1
|
Li Y, Zhu B, Shi K, Lu Y, Zeng X, Li Y, Zhang Q, Feng Y, Wang X. Advances in intrahepatic and extrahepatic vascular dysregulations in cirrhotic portal hypertension. Front Med (Lausanne) 2025; 12:1515400. [PMID: 39958826 PMCID: PMC11825794 DOI: 10.3389/fmed.2025.1515400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Cirrhotic portal hypertension, the most prevalent and clinically significant complication of liver cirrhosis, manifests as elevated portal venous pressure and is associated with severe complications. Although much research on the mechanisms of portal hypertension has focused on liver fibrosis, less attention has been given to the role of intrahepatic and extrahepatic vascular dysfunction, particularly with respect to extrahepatic vasculature. While the role of hepatic fibrosis in cirrhotic portal hypertension is undeniable, the underlying mechanisms involving intrahepatic and extrahepatic vasculature are highly complex. Sinusoidal capillarization and endothelial dysfunction contribute to increased intrahepatic vascular resistance. Hemodynamic changes in the extrahepatic circulation, including splanchnic vasodilation and hyperdynamic circulation, play a significant role in the development of portal hypertension. Additionally, therapeutic strategies targeting these vascular mechanisms are diverse, including improvement of sinusoidal microcirculation, therapies targeting hepatic stellate cells activation, and pharmacological modulation of systemic vascular tone. Therefore, in this review, we will discuss the vascular-related mechanisms and treatment progress of portal hypertension in cirrhosis to provide a new theoretical basis and practical guidance for clinical treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ying Feng
- Center for Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xianbo Wang
- Center for Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Porada M, Bułdak Ł. From Pathophysiology to Practice: Evolving Pharmacological Therapies, Clinical Complications, and Pharmacogenetic Considerations in Portal Hypertension. Metabolites 2025; 15:72. [PMID: 39997697 PMCID: PMC11857179 DOI: 10.3390/metabo15020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Portal hypertension is a major complication of chronic liver diseases, leading to serious issues such as esophageal variceal bleeding. The increase in portal vein pressure is driven by both an organic component and a functional component, including tonic contraction of hepatic stellate cells. These processes result in a pathological rise in intrahepatic vascular resistance, stemming from partial impairment of hepatic microcirculation, which is further exacerbated by abnormalities in extrahepatic vessels, including increased portal blood flow. Objectives: This review aims to provide a comprehensive overview of the evolving pharmacological therapies for portal hypertension, with consideration and discussion of pathophysiological mechanisms, clinical complications, and pharmacogenetic considerations, highlighting potential directions for future research. Methods: A review of recent literature was performed to evaluate current knowledge and potential therapeutic strategies in portal hypertension. Results: For over 35 years, non-selective beta-blockers have been the cornerstone therapy for portal hypertension by reducing portal vein inflow as an extrahepatic target, effectively preventing decompensation and variceal hemorrhages. However, since not all patients exhibit an adequate response to non-selective beta-blockers (NSBBs), and some may not tolerate NSBBs, alternative or adjunctive therapies that enhance the effects of NSBBs on portal pressure are being investigated in preclinical and early clinical studies. Conclusions: A better understanding of pharmacogenetic factors and pathophysiological mechanisms could lead to more individualized and effective treatments for portal hypertension. These insights highlight potential directions for future research.
Collapse
Affiliation(s)
- Michał Porada
- Students’ Scientific Society, Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| |
Collapse
|
3
|
Owen N, Williams T, Maguire J, Kuc R, Davenport E, Davenport A. Microarray analysis demonstrates up-regulation of the endothelin-1 gene with compensatory down-regulation of the ETA receptor gene in human portal vein. Biosci Rep 2024; 44:BSR20240528. [PMID: 38860875 PMCID: PMC12046063 DOI: 10.1042/bsr20240528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024] Open
Abstract
High blood pressure in the portal vein, portal hypertension (PH), is the final common pathway in liver cirrhosis regardless of aetiology. Complications from PH are the major cause of morbidity and mortality in these patients. Current drug therapy to reduce portal pressure is mainly limited to β-adrenergic receptor blockade but approximately 40% of patients do not respond. Our aim was to use microarray to measure the expression of ∼20,800 genes in portal vein from patients with PH undergoing transplantation for liver cirrhosis (PH, n=12) versus healthy vessels (control, n=9) to identify potential drug targets to improve therapy. Expression of 9,964 genes above background was detected in portal vein samples. Comparing PH veins versus control (adjusted P-value < 0.05, fold change > 1.5) identified 548 up-regulated genes and 1,996 down-regulated genes. The 2,544 differentially expressed genes were subjected to pathway analysis. We identified 49 significantly enriched pathways. The endothelin pathway was ranked the tenth most significant, the only vasoconstrictive pathway to be identified. ET-1 gene (EDN1) was significantly up-regulated, consistent with elevated levels of ET-1 peptide previously measured in PH and cirrhosis. ETA receptor gene (EDNRA) was significantly down-regulated, consistent with an adaptive response to increased peptide levels in the portal vein but there was no change in the ETB gene (EDNRB). The results provide further support for evaluating the efficacy of ETA receptor antagonists as a potential therapy in addition to β-blockers in patients with PH and cirrhosis.
