paired Nrp1loxP or synectinloxP mice were fed a control diet or the chronic/binge alcohol feeding model. Several markers of steatosis and inflammation were evaluated. RESULTS ColCre/Nrp1loxP mice showed less fibrosis, as expected, but also less inflammation and steatosis, with lower hepatic triglyceride content. Similar results were observed in the synectin model. Hepatocytes treated with supernatant of HSCs from ColCre/Nrp1loxP mice compared to supernatant from Nrp1loxP mice were protected against ethanol-induced lipid droplet formation. An adipokine and inflammatory protein array from the supernatant of HSCs with NRP-1 knockdown showed a significant reduction in Igfbp3 (a major insulin-like growth factor-binding protein with multiple metabolic functions) and an increase in SerpinA12 (a serine-protease inhibitor) secretion compared to wild-type HSCs. Recombinant Igfbp3 induced lipid droplets, triglyceride accumulation, and lipogenic genes in hepatocytes in vitro, while SerpinA12 was protective against ethanol-induced steatosis. Finally, Igfbp3 was increased, and SerpinA12 was decreased in serum and liver tissue from patients with alcoholic hepatitis. CONCLUSION Selective deletion of NRP-1 from HSCs attenuates alcohol-induced steatohepatitis through regulation of Igfbp3 and SerpinA12 signaling. LAY SUMMARY Hepatic stellate cells are known for their role in fibrosis (scarring of the liver). In this study, we describe their role in the modulation of fat deposition and inflammation in the liver, which occurs secondary to alcohol damage.
Collapse
Affiliation(s)
- Juan P Arab
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA; Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Daniel Cabrera
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile; Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O Higgins, Santiago, Chile
| | - Tejasav S Sehrawat
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Vikas K Verma
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Douglas Simonetto
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Usman Yaqoob
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Jonathan Leon
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Mariela Freire
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Jose I Vargas
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | | | - Jung H Kwon
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yi Guo
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Qing Cai
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California-San Diego, San Diego, CA, USA
| | - Youngman Oh
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Marco Arrese
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Robert C Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Stöß C, Laschinger M, Wang B, Lu M, Altmayr F, Hartmann D, Hüser N, Holzmann B. TLR3 promotes hepatocyte proliferation after partial hepatectomy by stimulating uPA expression and the release of tissue-bound HGF. FASEB J 2020; 34:10387-10397. [PMID: 32539223 DOI: 10.1096/fj.202000904r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Abstract
TLR3 is implicated in anti-viral immune responses, but may also act as a sensor of tissue damage in the absence of infection. Here, we provide evidence for an essential role of TLR3 in liver regeneration after an acute loss of tissue due to partial hepatectomy. Mice lacking TLR3 had a severe and sustained defect in the restoration of liver tissue with reduced liver-to-body weight ratios even after an extended recovery period of 2 weeks. Hepatocyte cell cycle progression into S phase was impaired in TLR3-deficient mice. Mechanistic analyses revealed that TLR3-deficient mice had markedly reduced systemic levels of active HGF, but had increased amounts of inactive tissue-bound HGF. Importantly, expression of uPA, which orchestrates the processing and release of HGF from the hepatic extracellular matrix, was reduced in regenerating livers of TLR3-deficient mice. In addition, expression of the HGF maturation factor HGFAC was transiently diminished in TLR3-deficient mice. In vitro, engagement of TLR3 directly stimulated expression of uPA by hepatic stellate cells. Thus, TLR3 supports liver regeneration through upregulation of uPA, which promotes the release of preformed HGF from extracellular matrix stores.
