1
|
Hagenbuch B, Stieger B, Locher KP. Organic anion transporting polypeptides: Pharmacology, toxicology, structure, and transport mechanisms. Pharmacol Rev 2025; 77:100023. [PMID: 40148036 DOI: 10.1016/j.pharmr.2024.100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/12/2024] [Indexed: 03/29/2025] Open
Abstract
Organic anion transporting polypeptides (OATPs) are membrane proteins that mediate the uptake of a wide range of substrates across the plasma membrane of various cells and tissues. They are classified into 6 subfamilies, OATP1 through OATP6. Humans contain 12 OATPs encoded by 11 solute carrier of organic anion transporting polypeptide (SLCO) genes: OATP1A2, OATP1B1, OATP1B3, the splice variant OATP1B3-1B7, OATP1C1, OATP2A1, OATP2B1, OATP3A1, OATP4A1, OATP4C1, OATP5A1, and OATP6A1. Most of these proteins are expressed in epithelial cells, where they mediate the uptake of structurally unrelated organic anions, cations, and even neutral compounds into the cytoplasm. The best-characterized members are OATP1B1 and OATP1B3, which have an important role in drug metabolism by mediating drug uptake into the liver and are involved in drug-drug interactions. In this review, we aimed to (1) provide a historical perspective on the identification of OATPs and their nomenclature and discuss their phylogenic relationships and molecular characteristics; (2) review the current knowledge of the broad substrate specificity and their role in drug disposition and drug-drug interactions, with a special emphasis on human hepatic OATPs; (3) summarize the different experimental systems that are used to study the function of OATPs and discuss their advantages and disadvantages; (4) review the available experimental 3-dimensional structures and examine how they can help elucidate the transport mechanisms of OATPs; and (5) finally, summarize the current knowledge of the regulation of OATP expression, discuss clinically important single-nucleotide polymorphisms, and outline challenges of physiologically based pharmacokinetic modeling and in vitro to in vivo extrapolation. SIGNIFICANCE STATEMENT: Organic anion transporting polypeptides (OATPs) are a family of 12 uptake transporters in the solute carrier superfamily. Several members, particularly the liver-expressed OATP1B1 and OATP1B3, are important drug transporters. They mediate the uptake of several endobiotics and xenobiotics, including statins and numerous other drugs, into hepatocytes, and their inhibition by other drugs or reduced expression due to single-nucleotide polymorphisms can lead to adverse drug effects. Their recently solved 3-dimensional structures should help to elucidate their transport mechanisms and broad substrate specificities.
Collapse
Affiliation(s)
- Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas.
| | - Bruno Stieger
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Calin GA, Hubé F, Ladomery MR, Delihas N, Ferracin M, Poliseno L, Agnelli L, Alahari SK, Yu AM, Zhong XB. The 2024 Nobel Prize in Physiology or Medicine: microRNA Takes Center Stage. Noncoding RNA 2024; 10:62. [PMID: 39728607 PMCID: PMC11679529 DOI: 10.3390/ncrna10060062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
The Non-coding Journal Editorial Board Members would like to congratulate Victor Ambros and Gary Ruvkun, who were jointly awarded the 2024 Nobel Prize in Physiology or Medicine for their groundbreaking discovery of microRNAs and the role of microRNAs in post-transcriptional gene regulation, uncovering a previously unknown layer of gene control in eukaryotes [...].
