1
|
Sangro B, Argemi J, Ronot M, Paradis V, Meyer T, Mazzaferro V, Jepsen P, Golfieri R, Galle P, Dawson L, Reig M. EASL Clinical Practice Guidelines on the management of hepatocellular carcinoma. J Hepatol 2025; 82:315-374. [PMID: 39690085 DOI: 10.1016/j.jhep.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 12/19/2024]
Abstract
Liver cancer is the third leading cause of cancer-related deaths worldwide, with hepatocellular carcinoma (HCC) accounting for approximately 90% of primary liver cancers. Advances in diagnostic and therapeutic tools, along with improved understanding of their application, are transforming patient treatment. Integrating these innovations into clinical practice presents challenges and necessitates guidance. These clinical practice guidelines offer updated advice for managing patients with HCC and provide a comprehensive review of pertinent data. Key updates from the 2018 EASL guidelines include personalised surveillance based on individual risk assessment and the use of new tools, standardisation of liver imaging procedures and diagnostic criteria, use of minimally invasive surgery in complex cases together with updates on the integrated role of liver transplantation, transitions between surgical, locoregional, and systemic therapies, the role of radiation therapies, and the use of combination immunotherapies at various stages of disease. Above all, there is an absolute need for a multiparametric assessment of individual risks and benefits, considering the patient's perspective, by a multidisciplinary team encompassing various specialties.
Collapse
|
2
|
Wang L, Fatemi M, Alizad A. Artificial intelligence techniques in liver cancer. Front Oncol 2024; 14:1415859. [PMID: 39290245 PMCID: PMC11405163 DOI: 10.3389/fonc.2024.1415859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular Carcinoma (HCC), the most common primary liver cancer, is a significant contributor to worldwide cancer-related deaths. Various medical imaging techniques, including computed tomography, magnetic resonance imaging, and ultrasound, play a crucial role in accurately evaluating HCC and formulating effective treatment plans. Artificial Intelligence (AI) technologies have demonstrated potential in supporting physicians by providing more accurate and consistent medical diagnoses. Recent advancements have led to the development of AI-based multi-modal prediction systems. These systems integrate medical imaging with other modalities, such as electronic health record reports and clinical parameters, to enhance the accuracy of predicting biological characteristics and prognosis, including those associated with HCC. These multi-modal prediction systems pave the way for predicting the response to transarterial chemoembolization and microvascular invasion treatments and can assist clinicians in identifying the optimal patients with HCC who could benefit from interventional therapy. This paper provides an overview of the latest AI-based medical imaging models developed for diagnosing and predicting HCC. It also explores the challenges and potential future directions related to the clinical application of AI techniques.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Engineering, School of Technology, Reykjavık University, Reykjavík, Iceland
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
3
|
Hu Y, Zhang L, Zhang H, Zhang B, Yang J, Li R. Prediction power of radiomics in early recurrence of hepatocellular carcinoma: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e38721. [PMID: 38968499 PMCID: PMC11224803 DOI: 10.1097/md.0000000000038721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/06/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Raiomics is an emerging auxiliary diagnostic tool, but there are still differences in whether it can be applied to predict early recurrence of hepatocellular carcinoma (HCC). The purpose of this meta-analysis was to systematically evaluate the predictive power of radiomics in the early recurrence (ER) of HCC. METHODS Comprehensive studies on the application of radiomics to predict ER in HCC patients after hepatectomy or curative ablation were systematically screened in Embase, PubMed, and Web of Science. RESULTS Ten studies which is involving a total of 1929 patients were reviewed. The overall estimates of radiomic models for sensitivity and specificity in predicting the ER of HCC were 0.79 (95% confidence interval [CI]: 0.68-0.87) and 0.83 (95% CI: 0.73-0.90), respectively. The area under the summary receiver operating characteristic curve (SROC) was 0.88 (95% CI: 0.85-0.91). CONCLUSIONS The imaging method is a reliable method for diagnosing HCC. Radiomics, which is based on medical imaging, has excellent power in predicting the ER of HCC. With the help of radiomics, we can predict the recurrence of HCC after surgery more effectively and provide a useful reference for clinical practice.