Collapse
Affiliation(s)
- Christian Stöß
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Melanie Laschinger
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Baocai Wang
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Miao Lu
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Felicitas Altmayr
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Norbert Hüser
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Holzmann
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
7
|
Hoffmann K, Nagel AJ, Tanabe K, Fuchs J, Dehlke K, Ghamarnejad O, Lemekhova A, Mehrabi A. Markers of liver regeneration-the role of growth factors and cytokines: a systematic review. BMC Surg 2020; 20:31. [PMID: 32050952 PMCID: PMC7017496 DOI: 10.1186/s12893-019-0664-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Post-hepatectomy liver failure contributes significantly to postoperative mortality after liver resection. The prediction of the individual risk for liver failure is challenging. This review aimed to provide an overview of cytokine and growth factor triggered signaling pathways involved in liver regeneration after resection. METHODS MEDLINE and Cochrane databases were searched without language restrictions for articles from the time of inception of the databases till March 2019. All studies with comparative data on the effect of cytokines and growth factors on liver regeneration in animals and humans were included. RESULTS Overall 3.353 articles comprising 40 studies involving 1.498 patients and 101 animal studies were identified and met the inclusion criteria. All included trials on humans were retrospective cohort/observational studies. There was substantial heterogeneity across all included studies with respect to the analyzed cytokines and growth factors and the described endpoints. CONCLUSION High-level evidence on serial measurements of growth factors and cytokines in blood samples used to predict liver regeneration after resection is still lacking. To address the heterogeneity of patients and potential markers, high throughput serial analyses may offer a method to predict an individual's regenerative potential in the future.
Collapse
Affiliation(s)
- Katrin Hoffmann
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany.
| | - Alexander Johannes Nagel
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | - Kazukata Tanabe
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | | | - Karolin Dehlke
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | - Omid Ghamarnejad
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | - Anastasia Lemekhova
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplant Surgery, Ruprecht Karls University, Im Neuenheimer Feld, 110 69120, Heidelberg, Germany
| |
Collapse
|
8
|
Fazel Modares N, Polz R, Haghighi F, Lamertz L, Behnke K, Zhuang Y, Kordes C, Häussinger D, Sorg UR, Pfeffer K, Floss DM, Moll JM, Piekorz RP, Ahmadian MR, Lang PA, Scheller J. IL-6 Trans-signaling Controls Liver Regeneration After Partial Hepatectomy. Hepatology 2019; 70:2075-2091. [PMID: 31100194 DOI: 10.1002/hep.30774] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/05/2019] [Indexed: 12/17/2022]
Abstract
Interleukin-6 (IL-6) is critically involved in liver regeneration after partial hepatectomy (PHX). Previous reports suggest that IL-6 trans-signaling through the soluble IL-6/IL-6R complex is involved in this process. However, the long-term contribution of IL-6 trans-signaling for liver regeneration after PHX is unknown. PHX-induced generation of the soluble IL-6R by ADAM (a disintegrin and metallo) proteases enables IL-6 trans-signaling, in which IL-6 forms an agonistic complex with the soluble IL-6 receptor (sIL-6R) to activate all cells expressing the signal-transducing receptor chain glycoprotein 130 (gp130). In contrast, without activation of ADAM proteases, IL-6 in complex with membrane-bound IL-6R and gp130 activates classic signaling. Here, we describe the generation of IL-6 trans-signaling mice, which exhibit boosted IL-6 trans-signaling and abrogated classic signaling by genetic conversion of all membrane-bound IL-6R into sIL-6R proteins phenocopying hyperactivation of ADAM-mediated shedding of IL-6R as single substrate. Importantly, although IL-6R deficient mice were strongly affected by PHX, survival and regeneration of IL-6 trans-signaling mice was indistinguishable from control mice, demonstrating that IL-6 trans-signaling fully compensates for disabled classic signaling in liver regeneration after PHX. Moreover, we monitored the long-term consequences of global IL-6 signaling inhibition versus IL-6 trans-signaling selective blockade after PHX by IL-6 monoclonal antibodies and soluble glycoprotein 130 as fragment crystallizable fusion, respectively. Both global IL-6 blockade and selective inhibition of IL-6 trans-signaling results in a strong decrease of overall survival after PHX, accompanied by decreased signal transducer and activator of transcription 3 phosphorylation and proliferation of hepatocytes. Mechanistically, IL-6 trans-signaling induces hepatocyte growth factor production by hepatic stellate cells. Conclusion: IL-6 trans-signaling, but not classic signaling, controls liver regeneration following PHX.