Collapse
Affiliation(s)
- George A. Calin
- Department of Translational Molecular Pathology, Center for RNA Interference and Non-Coding RNAs, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Florent Hubé
- Laboratoire Biologie du Développement, Institut de Biologie Paris-Seine, Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, CNRS, UMR7622, 75005 Paris, France
| | - Michael R. Ladomery
- School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Nicholas Delihas
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, via S. Giacomo, 14, 40126 Bologna, Italy
| | - Laura Poliseno
- National Research Council (CNR) and Oncogenomics Unit, Core Research Laboratory (CRL), Institute of Clinical Physiology (IFC), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), via Moruzzi 1, 56124 Pisa, Italy
| | - Luca Agnelli
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Suresh K. Alahari
- Department of Biochemistry and Molecular Biology, LSU School of Medicine, New Orleans, LA 70112, USA
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
3
|
van Rosmalen BV, Visentin M, Furumaya A, van Delden OM, Kazemier G, van Gulik TM, Verheij J, Stieger B. Association Between Gadoxetic Acid-Enhanced Magnetic Resonance Imaging, Organic Anion Transporters, and Farnesoid X Receptor in Benign Focal Liver Lesions. Drug Metab Dispos 2024; 52:118-125. [PMID: 38050024 DOI: 10.1124/dmd.123.001492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
The organic anion uptake and efflux transporters [organic anion-transporting polypeptide (OATP)1B1, OATP1B3 and multidrug resistance-associated protein (MRP)2 and MRP3] that mediate the transport of the hepatobiliary-specific contrast agent gadoxetate (Gd-EOB-DTPA) are direct or indirect targets of the farnesoid X receptor (FXR), a key regulator of bile acid and lipid homeostasis. In benign liver tumors, FXR expression and activation is not yet characterized. We investigated the expression and activation of FXR and its targets in hepatocellular adenoma (HCA) and focal nodular hyperplasia (FNH) and their correlation with Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI). Gd-EOB-DTPA MRI patterns were assessed by an expert radiologist. The intensity of the lesions on the hepatobiliary phase was correlated to mRNA expression levels of OATP1B1, OATP1B3, MRP2, MRP3, FXR, and small heterodimer partner (SHP) in fresh surgical specimens of patients with FNH or HCA subtypes. Normal and tumor sample pairs of 43 HCA and 14 FNH were included. All FNH (14/14) were hyperintense. Of the 34 HCA with available Gd-EOB-DTPA-enhanced MRI, 6 were hyperintense and 28 HCA were hypointense. OATP1B3 was downregulated in the hypointense tumors compared with normal surrounding liver tissue (2.77±3.59 vs. 12.9±15.6, P < 0.001). A significant positive correlation between FXR expression and activation and OATP1B3 expression level was found in the HCA cohort. SHP showed a trend toward downregulation in hypointense HCA. In conclusion, this study suggests that the MRI relative signal in HCA may reflect expression level and/or activity of SHP and FXR. Moreover, our data confirms the pivotal role of OATP1B3 in Gd-EOB-DTPA uptake in HCA. SIGNIFICANCE STATEMENT: FXR represents a valuable target for the treatment of liver disease and metabolic syndrome. Currently, two molecules, ursodeoxycholate and obeticholate, are approved for the treatment of primary biliary cirrhosis and cholestasis, with several compounds in clinical trials for the treatment of metabolic dysfunction-associated fatty liver disease. Because FXR expression and activation is associated with gadoxetate accumulation in HCA, an atypical gadoxetate-enhanced MRI pattern might arise in patients under FXR-targeted therapy, thereby complicating the differential diagnosis.
Collapse
Affiliation(s)
- Belle V van Rosmalen
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands (B.V.vR., A.F., T.M.vG.); Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands (B.V.vR., A.F., O.M.vD., T.M.vG., J.V.); Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland (M.V., B.S.); Amsterdam UMC Location University of Amsterdam, Department of Radiology, Amsterdam, The Netherlands (O.M.vD.); Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands (G.K.); Cancer Center Amsterdam, Amsterdam, The Netherlands (G.K.); and Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands (J.V.)
| | - Michele Visentin
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands (B.V.vR., A.F., T.M.vG.); Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands (B.V.vR., A.F., O.M.vD., T.M.vG., J.V.); Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland (M.V., B.S.); Amsterdam UMC Location University of Amsterdam, Department of Radiology, Amsterdam, The Netherlands (O.M.vD.); Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands (G.K.); Cancer Center Amsterdam, Amsterdam, The Netherlands (G.K.); and Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands (J.V.)
| | - Alicia Furumaya
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands (B.V.vR., A.F., T.M.vG.); Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands (B.V.vR., A.F., O.M.vD., T.M.vG., J.V.); Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland (M.V., B.S.); Amsterdam UMC Location University of Amsterdam, Department of Radiology, Amsterdam, The Netherlands (O.M.vD.); Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands (G.K.); Cancer Center Amsterdam, Amsterdam, The Netherlands (G.K.); and Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands (J.V.)