Collapse
Affiliation(s)
- Yanzi Hu
- Department of Radiology, Yuhuan Second People’s Hospital, Zhejiang, China
| | - Limin Zhang
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huangqi Zhang
- Department of Radiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Binhao Zhang
- Department of Radiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Jiawen Yang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Renzhan Li
- Department of Radiology, Sanmen People’s Hospital, Zhejiang Province, China
| |
Collapse
|
4
|
García-Criado Á, Rimola J, Seijo S, Darnell A, Belmonte E, Sapena V, Moreno-Rojas J, Pérez V, Hernández-Gea V, Ayuso C, Reig M, García-Pagán JC, Bruix J. MRI Using Gadoxetic Acid in the Work-Up of Liver Nodules Not Conclusively Benign in Budd-Chiari Syndrome: A Prospective Long-Term Follow-Up. Liver Cancer 2024; 13:203-214. [PMID: 38751551 PMCID: PMC11095625 DOI: 10.1159/000533598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/11/2023] [Indexed: 05/18/2024] Open
Abstract
Introduction The incidence of hepatocellular carcinoma (HCC) in Budd-Chiari syndrome (BCS) is unknown and there is no validated diagnostic work-up to define the liver nodules with arterial phase hyperenhancement (APHE), suggesting malignancy. This prospective study evaluates HCC incidence in a Western cohort of patients with BCS and assesses the performance of MRI with hepatobiliary contrast (HB-MRI) for nodule characterization. Methods Patients with BCS followed in our hospital were prospectively evaluated by MRI with extracellular contrast (EC-MRI). Nodules with APHE categorized as non-conclusively benign by 2 radiologists were studied by HB-MRI and reviewed by 2 radiologists blinded to the EC-MRI results. A new EC-MRI 1 year later and clinical, analytical, and sonographic follow-up every 6 months for a median of 10 years was performed. Results A total of 55 non-conclusively benign nodules with APHE were detected at EC-MRI in 41 patients. While 32 of them were suggestive of HCC by EC-MRI, all the 55 nodules showed increased uptake of hepatobiliary contrast. An unequivocal central scar was seen in 12/55 nodules at HB-MRI regardless of it was not detected on the EC-MRI. None of the nodules was hypointense in the hepatobiliary phase (HBP). HCC was not detected during a median of 10 years of follow-up. Conclusions Detection of nodules with APHE is frequent in patients with BCS, but HCC is rare in Western patients with BCS. While EC-MRI may detect nodules suggesting malignancy, the identification of contrast uptake in the HBP at HB-MRI may help categorize them as benign.
Collapse
Affiliation(s)
- Ángeles García-Criado
- Radiology Department, CDI, BCLC Group, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Jordi Rimola
- Radiology Department, CDI, BCLC Group, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Susana Seijo
- Liver Unit, Barcelona Hepatic Hemodynamic Laboratory, ICMDM, IDIBAPS, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Anna Darnell
- Radiology Department, CDI, BCLC Group, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Ernest Belmonte
- Radiology Department, CDI, BCLC Group, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Víctor Sapena
- BCLC group, Statistics core, Medical Statistics Core Facility, IDIBAPS, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Julián Moreno-Rojas
- Radiology Department, CDI, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Valeria Pérez
- Liver Unit, Barcelona Hepatic Hemodynamic Laboratory, ICMDM, IDIBAPS, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Virginia Hernández-Gea
- Liver Unit, Barcelona Hepatic Hemodynamic Laboratory, ICMDM, IDIBAPS, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Carmen Ayuso
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Radiology Department, CDI, BCLC Group, IDIBAPS Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - María Reig
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
- BCLC group, Liver Unit, ICMDM, IDIBAPS, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Juan Carlos García-Pagán
- Liver Unit, Barcelona Hepatic Hemodynamic Laboratory, ICMDM, IDIBAPS, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Jordi Bruix
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
- BCLC group, Liver Unit, ICMDM, IDIBAPS, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Hu W, Lyu R, Wang D, Gao Z, Sun C, Jia K. Liver imaging reporting and data system diagnostic performance in hepatocellular carcinoma when modifying the definition of "washout" on gadoxetic acid-enhanced magnetic resonance imaging. Arab J Gastroenterol 2024; 25:58-63. [PMID: 38245474 DOI: 10.1016/j.ajg.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/12/2023] [Accepted: 12/31/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND AND STUDY AIMS The sensitivity of the Liver Imaging Reporting and Data System (LI-RADS) in the diagnosis of hepatocellular carcinoma (HCC) on gadoxetic acid-enhanced magnetic resonance imaging (EOB-MRI) was suboptimal. This study evaluated the LI-RADS diagnostic performance in HCC when modifying the definition of washout using the transition phase (TP) or hepatobiliary phase (HBP) hypointensity on EOB-MRI. PATIENTS AND METHODS This retrospective study included patients at high risk of HCC who underwent EOB-MRI from June 2016 to June 2021. Three modified LI-RADS (mLI-RADS) algorithms were formulated according to different definitions of washout as follows: (a) portal venous phase (PVP) or TP hypointensity, (b) PVP or HBP hypointensity, and (c) PVP or TP or HBP hypointensity. Diagnostic performance, including sensitivity, specificity, and accuracy, was compared between mLI-RADS and LI-RADS v2018 using McNemar's test. RESULTS A total of 379 patients with 426 pathologically confirmed hepatic observations (250 HCCs, 88 nonHCC malignancies, and 88 benign lesions) were included in our study. The sensitivity rates of mLI-RADS a-c (80.0 %, 80.8 %, and 80.8 %) were all higher than that of LI-RADS v2018 (74.4 %) (all p < 0.05). The specificity rates of mLI-RADS a-c (86.9 %, 85.8 %, and 85.8 %) were all slightly lower than that of LI-RADS v2018 (88.6 %), although no statistically significant difference was noted (all p > 0.05). The accuracies of the three mLI-RADS algorithms were the same and were all higher than that of LI-RADS v2018 (82.9 % vs. 80.3 %, all p < 0.05). CONCLUSION When the definition of washout appearance was extended to TP or HBP hypointensity on EOB-MRI, the diagnostic sensitivity of LI-RADS for HCC improved without decreasing specificity.