Collapse
Affiliation(s)
- Nicola E. Owen
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| | - Thomas L. Williams
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| | - Janet J. Maguire
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| | - Rhoda E. Kuc
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| | - Emma E. Davenport
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, U.K
| | - Anthony P. Davenport
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| |
Collapse
|
4
|
Guixé-Muntet S, Quesada-Vázquez S, Gracia-Sancho J. Pathophysiology and therapeutic options for cirrhotic portal hypertension. Lancet Gastroenterol Hepatol 2024; 9:646-663. [PMID: 38642564 DOI: 10.1016/s2468-1253(23)00438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 04/22/2024]
Abstract
Portal hypertension represents the primary non-neoplastic complication of liver cirrhosis and has life-threatening consequences, such as oesophageal variceal bleeding, ascites, and hepatic encephalopathy. Portal hypertension occurs due to increased resistance of the cirrhotic liver vasculature to portal blood flow and is further aggravated by the hyperdynamic circulatory syndrome. Existing knowledge indicates that the profibrogenic phenotype acquired by sinusoidal cells is the initial factor leading to increased hepatic vascular tone and fibrosis, which cause increased vascular resistance and portal hypertension. Data also suggest that the phenotype of hepatic cells could be further impaired due to the altered mechanical properties of the cirrhotic liver itself, creating a deleterious cycle that worsens portal hypertension in the advanced stages of liver disease. In this Review, we discuss recent discoveries in the pathophysiology and treatment of cirrhotic portal hypertension, a condition with few pharmacological treatment options.
Collapse
Affiliation(s)
- Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sergio Quesada-Vázquez
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Hospital Clínic de Barcelona, Barcelona, Spain; Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Ambery P, Greasley PJ, Menzies RI, Brynne L, Kulkarni S, Oscarsson J, Davenport AP. Targeting the endothelium by combining endothelin-1 antagonism and SGLT-2 inhibition: better together? Clin Sci (Lond) 2024; 138:687-697. [PMID: 38835256 DOI: 10.1042/cs20240605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Endothelin A and B receptors, together with sodium-glucose cotransporter-2 (SGLT-2) channels are important targets in improving endothelial function and intervention with inhibitors has been the subject of multiple mechanistic and clinical outcome trials over recent years. Notable successes include the treatment of pulmonary hypertension with endothelin receptor antagonists, and the treatment of heart failure and chronic kidney disease with SGLT-2 inhibitors. With distinct and complementary mechanisms, in this review, we explore the logic of combination therapy for a number of diseases which have endothelial dysfunction at their heart.