| | - Otto M van Delden
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands (B.V.vR., A.F., T.M.vG.); Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands (B.V.vR., A.F., O.M.vD., T.M.vG., J.V.); Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland (M.V., B.S.); Amsterdam UMC Location University of Amsterdam, Department of Radiology, Amsterdam, The Netherlands (O.M.vD.); Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands (G.K.); Cancer Center Amsterdam, Amsterdam, The Netherlands (G.K.); and Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands (J.V.)
| | - Geert Kazemier
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands (B.V.vR., A.F., T.M.vG.); Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands (B.V.vR., A.F., O.M.vD., T.M.vG., J.V.); Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland (M.V., B.S.); Amsterdam UMC Location University of Amsterdam, Department of Radiology, Amsterdam, The Netherlands (O.M.vD.); Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands (G.K.); Cancer Center Amsterdam, Amsterdam, The Netherlands (G.K.); and Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands (J.V.)
| | - Thomas M van Gulik
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands (B.V.vR., A.F., T.M.vG.); Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands (B.V.vR., A.F., O.M.vD., T.M.vG., J.V.); Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland (M.V., B.S.); Amsterdam UMC Location University of Amsterdam, Department of Radiology, Amsterdam, The Netherlands (O.M.vD.); Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands (G.K.); Cancer Center Amsterdam, Amsterdam, The Netherlands (G.K.); and Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands (J.V.)
| | - Joanne Verheij
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands (B.V.vR., A.F., T.M.vG.); Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands (B.V.vR., A.F., O.M.vD., T.M.vG., J.V.); Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland (M.V., B.S.); Amsterdam UMC Location University of Amsterdam, Department of Radiology, Amsterdam, The Netherlands (O.M.vD.); Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands (G.K.); Cancer Center Amsterdam, Amsterdam, The Netherlands (G.K.); and Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands (J.V.)
| | - Bruno Stieger
- Amsterdam UMC Location University of Amsterdam, Department of Surgery, Amsterdam, The Netherlands (B.V.vR., A.F., T.M.vG.); Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands (B.V.vR., A.F., O.M.vD., T.M.vG., J.V.); Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zürich, Switzerland (M.V., B.S.); Amsterdam UMC Location University of Amsterdam, Department of Radiology, Amsterdam, The Netherlands (O.M.vD.); Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands (G.K.); Cancer Center Amsterdam, Amsterdam, The Netherlands (G.K.); and Amsterdam UMC Location University of Amsterdam, Department of Pathology, Amsterdam, The Netherlands (J.V.)
| |
Collapse
|
4
|
Li T, Jiang L, Zheng S, Qiu C, Zhao N, Lin X, Ren H, Huang J, Wang H, Qiu L. Organic anion transporting polypeptide 3a1 is a novel influx pump for Perfluorooctane sulfonate in Sertoli cells and contributes to its reproductive toxicity. CHEMOSPHERE 2023; 345:140428. [PMID: 37858765 DOI: 10.1016/j.chemosphere.2023.140428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/10/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Persistent organic pollutant perfluorooctane sulfonate (PFOS) is strongly associated with male reproductive disorders, but the related mechanisms are still not fully understood. In this study, we used in vivo and in vitro models to explore the role of organic anion transporting polypeptide 3a1 (Oatp3a1) on PFOS-induced male reproductive injury. Thirty male C57BL/6 (B6) mice were orally given PFOS (0-10 mg/kg/bw) for 28 days. Body weight, organ index, sperm count, histology, and blood-testis barrier (BTB) integrity were evaluated. Primary Sertoli cells were used to describe the related molecular mechanisms of male reproductive injury caused by PFOS. Our results showed that PFOS induced a decrease in sperm count, morphological damage to testicular Sertoli cells, and disruption of BTB. In the in vitro model, exposure to PFOS significantly increased Oatp3a1 mRNA and protein levels and decreased miR-23a-3p expression in Sertoli cells, accompanied by reduced trans-epithelial electrical resistance (TEER) value. By performing the 14C-PFOS uptake experiment, we showed that 14C-PFOS uptake in HEK293-Oatp3a1 cells was apparently higher than in HEK293-MOCK cells. Meanwhile, treating Sertoli cells with Oatp3a1 siRNA significantly decreased Oatp3a1 expression and rescued PFOS-induced decreases in TEER value. As such, the present study highlights that Oatp3a1 may play an important role in the toxic effect of PFOS on Sertoli cells, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.