Collapse
Affiliation(s)
- Weijuan Hu
- Department of Radiology, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, No. 83 Jintang Road, Hedong District, Tianjin 300170, China
| | - Rong Lyu
- Department of Radiology, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, No. 83 Jintang Road, Hedong District, Tianjin 300170, China.
| | - Di Wang
- Department of Radiology, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, No. 83 Jintang Road, Hedong District, Tianjin 300170, China
| | - Zhongsong Gao
- Department of Radiology, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, No. 83 Jintang Road, Hedong District, Tianjin 300170, China
| | - Cheng Sun
- Department of Radiology, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, No. 83 Jintang Road, Hedong District, Tianjin 300170, China
| | - Kefeng Jia
- Department of Radiology, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, No. 83 Jintang Road, Hedong District, Tianjin 300170, China
| |
Collapse
|
6
|
Zhang Y, Wei H, Song B. Magnetic resonance imaging for treatment response evaluation and prognostication of hepatocellular carcinoma after thermal ablation. Insights Imaging 2023; 14:87. [PMID: 37188987 PMCID: PMC10185719 DOI: 10.1186/s13244-023-01440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for the vast majority of primary liver cancer and constitutes a major global health challenge. Tumor ablation with either radiofrequency ablation (RFA) or microwave ablation (MWA) is recommended as a curative-intent treatment for early-stage HCC. Given the widespread use of thermal ablation in routine clinical practice, accurate evaluation of treatment response and patient outcomes has become crucial in optimizing individualized management strategies. Noninvasive imaging occupies the central role in the routine management of patients with HCC. Magnetic resonance imaging (MRI) could provide full wealth of information with respect to tumor morphology, hemodynamics, function and metabolism. With accumulation of liver MR imaging data, radiomics analysis has been increasingly applied to capture tumor heterogeneity and provide prognostication by extracting high-throughput quantitative imaging features from digital medical images. Emerging evidence suggests the potential role of several qualitative, quantitative and radiomic MRI features in prediction of treatment response and patient prognosis after ablation of HCC. Understanding the advancements of MRI in the evaluation of ablated HCCs may facilitate optimal patient care and improved outcomes. This review provides an overview of the emerging role of MRI in treatment response evaluation and prognostication of HCC patients undergoing ablation. CLINICAL RELEVANCE STATEMENT: MRI-based parameters can help predict treatment response and patient prognosis after HCC ablation and thus guide treatment planning. KEY POINTS: 1. ECA-MRI provides morphological and hemodynamic assessment of ablated HCC. 2. EOB-MRI provides more information for tumor response prediction after ablation. 3. DWI improve the characterization of HCC and optimize treatment decision. 4. Radiomics analysis enables characterization of tumor heterogeneity guidance of clinical decision-making. 5. Further studies with multiple radiologists and sufficient follow-up period are needed.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Hong Wei
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China.
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China.
| |
Collapse
|
7
|
Chernyak V, Fowler KJ, Do RKG, Kamaya A, Kono Y, Tang A, Mitchell DG, Weinreb J, Santillan CS, Sirlin CB. LI-RADS: Looking Back, Looking Forward. Radiology 2023; 307:e222801. [PMID: 36853182 PMCID: PMC10068888 DOI: 10.1148/radiol.222801] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 03/01/2023]
Abstract
Since its initial release in 2011, the Liver Imaging Reporting and Data System (LI-RADS) has evolved and expanded in scope. It started as a single algorithm for hepatocellular carcinoma (HCC) diagnosis with CT or MRI with extracellular contrast agents and has grown into a multialgorithm network covering all major liver imaging modalities and contexts of use. Furthermore, it has developed its own lexicon, report templates, and supplementary materials. This article highlights the major achievements of LI-RADS in the past 11 years, including adoption in clinical care and research across the globe, and complete unification of HCC diagnostic systems in the United States. Additionally, the authors discuss current gaps in knowledge, which include challenges in surveillance, diagnostic population definition, perceived complexity, limited sensitivity of LR-5 (definite HCC) category, management implications of indeterminate observations, challenges in reporting, and treatment response assessment following radiation-based therapies and systemic treatments. Finally, the authors discuss future directions, which will focus on mitigating the current challenges and incorporating advanced technologies. Tha authors envision that LI-RADS will ultimately transform into a probability-based system for diagnosis and prognostication of liver cancers that will integrate patient characteristics and quantitative imaging features, while accounting for imaging modality and contrast agent.