Collapse
Affiliation(s)
- Phil Ambery
- Clinical Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter J Greasley
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Robert I Menzies
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lena Brynne
- Information Practice Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Spoorthy Kulkarni
- Department of Clinical Pharmacology and Therapeutics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB20QQ, U.K
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, U.K
| | - Jan Oscarsson
- Clinical Late Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anthony P Davenport
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, U.K
| |
Collapse
|
6
|
Sheng JY, Meng ZF, Li Q, Yang YS. Recent advances in promising drugs for primary prevention of gastroesophageal variceal bleeding with cirrhotic portal hypertension. Hepatobiliary Pancreat Dis Int 2024; 23:4-13. [PMID: 37580228 DOI: 10.1016/j.hbpd.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Gastroesophageal variceal bleeding is one of the most severe complications of patients with cirrhosis. Although primary prevention drugs, including non-selective β-blockers, have effectively reduced the incidence of bleeding, their efficacy is limited due to side effects and related contraindications. With recent advances in precision medicine, precise drug treatment provides better treatment efficacy. DATA SOURCES Literature search was conducted in PubMed, MEDLINE and Web of Science for relevant articles published up to May 2022. Information on clinical trials was obtained from https://clinicaltrials.gov/ and http://www.chictr.org.cn/. RESULTS The in-depth understanding of the pathogenesis and advances of portal hypertension has enabled the discovery of multiple molecular targets for promising drugs. According to the site of action, these drugs could be classified into four classes: intrahepatic, extrahepatic, both intrahepatic and extrahepatic targets and others. All these classes of drugs offer advantages over traditional treatments in prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension. CONCLUSIONS This review classified and summarized the promising drugs, which prevent gastroesophageal variceal bleeding by targeting specific markers of pathogenesis of portal hypertension, demonstrating the significance of using the precision medicine strategy to discover and develop promising drugs for the primary prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.
Collapse
Affiliation(s)
- Ji-Yao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130041, China; Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, the Second Hospital of Jilin University, Changchun 130041, China
| | - Zi-Fan Meng
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130041, China; Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, the Second Hospital of Jilin University, Changchun 130041, China
| | - Qiao Li
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130041, China
| | - Yong-Sheng Yang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Hospital of Jilin University, Changchun 130041, China; Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, the Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
7
|
Mercier AK, Sunnåker M, Ueckert S, Pawlik T, Henricson E, Molodetskyi O, Law GC, Parker VER, Oscarsson J. Pharmacokinetics and Tolerability of Zibotentan in Patients with Concurrent Moderate Renal and Moderate Hepatic Impairment. Clin Pharmacokinet 2023; 62:1713-1724. [PMID: 37801266 PMCID: PMC10684621 DOI: 10.1007/s40262-023-01306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Zibotentan, a selective endothelin A receptor antagonist, is in development for chronic liver and kidney disease. The pharmacokinetics (PK) of zibotentan were previously investigated in patients with either renal impairment or hepatic impairment, but the impact of both pathologies on PK was not evaluated. This study evaluated the PK and tolerability of a single oral dose of zibotentan in participants with concurrent moderate renal impairment and moderate hepatic impairment versus control participants. METHODS Twelve participants with moderate renal and hepatic impairment and 11 healthy matched control participants with no clinically significant liver or kidney disease were enrolled in an open-label, parallel-group study design. After administration of a single oral dose of zibotentan 5 mg, blood and urine sampling was performed. Pharmacokinetic parameters were determined for each of the two cohorts and compared. Comparisons between the cohorts were based on the geometric least squares mean ratio for the primary endpoints, which were area under the plasma concentration-time curve (AUC) from time zero to infinity (AUC∞) and from time zero to the time of the last measurable concentration (AUClast), and maximum plasma drug concentration (Cmax) on Day 1 through 120 h post-dose. Secondary endpoints included apparent total body clearance (CL/F) on Day 1 through 120 h post-dose. Safety endpoints were assessed up to discharge. RESULTS In total, 11 participants with concurrent moderate renal and hepatic impairment, and 11 controls, completed the study. Zibotentan was generally well tolerated, and no new clinically significant safety findings were observed. Total exposure (AUC∞ and AUClast) was approximately 2.10-fold higher in participants with concurrent moderate renal and hepatic impairment versus controls, while Cmax and total nonrenal body clearance were similar among all groups. A regression-based post hoc analysis, comparing exposure and CL/F in patients with concurrent impairment to patients with either renal or hepatic impairment alone, showed that CL/F with concurrent impairment was approximately half of that in controls and was positively correlated with reduction of renal function. Inclusion of the data on concurrent moderate renal and hepatic impairment in the regression analysis led to a narrower confidence interval for the predicted mean CL/F in participants with moderate hepatic impairment. CONCLUSION The presented findings advance the understanding of the PK of zibotentan in both renal impairment and hepatic impairment, with and without overlapping pathologies, and will thus increase the confidence of dose selection in future studies, particularly in vulnerable patient populations with concurrent renal and hepatic impairment. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT05112419.