Collapse
Affiliation(s)
- Nastaran Fazel Modares
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Robin Polz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Larissa Lamertz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Kristina Behnke
- Institute of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Yuan Zhuang
- Institute of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Ursula R Sorg
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - M Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Philipp A Lang
- Institute of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
9
|
Omega-3 fatty acid supplementation does not influence liver regeneration in rats after partial hepatectomy. Clin Exp Hepatol 2018; 4:253-259. [PMID: 30603673 PMCID: PMC6311744 DOI: 10.5114/ceh.2018.80127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
Aim of the study In the initiation of liver regeneration, multiple stimulatory and inhibitory factors participate. In this study, we aimed to evaluate the effects of omega-3 fatty acids on liver regeneration after 30% partial hepatectomy in rats. Material and methods A total of 14 male Wistar Albino rats were included in this study. The animals were randomly allocated to two groups: the control group (n = 7) and the omega-3 group (n = 7). Rats in the control group were fed a standard rat chow and rats in the omega-3 group received 10 mg/kg/day omega-3 supplementation in addition to normal rat chow in the perioperative period. Rats were investigated seven days after 1/3 partial hepatectomy by liver weight change and hepatocyte proliferation. Results The mean liver regeneration rate was found to be slightly higher (p = 0.061) in the omega-3 group compared the control group. In addition, no significant difference was observed regarding binuclear hepatocyte ratio in pericentral and periportal areas between the two groups. However, livers from rats given omega-3 supplementation have less inflammatory cellular infiltrate in the portal space than livers from the control group. Conclusions Supplementation with omega-3 fatty acids showed no influence on the liver regeneration in rats undergoing 1/3 partial hepatectomy.
Collapse
|
10
|
Abstract
Stellate cells are resident lipid-storing cells of the pancreas and liver that transdifferentiate to a myofibroblastic state in the context of tissue injury. Beyond having roles in tissue homeostasis, stellate cells are increasingly implicated in pathological fibrogenic and inflammatory programs that contribute to tissue fibrosis and that constitute a growth-permissive tumor microenvironment. Although the capacity of stellate cells for extracellular matrix production and remodeling has long been appreciated, recent research efforts have demonstrated diverse roles for stellate cells in regulation of epithelial cell fate, immune modulation, and tissue health. Our present understanding of stellate cell biology in health and disease is discussed here, as are emerging means to target these multifaceted cells for therapeutic benefit.
Collapse
Affiliation(s)
- Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon 97201, USA;
| |
Collapse
|
11
|
Abstract
Liver possesses many critical functions such as synthesis, detoxification, and metabolism. It continually receives nutrient-rich blood from gut, which incidentally is also toxin-rich. That may be why liver is uniquely bestowed with a capacity to regenerate. A commonly studied procedure to understand the cellular and molecular basis of liver regeneration is that of surgical resection. Removal of two-thirds of the liver in rodents or patients instigates alterations in hepatic homeostasis, which are sensed by the deficient organ to drive the restoration process. Although the exact mechanisms that initiate regeneration are unknown, alterations in hemodynamics and metabolism have been suspected as important effectors. Key signaling pathways are activated that drive cell proliferation in various hepatic cell types through autocrine and paracrine mechanisms. Once the prehepatectomy mass is regained, the process of regeneration is adequately terminated. This review highlights recent discoveries in the cellular and molecular basis of liver regeneration.
Collapse
Affiliation(s)
- Morgan E. Preziosi
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8910821. [PMID: 28210629 PMCID: PMC5292184 DOI: 10.1155/2017/8910821] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/29/2016] [Accepted: 12/27/2016] [Indexed: 12/14/2022]
Abstract
The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable.
Collapse
|