Collapse
Affiliation(s)
- Victoria Chernyak
- From the Department of Radiology, Memorial Sloan-Kettering Cancer
Center, New York, NY (V.C., R.K.G.D.); Liver Imaging Group, Department of
Radiology, University of California, San Diego, San Diego, Calif (K.J.F.,
C.S.S., C.B.S.); Department of Radiology, Stanford University Medical Center,
Stanford, Calif (A.K.); Department of Medicine and Radiology, University of
California, San Diego, San Diego, Calif (Y.K.); Department of Radiology,
Radiation Oncology and Nuclear Medicine, Université de Montréal,
Montréal, Canada (A.T.); Department of Radiology, Thomas Jefferson
University Hospital, Philadelphia, Pa (D.G.M.); and Department of Radiology,
Yale Medical School, New Haven, Conn (J.W.)
| | - Kathryn J. Fowler
- From the Department of Radiology, Memorial Sloan-Kettering Cancer
Center, New York, NY (V.C., R.K.G.D.); Liver Imaging Group, Department of
Radiology, University of California, San Diego, San Diego, Calif (K.J.F.,
C.S.S., C.B.S.); Department of Radiology, Stanford University Medical Center,
Stanford, Calif (A.K.); Department of Medicine and Radiology, University of
California, San Diego, San Diego, Calif (Y.K.); Department of Radiology,
Radiation Oncology and Nuclear Medicine, Université de Montréal,
Montréal, Canada (A.T.); Department of Radiology, Thomas Jefferson
University Hospital, Philadelphia, Pa (D.G.M.); and Department of Radiology,
Yale Medical School, New Haven, Conn (J.W.)
| | - Richard K. G. Do
- From the Department of Radiology, Memorial Sloan-Kettering Cancer
Center, New York, NY (V.C., R.K.G.D.); Liver Imaging Group, Department of
Radiology, University of California, San Diego, San Diego, Calif (K.J.F.,
C.S.S., C.B.S.); Department of Radiology, Stanford University Medical Center,
Stanford, Calif (A.K.); Department of Medicine and Radiology, University of
California, San Diego, San Diego, Calif (Y.K.); Department of Radiology,
Radiation Oncology and Nuclear Medicine, Université de Montréal,
Montréal, Canada (A.T.); Department of Radiology, Thomas Jefferson
University Hospital, Philadelphia, Pa (D.G.M.); and Department of Radiology,
Yale Medical School, New Haven, Conn (J.W.)
| | - Aya Kamaya
- From the Department of Radiology, Memorial Sloan-Kettering Cancer
Center, New York, NY (V.C., R.K.G.D.); Liver Imaging Group, Department of
Radiology, University of California, San Diego, San Diego, Calif (K.J.F.,
C.S.S., C.B.S.); Department of Radiology, Stanford University Medical Center,
Stanford, Calif (A.K.); Department of Medicine and Radiology, University of
California, San Diego, San Diego, Calif (Y.K.); Department of Radiology,
Radiation Oncology and Nuclear Medicine, Université de Montréal,
Montréal, Canada (A.T.); Department of Radiology, Thomas Jefferson
University Hospital, Philadelphia, Pa (D.G.M.); and Department of Radiology,
Yale Medical School, New Haven, Conn (J.W.)
| | - Yuko Kono
- From the Department of Radiology, Memorial Sloan-Kettering Cancer
Center, New York, NY (V.C., R.K.G.D.); Liver Imaging Group, Department of
Radiology, University of California, San Diego, San Diego, Calif (K.J.F.,
C.S.S., C.B.S.); Department of Radiology, Stanford University Medical Center,
Stanford, Calif (A.K.); Department of Medicine and Radiology, University of
California, San Diego, San Diego, Calif (Y.K.); Department of Radiology,
Radiation Oncology and Nuclear Medicine, Université de Montréal,
Montréal, Canada (A.T.); Department of Radiology, Thomas Jefferson
University Hospital, Philadelphia, Pa (D.G.M.); and Department of Radiology,
Yale Medical School, New Haven, Conn (J.W.)
| | - An Tang
- From the Department of Radiology, Memorial Sloan-Kettering Cancer
Center, New York, NY (V.C., R.K.G.D.); Liver Imaging Group, Department of
Radiology, University of California, San Diego, San Diego, Calif (K.J.F.,
C.S.S., C.B.S.); Department of Radiology, Stanford University Medical Center,
Stanford, Calif (A.K.); Department of Medicine and Radiology, University of
California, San Diego, San Diego, Calif (Y.K.); Department of Radiology,
Radiation Oncology and Nuclear Medicine, Université de Montréal,
Montréal, Canada (A.T.); Department of Radiology, Thomas Jefferson
University Hospital, Philadelphia, Pa (D.G.M.); and Department of Radiology,
Yale Medical School, New Haven, Conn (J.W.)
| | - Donald G. Mitchell
- From the Department of Radiology, Memorial Sloan-Kettering Cancer
Center, New York, NY (V.C., R.K.G.D.); Liver Imaging Group, Department of
Radiology, University of California, San Diego, San Diego, Calif (K.J.F.,
C.S.S., C.B.S.); Department of Radiology, Stanford University Medical Center,
Stanford, Calif (A.K.); Department of Medicine and Radiology, University of
California, San Diego, San Diego, Calif (Y.K.); Department of Radiology,
Radiation Oncology and Nuclear Medicine, Université de Montréal,
Montréal, Canada (A.T.); Department of Radiology, Thomas Jefferson
University Hospital, Philadelphia, Pa (D.G.M.); and Department of Radiology,
Yale Medical School, New Haven, Conn (J.W.)