Collapse
Affiliation(s)
- Anne-Kristina Mercier
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Gothenburg, Sweden.
| | - Mikael Sunnåker
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Gothenburg, Sweden
| | - Sebastian Ueckert
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Gothenburg, Sweden
| | - Tadeusz Pawlik
- Biopharmaceuticals R&D, Late-Stage Clinical Development, Cardiovascular, Renal and Metabolism, AstraZeneca, Warsaw, Poland
| | - Emilia Henricson
- Biopharmaceuticals R&D, Late-Stage Clinical Development, Cardiovascular, Renal and Metabolism, AstraZeneca, Gothenburg, Sweden
| | | | - Gordon C Law
- Early Biometrics and Statistical Innovation, Data Science and Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Victoria E R Parker
- Early-Stage Clinical Development, Cardiovascular, Renal and Metabolism, AstraZeneca, Cambridge, UK
| | - Jan Oscarsson
- Biopharmaceuticals R&D, Late-Stage Clinical Development, Cardiovascular, Renal and Metabolism, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
8
|
Kumar R, Kumar S, Prakash SS. Compensated liver cirrhosis: Natural course and disease-modifying strategies. World J Methodol 2023; 13:179-193. [PMID: 37771878 PMCID: PMC10523240 DOI: 10.5662/wjm.v13.i4.179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/05/2023] [Accepted: 06/27/2023] [Indexed: 09/20/2023] Open
Abstract
Compensated liver cirrhosis (CLC) is defined as cirrhosis with one or more decompensating events, such as ascites, variceal haemorrhage, or hepatic encephalopathy. Patients with CLC are largely asymptomatic with preserved hepatic function. The transition from CLC to decompensated cirrhosis occurs as a result of a complex interaction between multiple predisposing and precipitating factors. The first decompensation event in CLC patients is considered a significant turning point in the progression of cirrhosis, as it signals a drastic decline in median survival rates from 10-12 years to only 1-2 years. Furthermore, early cirrhosis has the potential to regress as liver fibrosis is a dynamic condition. With the advent of effective non-invasive tools for detecting hepatic fibrosis, more and more patients with CLC are currently being recognised. This offers clinicians a unique opportunity to properly manage such patients in order to achieve cirrhosis regression or, at the very least, prevent its progression. There are numerous emerging approaches for preventing or delaying decompensation in CLC patients. A growing body of evidence indicates that treating the underlying cause can lead to cirrhosis regression, and the use of non-selective beta-blockers can prevent decompensation by lowering portal hypertension. Additionally, addressing various cofactors (such as obesity, diabetes, dyslipidaemia, and alcoholism) and precipitating factors (such as infection, viral hepatitis, and hepatotoxic drugs) that have a detrimental impact on the natural course of cirrhosis may benefit patients with CLC. However, high-quality data must be generated through well-designed and adequately powered randomised clinical trials to validate these disease-modifying techniques for CLC patients. This article discussed the natural history of CLC, risk factors for its progression, and therapeutic approaches that could alter the trajectory of CLC evolution and improve outcomes.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, India
| | - Sudhir Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, India
| | - Sabbu Surya Prakash
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, India
| |
Collapse
|
9
|
Owen T, Carpino G, Chen L, Kundu D, Wills P, Ekser B, Onori P, Gaudio E, Alpini G, Francis H, Kennedy L. Endothelin Receptor-A Inhibition Decreases Ductular Reaction, Liver Fibrosis, and Angiogenesis in a Model of Cholangitis. Cell Mol Gastroenterol Hepatol 2023; 16:513-540. [PMID: 37336290 PMCID: PMC10462792 DOI: 10.1016/j.jcmgh.2023.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC) leads to ductular reaction and fibrosis and is complicated by vascular dysfunction. Cholangiocyte and endothelial cell crosstalk modulates their proliferation in cholestatic models. Endothelin (ET)-1 and ET-2 bind to their receptor, ET-A, and cholangiocytes are a key source of ET-1 after bile duct ligation. We aimed to evaluate the therapeutic potential of ET-A inhibition in PSC and biliary-endothelial crosstalk mediated by this pathway. METHODS Wild-type and multidrug resistance 2 knockout (Mdr2-/-) mice at 12 weeks of age were treated with vehicle or Ambrisentan (ET-A antagonist) for 1 week by daily intraperitoneal injections. Human control and PSC samples were used. RESULTS Mdr2-/- mice at 4, 8, and 12 weeks displayed angiogenesis that peaked at 12 weeks. Mdr2-/- mice at 12 weeks had enhanced biliary ET-1/ET-2/ET-A expression and secretion, whereas human PSC had enhanced ET-1/ET-A expression and secretion. Ambrisentan reduced biliary damage, immune cell infiltration, and fibrosis in Mdr2-/- mice. Mdr2-/- mice had squamous cholangiocytes with blunted microvilli and dilated arterioles lacking cilia; however, Ambrisentan reversed these alterations. Ambrisentan decreased cholangiocyte expression of pro-angiogenic factors, specifically midkine, through the regulation of cFOS. In vitro, ET-1/ET-A caused cholangiocyte senescence, endothelial cell angiogenesis, and macrophage inflammation. In vitro, human PSC cholangiocyte supernatants increased endothelial cell migration, which was blocked with Ambrisentan treatment. CONCLUSIONS ET-A inhibition reduced biliary and liver damage in Mdr2-/- mice. ET-A promotes biliary angiocrine signaling that may, in turn, enhance angiogenesis. Targeting ET-A may prove therapeutic for PSC, specifically patients displaying vascular dysfunction.