Collapse
Affiliation(s)
- Ting Li
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianlian Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Shaokai Zheng
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Chong Qiu
- Medical School, Nantong University, 19 Qixiu Rd., Nantong, 226001, PR China
| | - Nannan Zhao
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Xiaojun Lin
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hang Ren
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Jiyan Huang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hongxia Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China.
| |
Collapse
|
5
|
WANG YINGYING, ZHOU YING, WANG YU, YU LUSHAN, ZENG SU. Epigenetic Regulation of Drug Transporters in Cancer. DRUG METABOLISM HANDBOOK 2022:573-603. [DOI: 10.1002/9781119851042.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Nies AT, Schaeffeler E, Schwab M. Hepatic solute carrier transporters and drug therapy: Regulation of expression and impact of genetic variation. Pharmacol Ther 2022; 238:108268. [DOI: 10.1016/j.pharmthera.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
|
7
|
Brouwer KLR, Evers R, Hayden E, Hu S, Li CY, Meyer Zu Schwabedissen HE, Neuhoff S, Oswald S, Piquette-Miller M, Saran C, Sjöstedt N, Sprowl JA, Stahl SH, Yue W. Regulation of Drug Transport Proteins-From Mechanisms to Clinical Impact: A White Paper on Behalf of the International Transporter Consortium. Clin Pharmacol Ther 2022; 112:461-484. [PMID: 35390174 PMCID: PMC9398928 DOI: 10.1002/cpt.2605] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/20/2022] [Indexed: 12/14/2022]
Abstract
Membrane transport proteins are involved in the absorption, disposition, efficacy, and/or toxicity of many drugs. Numerous mechanisms (e.g., nuclear receptors, epigenetic gene regulation, microRNAs, alternative splicing, post‐translational modifications, and trafficking) regulate transport protein levels, localization, and function. Various factors associated with disease, medications, and dietary constituents, for example, may alter the regulation and activity of transport proteins in the intestine, liver, kidneys, brain, lungs, placenta, and other important sites, such as tumor tissue. This white paper reviews key mechanisms and regulatory factors that alter the function of clinically relevant transport proteins involved in drug disposition. Current considerations with in vitro and in vivo models that are used to investigate transporter regulation are discussed, including strengths, limitations, and the inherent challenges in predicting the impact of changes due to regulation of one transporter on compensatory pathways and overall drug disposition. In addition, translation and scaling of in vitro observations to in vivo outcomes are considered. The importance of incorporating altered transporter regulation in modeling and simulation approaches to predict the clinical impact on drug disposition is also discussed. Regulation of transporters is highly complex and, therefore, identification of knowledge gaps will aid in directing future research to expand our understanding of clinically relevant molecular mechanisms of transporter regulation. This information is critical to the development of tools and approaches to improve therapeutic outcomes by predicting more accurately the impact of regulation‐mediated changes in transporter function on drug disposition and response.
Collapse
Affiliation(s)
- Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raymond Evers
- Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania, USA
| | - Elizabeth Hayden
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Shuiying Hu
- College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | | | - Chitra Saran
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jason A Sprowl
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Simone H Stahl
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Wei Yue
- College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
8
|
Chae YJ, Chang JE, Lee MK, Lim J, Shin KH, Lee KR. Regulation of drug transporters by microRNA and implications in disease treatment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00538-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Liu W, Nakano M, Nakanishi T, Nakajima M, Tamai I. Post-transcriptional regulation of OATP2B1 transporter by a microRNA, miR-24. Drug Metab Pharmacokinet 2020; 35:515-521. [DOI: 10.1016/j.dmpk.2020.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022]
|