| | - Jeffrey Weinreb
- From the Department of Radiology, Memorial Sloan-Kettering Cancer
Center, New York, NY (V.C., R.K.G.D.); Liver Imaging Group, Department of
Radiology, University of California, San Diego, San Diego, Calif (K.J.F.,
C.S.S., C.B.S.); Department of Radiology, Stanford University Medical Center,
Stanford, Calif (A.K.); Department of Medicine and Radiology, University of
California, San Diego, San Diego, Calif (Y.K.); Department of Radiology,
Radiation Oncology and Nuclear Medicine, Université de Montréal,
Montréal, Canada (A.T.); Department of Radiology, Thomas Jefferson
University Hospital, Philadelphia, Pa (D.G.M.); and Department of Radiology,
Yale Medical School, New Haven, Conn (J.W.)
| | - Cynthia S. Santillan
- From the Department of Radiology, Memorial Sloan-Kettering Cancer
Center, New York, NY (V.C., R.K.G.D.); Liver Imaging Group, Department of
Radiology, University of California, San Diego, San Diego, Calif (K.J.F.,
C.S.S., C.B.S.); Department of Radiology, Stanford University Medical Center,
Stanford, Calif (A.K.); Department of Medicine and Radiology, University of
California, San Diego, San Diego, Calif (Y.K.); Department of Radiology,
Radiation Oncology and Nuclear Medicine, Université de Montréal,
Montréal, Canada (A.T.); Department of Radiology, Thomas Jefferson
University Hospital, Philadelphia, Pa (D.G.M.); and Department of Radiology,
Yale Medical School, New Haven, Conn (J.W.)
| | - Claude B. Sirlin
- From the Department of Radiology, Memorial Sloan-Kettering Cancer
Center, New York, NY (V.C., R.K.G.D.); Liver Imaging Group, Department of
Radiology, University of California, San Diego, San Diego, Calif (K.J.F.,
C.S.S., C.B.S.); Department of Radiology, Stanford University Medical Center,
Stanford, Calif (A.K.); Department of Medicine and Radiology, University of
California, San Diego, San Diego, Calif (Y.K.); Department of Radiology,
Radiation Oncology and Nuclear Medicine, Université de Montréal,
Montréal, Canada (A.T.); Department of Radiology, Thomas Jefferson
University Hospital, Philadelphia, Pa (D.G.M.); and Department of Radiology,
Yale Medical School, New Haven, Conn (J.W.)
| |
Collapse
|
8
|
Choi SJ, Choi SH, Kim DW, Kwag M, Byun JH, Won HJ, Shin YM. Value of threshold growth as a major diagnostic feature of hepatocellular carcinoma in LI-RADS. J Hepatol 2023; 78:596-603. [PMID: 36402451 DOI: 10.1016/j.jhep.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND & AIMS The Liver Reporting and Data System (LI-RADS) version 2018 simplified the definition of threshold growth to '≥50% size increase in a mass in ≤6 months'. However, the diagnostic value of threshold growth for hepatocellular carcinoma (HCC) remained unclear. We evaluated the value of threshold growth, as defined by LI-RADS v2018, in diagnosing HCCs. METHODS Patients who underwent preoperative gadoxetate disodium-enhanced MRI because of the presence of LI-RADS category 2, 3, or 4 rather than category 5 on prior CT/MRI between January 2017 and December 2020 were retrospectively evaluated. Pathologic or clinical diagnoses were used as reference standards. Imaging features were evaluated by three readers according to LI-RADS v2018. The frequency and diagnostic odds ratio of threshold growth were calculated. The diagnostic performance of LI-RADS category 5 was separately evaluated when threshold growth was and was not considered a major feature, and results were compared using generalized estimation equations. Subgroups of patients who underwent CT/MRI during the previous 3-6 months were analyzed. RESULTS Analysis of 340 observations in 243 patients found that the frequency of threshold growth was 18.8% and it gradually increased over time. Threshold growth was significantly associated with HCC (diagnostic odds ratio 5.2; 95% CI 2.1-12.7; p <0.001). Use of threshold growth as a major feature significantly increased sensitivity in both the overall (66.4% vs. 57.3%, p <0.001) and subgroup (73.4% vs. 58.2%, p <0.001) cohorts, but had no effect on specificity in either the overall (97.5% vs. 98.3%, p = 0.319) or subgroup (95.9% vs. 98.0%, p = 0.323) cohorts. CONCLUSION The revised threshold growth of LI-RADS v2018 was significantly associated with HCC. Use of threshold growth as a major diagnostic feature of HCC can improve the sensitivity of LI-RADS v2018. IMPACT AND IMPLICATIONS We found that the revised threshold growth in the Liver Imaging Reporting and Data System version 2018 (LI-RADS v2018) was a significant predictor of hepatocellular carcinoma (HCC). The use of threshold growth as a major imaging feature of HCC significantly increased the sensitivity of LI-RADS v2018, especially small HCCs (≤3.0 cm), compared with its non-use. Because these small HCCs are eligible for curative treatments, the additional detection of small HCCs is clinically meaningful.