Collapse
Affiliation(s)
- Travis Owen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Payton Wills
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana.
| |
Collapse
|
10
|
Li J, Li Y, Liang X, Yang Z, Peng Y, Zhang Y, Ning X, Zhang K, Ji J, Wang T, Zhang G, Yin S. Blood redistribution preferentially protects vital organs under hypoxic stress in Pelteobagrus vachelli. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106498. [PMID: 37001201 DOI: 10.1016/j.aquatox.2023.106498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Blood redistribution occurs in mammals under hypoxia but has not been reported in fish. This study investigated the tissue damage, hypoxia-inducible factor (HIF) activation level, and blood flow changes in the brain, liver, and muscle of Pelteobagrus vachelli during the hypoxia process for normoxia-hypoxia-asphyxia. The results showed that P. vachelli has tissue specificity in response to hypoxic stress. Cerebral blood flow increased with less damage than in the liver and muscle, suggesting that P. vachelli may also have a blood redistribution mechanism in response to hypoxia. It is worth noting that severe hypoxia can lead to a sudden increase in the degree of brain tissue damage. In addition, higher dissolved oxygen levels activate HIF and may have contributed to the reduced damage observed in the brain. This study provides basic data for investigating hypoxic stress in fish.
Collapse
Affiliation(s)
- Jie Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Yao Li
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Xia Liang
- Key Laboratory for Physiology Biochemistry and Application, Heze University, Heze, 274015, China
| | - Zhiru Yang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Ye Peng
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Yiran Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Xianhui Ning
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Jie Ji
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China
| | - Guosong Zhang
- Key Laboratory for Physiology Biochemistry and Application, Heze University, Heze, 274015, China.
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China.
| |
Collapse
|
11
|
Felli E, Nulan Y, Selicean S, Wang C, Gracia-Sancho J, Bosch J. Emerging Therapeutic Targets for Portal Hypertension. CURRENT HEPATOLOGY REPORTS 2023; 22:51-66. [PMID: 36908849 PMCID: PMC9988810 DOI: 10.1007/s11901-023-00598-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/13/2023]
Abstract
Purpose of Review Portal hypertension is responsible of the main complications of cirrhosis, which carries a high mortality. Recent treatments have improved prognosis, but this is still far from ideal. This paper reviews new potential therapeutic targets unveiled by advances of key pathophysiologic processes. Recent Findings Recent research highlighted the importance of suppressing etiologic factors and a safe lifestyle and outlined new mechanisms modulating portal pressure. These include intrahepatic abnormalities linked to inflammation, fibrogenesis, vascular occlusion, parenchymal extinction, and angiogenesis; impaired regeneration; increased hepatic vascular tone due to sinusoidal endothelial dysfunction with insufficient NO availability; and paracrine liver cell crosstalk. Moreover, pathways such as the gut-liver axis modulate splanchnic vasodilatation and systemic inflammation, exacerbate liver fibrosis, and are being targeted by therapy. We have summarized studies of new agents addressing these targets. Summary New agents, alone or in combination, allow acting in complementary mechanisms offering a more profound effect on portal hypertension while simultaneously limiting disease progression and favoring regression of fibrosis and of cirrhosis. Major changes in treatment paradigms are anticipated.