Collapse
Affiliation(s)
- Se Jin Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Sang Hyun Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea.
| | - Dong Wook Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Minha Kwag
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Jae Ho Byun
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Hyung Jin Won
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Yong Moon Shin
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea
| |
Collapse
|
9
|
Rimola J, Sapena V, Brancatelli G, Darnell A, Forzenigo L, Mähringer-Kunz A, Paisant A, Renzulli M, Schima W, Terraz S, Valls C, Wagner M, Ayuso C, Vilgrain V, Reig M, Ronot M. Reliability of extracellular contrast versus gadoxetic acid in assessing small liver lesions using liver imaging reporting and data system v.2018 and European association for the study of the liver criteria. Hepatology 2022; 76:1318-1328. [PMID: 35349760 DOI: 10.1002/hep.32494] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The diagnostic accuracy of Liver Imaging Reporting and Data System (LI-RADS) v.2018 and European Association for the Study of the Liver (EASL) criteria for the diagnosis of HCC have been widely evaluated, but their reliability should be investigated. We aimed to assess and compare the reliability of LI-RADS v.2018 and EASL criteria for the diagnosis of HCC using MRI with extracellular contrast agents (ECAs) and gadoxetic acid (GA) and determine the effect of ancillary features on LI-RADS reliability. APPROACH & RESULTS Ten readers reviewed MRI studies of 92 focal liver lesions measuring <3 cm acquired with ECAs and GA <1 month apart from two prospective trials, assessing EASL criteria, LI-RADS major and ancillary features, and LI-RADS categorization with and without including ancillary features. Inter-reader agreement for definite HCC diagnosis was substantial and similar for the two contrasts for both EASL and LI-RADS criteria. For ECA-MRI and GA-MRI, respectively, inter-reader agreement was k = 0.72 (95% CI, 0.63-0.81) and k = 0.72 (95% CI, 0.63-0.80); for nonrim hyperenhancement, k = 0.63 (95% CI, 0.54-0.72) and k = 0.57 (95% CI, 0.48-0.66); and for nonperipheral washout, k = 0.49 (95% CI, 0.40-0.59) and k = 0.48 (95% CI, 0.37-0.58) for enhancing capsule. The inter-reader agreement for LI-RADS after applying ancillary features remained in the same range of agreement. CONCLUSIONS Agreement for definite HCC was substantial and similar for both scoring systems and the two contrast agents in small focal liver lesions. Agreement for LI-RADS categorization was lower for both contrast agents, and including LI-RADS ancillary features did not improve agreement.
Collapse
Affiliation(s)
- Jordi Rimola
- BCLC Group, Radiology Department, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Giuseppe Brancatelli
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (BIND), University Hospital of Palermo, Palermo, Italy
| | - Anna Darnell
- BCLC Group, Radiology Department, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Laura Forzenigo
- Radiology Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Aline Mähringer-Kunz
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz, Mainz, Germany
| | - Anita Paisant
- Radiology Department, Angers University Hospital, UNIV Angers, HIFIH, EA, Angers, France
| | - Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Wolfgang Schima
- Department of Diagnostic and Interventional Radiology, Barmherzige Schwestern Krankenhaus, and Sankt Josef Krankenhaus, Göttlicher Heiland Krankenhaus, Vienna, Austria
| | - Sylvain Terraz
- Department of Radiology, Hepato-Pancreato-Biliary Centre, University Hospitals of Geneva, Geneva, Switzerland
| | - Carlos Valls
- Department of Radiology, Karolinska University Hospital, Division of Radiology, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Mathilde Wagner
- Sorbonne Université, INSERM, CNRS, LIB, Department of Radiology, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, APHP, Paris, France
| | - Carmen Ayuso
- BCLC Group, Radiology Department, Hospital Clínic Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Valerie Vilgrain
- Department of Radiology, Hopital Beaujon, APHP. Nord, Clichy, France
- Université de Paris, CRI, INSERM, Paris, France
| | - Maria Reig
- BCLC Group, Liver Unit, Hospital Clínic Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Maxime Ronot
- Department of Radiology, Hopital Beaujon, APHP. Nord, Clichy, France
- Université de Paris, CRI, INSERM, Paris, France
| |
Collapse
|
10
|
Chen X, Li M, Guo R, Liu W, Li J, Zong X, Chen Q, Wang J. The diagnostic performance of contrast-enhanced CT versus extracellular contrast agent-enhanced MRI in detecting hepatocellular carcinoma: direct comparison and a meta-analysis. Abdom Radiol (NY) 2022; 47:2057-2070. [PMID: 35312822 DOI: 10.1007/s00261-022-03484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022]
Abstract
To compare the diagnostic value of contrast-enhanced computed tomography (CT) with extracellular contrast agent-enhanced magnetic resonance imaging (ECA-MRI) for the detection of hepatocellular carcinoma (HCC). Pubmed, Embase, Web of Science and Cochrane Library were searched (1/5/2021) for studies comparing contrast-enhanced CT with ECA-MRI in patients suspected of HCC. Studies without head-to-head comparison were excluded. The pooled sensitivity, specificity and summary area under the curve (sAUC) of contrast-enhanced CT and ECA-MRI in detecting HCC was calculated based on bivariate random effects model. Heterogeneity test included threshold effect analysis and meta-regression. Subgroup analyses were conducted according to lesion size (< 20 mm or ≥ 20 mm). Overall, 10 articles containing 1333 patients were deemed suitable for inclusion in this meta-analysis. ECA-MRI displayed increased sensitivity to contrast-enhanced CT in detecting HCC (0.77 vs. 0.63, P < 0.01). The difference in specificity between ECA-MRI and contrast-enhanced CT was not statistically significant (0.93 vs. 0.94, P = 0.25). ECA-MRI yielded higher diagnostic accuracy (sAUCs = 0.88 vs. 0.80, P < 0.01). In the subgroup analysis with a lesion size < 20 mm, ECA-MRI allowed significant gains of accuracy compared to contrast-enhanced CT (0.79 vs. 0.72, P = 0.02). ECA-MRI also outperformed contrast-enhanced CT in patients with lesion size ≥ 20 mm (sAUCs = 0.96 vs. 0.93, P = 0.04). ECA-MRI provided higher sensitivity and accuracy than contrast-enhanced CT in detecting HCC, especially lesions size < 20 mm.
Collapse
Affiliation(s)
- Xi Chen
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Mingkai Li
- Department of Gastroenterology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Ruomi Guo
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Weimin Liu
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Jianwen Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Xiaodan Zong
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Qilong Chen
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Jin Wang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, Guangzhou, 510630, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Tan CH, Chou SC, Inmutto N, Ma K, Sheng R, Shi Y, Zhou Z, Yamada A, Tateishi R. Gadoxetate-Enhanced MRI as a Diagnostic Tool in the Management of Hepatocellular Carcinoma: Report from a 2020 Asia-Pacific Multidisciplinary Expert Meeting. Korean J Radiol 2022; 23:697-719. [PMID: 35555884 PMCID: PMC9240294 DOI: 10.3348/kjr.2021.0593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 12/04/2022] Open
Abstract
Gadoxetate magnetic resonance imaging (MRI) is widely used in clinical practice for liver imaging. For optimal use, we must understand both its advantages and limitations. This article is the outcome of an online advisory board meeting and subsequent discussions by a multidisciplinary group of experts on liver diseases across the Asia-Pacific region, first held on September 28, 2020. Here, we review the technical considerations for the use of gadoxetate, its current role in the management of patients with hepatocellular carcinoma (HCC), and its relevance in consensus guidelines for HCC imaging diagnosis. In the latter part of this review, we examine recent evidence evaluating the impact of gadoxetate on clinical outcomes on a continuum from diagnosis to treatment decision-making and follow-up. In conclusion, we outline the potential future roles of gadoxetate MRI based on an evolving understanding of the clinical utility of this contrast agent in the management of patients at risk of, or with, HCC.
Collapse
Affiliation(s)
- Cher Heng Tan
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| | - Shu-Cheng Chou
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei City & Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Nakarin Inmutto
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ke Ma
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - RuoFan Sheng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - YingHong Shi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhongguo Zhou
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
12
|
Nadarevic T, Colli A, Giljaca V, Fraquelli M, Casazza G, Manzotti C, Štimac D, Miletic D. Magnetic resonance imaging for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease. Cochrane Database Syst Rev 2022; 5:CD014798. [PMID: 35521901 PMCID: PMC9074390 DOI: 10.1002/14651858.cd014798.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatocellular carcinoma occurs mostly in people with chronic liver disease and ranks sixth in terms of global incidence of cancer, and third in terms of cancer deaths. In clinical practice, magnetic resonance imaging (MRI) is used as a second-line diagnostic imaging modality to confirm the presence of focal liver lesions suspected as hepatocellular carcinoma on prior diagnostic test such as abdominal ultrasound or alpha-fetoprotein, or both, either in surveillance programmes or in clinical settings. According to current guidelines, a single contrast-enhanced imaging study (computed tomography (CT) or MRI) showing typical hallmarks of hepatocellular carcinoma in people with cirrhosis is considered valid to diagnose hepatocellular carcinoma. The detection of hepatocellular carcinoma amenable to surgical resection could improve the prognosis. However, a significant number of hepatocellular carcinomas do not show typical hallmarks on imaging modalities, and hepatocellular carcinoma may, therefore, be missed. There is no clear evidence of the benefit of surveillance programmes in terms of overall survival: the conflicting results can be a consequence of inaccurate detection, ineffective treatment, or both. Assessing the diagnostic accuracy of MRI may clarify whether the absence of benefit could be related to underdiagnosis. Furthermore, an assessment of the accuracy of MRI in people with chronic liver disease who are not included in surveillance programmes is needed for either ruling out or diagnosing hepatocellular carcinoma. OBJECTIVES Primary: to assess the diagnostic accuracy of MRI for the diagnosis of hepatocellular carcinoma of any size and at any stage in adults with chronic liver disease. Secondary: to assess the diagnostic accuracy of MRI for the diagnosis of resectable hepatocellular carcinoma in adults with chronic liver disease, and to identify potential sources of heterogeneity in the results. SEARCH METHODS We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Hepato-Biliary Group Diagnostic Test of Accuracy Studies Register, the Cochrane Library, MEDLINE, Embase, and three other databases to 9 November 2021. We manually searched articles retrieved, contacted experts, handsearched abstract books from meetings held during the last 10 