Collapse
Affiliation(s)
- Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Yelidousi Nulan
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Sonia Selicean
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Cong Wang
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
- Department for BioMedical Research, Hepatology, University of Bern, 3012 Bern, Switzerland
- Liver Vascular Biology Research Group, CIBEREHD, IDIBAPS Research Institute, 08036 Barcelona, Spain
| | - Jaume Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
12
|
Xu G, Gong Y, Lu F, Wang B, Yang Z, Chen L, Min J, Cheng C, Jiang T. Endothelin receptor B enhances liver injury and pro-inflammatory responses by increasing G-protein-coupled receptor kinase-2 expression in primary biliary cholangitis. Sci Rep 2022; 12:19772. [PMID: 36396948 PMCID: PMC9672122 DOI: 10.1038/s41598-022-21816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Severe diseases like cirrhosis and liver failure can be developed from primary biliary cholangitis (PBC). Endothelin-2 (EDN2) and endothelin receptor B (EDNRB) are related to the pathogenesis of PBC. However, the roles of EDN2 and EDNRB in PBC-related liver injury and inflammation along with molecular mechanisms are poorly defined. In this study, histopathologic alterations of liver tissues were assessed through hematoxylin-eosin staining. Alanine transaminase (ALT), alkaline phosphatase (ALP), aspartate transaminase (AST), and γ-Glutamyltranspetidase (GGT) (4 liver function indexes) serum levels were detected with corresponding activity assay kits. Also, we determined the levels of M2 subtype anti-mitochondrial antibody (AMA-M2), interferon-gamma (IFN-γ), and tumor-necrosis factor alpha (TNFα) in serum with ELISA assay. Later, RT-qPCR assay was used to measure the expression of genes at mRNA levels, while western blotting and immunohistochemical techniques were used to detect protein levels of genes. Our results showed that the liver tissues of PBC patients and mice presented with severe hepatocyte injury and inflammatory cell infiltration as well as destruction of intrahepatic small bile ducts. ALP, AST, ALT, GGT, AMA-M2, IFN-γ, and TNF-α serum levels were higher in PBC patients and mice. Besides, EDN2 and EDNRB were highly expressed in serums and livers of PBC patients and mice. EDNRB potentiated PBC-related liver injury and pro-inflammatory responses, as evidenced by observation of serious liver pathologic injury and increased serum levels of ALP, AST, ALT, AMA-M2, IFN-γ, and TNF-α in PBC mice following EDNRB overexpression. EDNRB overexpression or activation via its agonist IRL-1620 TFA triggered liver injury and pro-inflammatory responses, increased GRK2 expression and induced NF-κB expression and activation in wild-type mice. EDNRB knockdown or inhibition by Bosentan alleviated liver damage and inflammation, reduced GRK2 expression, and inhibited NF-κB in PBC mice. These findings suggested EDNRB loss or inhibition weakened liver injury and pro-inflammatory responses by down-regulating GRK2 and inhibiting the NF-κB pathway in PBC mice.
Collapse
Affiliation(s)
- Guoxin Xu
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600 China
| | - Yanping Gong
- Department of Clinical Immunology, Institution of Laboratory Medicine of Changshu, Changshu, 215500 China
| | - Fenying Lu
- grid.417303.20000 0000 9927 0537Department of Gastroenterology, The Affiliated Changshu Hospital of Xuzhou Medical University, Suzhou, 215501 China
| | - Bin Wang
- grid.417303.20000 0000 9927 0537Department of Gastroenterology, The Affiliated Changshu Hospital of Xuzhou Medical University, Suzhou, 215501 China
| | - Zaixing Yang
- grid.469601.cDepartment of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People’s Hospital, Taizhou, 318020 China
| | - Long Chen
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600 China
| | - Jingyu Min
- grid.417303.20000 0000 9927 0537Department of Gastroenterology, The Affiliated Changshu Hospital of Xuzhou Medical University, Suzhou, 215501 China
| | - Cuie Cheng
- grid.417303.20000 0000 9927 0537Department of Gastroenterology, The Affiliated Changshu Hospital of Xuzhou Medical University, Suzhou, 215501 China
| | - Tingwang Jiang
- grid.417303.20000 0000 9927 0537Department of Key Laboratory, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, 215500 China
| |
Collapse
|
13
|
Sakiani S, Heller T, Koh C. Current and investigational drugs in early clinical development for portal hypertension. Front Med (Lausanne) 2022; 9:974182. [PMID: 36300180 PMCID: PMC9589453 DOI: 10.3389/fmed.2022.974182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction The development of portal hypertension leads to a majority of complications associated with chronic liver disease. Therefore, adequate treatment of portal hypertension is crucial in the management of such patients. Current treatment options are limited and consist mainly of medications that decrease the hyperdynamic circulation, such as non-selective beta blockers, and treatment of hypervolemia with diuretics. Despite these options, mortality rates have not improved over the last two decades. Newer, more effective treatment options are necessary to help improve survival and quality of life in these patients. Areas covered Multiple preclinical models and clinical studies have demonstrated potential efficacy of a variety of new treatment modalities. We introduce treatment options including the use of vasodilation promotors, vasoconstriction inhibitors, anticoagulants, antiangiogenics, and anti-inflammatory drugs. We examine the most recent studies for treatment options within these drug classes and offer insights as to which show the most promise in this field. Methodology Published studies that identified novel medical treatment options of portal hypertension were searched using PubMed (https://pubmed.ncbi.nlm.nih.gov/). Clinical trials listed in Clinicaltrials.gov were also searched with a focus on more recent and ongoing studies, including those with completed recruitment. Searching with key terms including "portal hypertension" as well as individually searching specific treatment medications that were listed in other publications was carried out. Finally, current societal guidelines and recent review articles relevant to the management of portal hypertension were evaluated, and listed references of interest were included. Conclusion Many ongoing early phase studies demonstrate promising results and may shape the field of portal hypertension management in future. As concrete results become available, larger RCTs will be required before making definitive conclusions regarding safety and efficacy and whether or not they can be incorporated into routine clinical practice. Statins, anticoagulants, and PDE inhibitors have been among the most studied and appear to be most promising.
Collapse
Affiliation(s)
- Sasan Sakiani
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Baltimore, MD, United States
| | - Theo Heller
- Liver Diseases Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christopher Koh
- Liver Diseases Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Selicean S, Wang C, Guixé-Muntet S, Stefanescu H, Kawada N, Gracia-Sancho J. Regression of portal hypertension: underlying mechanisms and therapeutic strategies. Hepatol Int 2021; 15:36-50. [PMID: 33544313 PMCID: PMC7886770 DOI: 10.1007/s12072-021-10135-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Portal hypertension is the main non-neoplastic complication of chronic liver disease, being the cause of important life-threatening events including the development of ascites or variceal bleeding. The primary factor in the development of portal hypertension is a pathological increase in the intrahepatic vascular resistance, due to liver microcirculatory dysfunction, which is subsequently aggravated by extra-hepatic vascular disturbances including elevation of portal blood inflow. Evidence from pre-clinical models of cirrhosis has demonstrated that portal hypertension and chronic liver disease can be reversible if the injurious etiological agent is removed and can be further promoted using pharmacological therapy. These important observations have been partially demonstrated in clinical studies. This paper aims at providing an updated review of the currently available data regarding spontaneous and drug-promoted regression of portal hypertension, paying special attention to the clinical evidence. It also considers pathophysiological caveats that highlight the need for caution in establishing a new dogma that human chronic liver disease and portal hypertension is reversible.
Collapse
Affiliation(s)
- Sonia Selicean
- Hepatology, Department of Biomedical Research, University of Bern, Inselspital, Murtenstrasse 35, Maurice E. Müller-Haus, F821a, 3008, Bern, Switzerland
| | - Cong Wang
- Hepatology, Department of Biomedical Research, University of Bern, Inselspital, Murtenstrasse 35, Maurice E. Müller-Haus, F821a, 3008, Bern, Switzerland
| | - Sergi Guixé-Muntet
- Hepatology, Department of Biomedical Research, University of Bern, Inselspital, Murtenstrasse 35, Maurice E. Müller-Haus, F821a, 3008, Bern, Switzerland
| | - Horia Stefanescu
- Department of Hepatology, Prof. Dr. Octavian Fodor Regional Institute of Gastroenterology and Hepatology, Liver Research Club, Cluj-Napoca, Romania
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Jordi Gracia-Sancho
- Hepatology, Department of Biomedical Research, University of Bern, Inselspital, Murtenstrasse 35, Maurice E. Müller-Haus, F821a, 3008, Bern, Switzerland.
- Liver Vascular Biology Research Group, IDIBAPS Research Institute, CIBEREHD, Barcelona, Spain.
| |
Collapse
|