years, and searched for literature in OpenGrey (9 November 2021). Further information was requested by e-mails, but no additional information was provided. No data was obtained through correspondence with investigators. We applied no language or document-type restrictions. SELECTION CRITERIA Studies assessing the diagnostic accuracy of MRI for the diagnosis of hepatocellular carcinoma in adults with chronic liver disease, with cross-sectional designs, using one of the acceptable reference standards, such as pathology of the explanted liver and histology of resected or biopsied focal liver lesion with at least a six-month follow-up. DATA COLLECTION AND ANALYSIS At least two review authors independently screened studies, extracted data, and assessed the risk of bias and applicability concerns, using the QUADAS-2 checklist. We presented the results of sensitivity and specificity, using paired forest plots, and we tabulated the results. We used a hierarchical meta-analysis model where appropriate. We presented uncertainty of the accuracy estimates using 95% confidence intervals (CIs). We double-checked all data extractions and analyses. MAIN RESULTS We included 34 studies, with 4841 participants. We judged all studies to be at high risk of bias in at least one domain because most studies used different reference standards, often inappropriate to exclude the presence of the target condition, and the time interval between the index test and the reference standard was rarely defined. Regarding applicability, we judged 15% (5/34) of studies to be at low concern and 85% (29/34) of studies to be at high concern mostly owing to characteristics of the participants, most of whom were on waiting lists for orthotopic liver transplantation, and due to pathology of the explanted liver being the only reference standard. MRI for hepatocellular carcinoma of any size and stage: sensitivity 84.4% (95% CI 80.1% to 87.9%) and specificity 93.8% (95% CI 90.1% to 96.1%) (34 studies, 4841 participants; low-certainty evidence). MRI for resectable hepatocellular carcinoma: sensitivity 84.3% (95% CI 77.6% to 89.3%) and specificity 92.9% (95% CI 88.3% to 95.9%) (16 studies, 2150 participants; low-certainty evidence). The observed heterogeneity in the results remains mostly unexplained. The sensitivity analyses, which included only studies with clearly prespecified positivity criteria and only studies in which the reference standard results were interpreted without knowledge of the results of the index test, showed no variation in the results. AUTHORS' CONCLUSIONS We found that using MRI as a second-line imaging modality to diagnose hepatocellular carcinoma of any size and stage, 16% of people with hepatocellular carcinoma would be missed, and 6% of people without hepatocellular carcinoma would be unnecessarily treated. For resectable hepatocellular carcinoma, we found that 16% of people with resectable hepatocellular carcinoma would improperly not be resected, while 7% of people without hepatocellular carcinoma would undergo inappropriate surgery. The uncertainty resulting from the high risk of bias in the included studies and concerns regarding their applicability limit our ability to confidently draw conclusions based on our results.
Collapse
Affiliation(s)
- Tin Nadarevic
- Department of Radiology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Agostino Colli
- Department of Transfusion Medicine and Haematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Vanja Giljaca
- Department of Gastroenterology, Heart of England NHS Foundation Trust, Birmingham, UK
| | - Mirella Fraquelli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca´ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Casazza
- Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Cristina Manzotti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca´ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Davor Štimac
- Department of Gastroenterology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Damir Miletic
- Department of Radiology , Clinical Hospital Centre Rijeka, Rijeka, Croatia
| |
Collapse
|
13
|
Ah Hwang J, Wook Kang T, Hye Min J, Kon Kim Y, Hyun Kim S, Hyun Sinn D, Kim K. Association between intensity of imaging surveillance and clinical outcomes in patients with hepatocellular carcinoma. Eur J Radiol 2022; 151:110328. [DOI: 10.1016/j.ejrad.2022.110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/10/2022] [Accepted: 04/16/2022] [Indexed: 11/15/2022]
|
14
|
Do transition and hepatobiliary phase hypointensity improve LI-RADS categorization as an alternative washout: a systematic review and meta-analysis. Eur Radiol 2022; 32:5134-5143. [PMID: 35267090 DOI: 10.1007/s00330-022-08665-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/30/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The definition of washout in gadoxetate disodium-enhanced MRI (Gd-EOB-MRI) is controversial. The current Liver Imaging Reporting and Data System (LI-RADS) defines washout only in the portal venous phase on Gd-EOB-MRI, leading to low diagnostic sensitivity for HCC. We performed a meta-analysis to compare the diagnostic performance of Gd-EOB-MRI using conventional (cWO) and modified (mWO) definitions of washout. METHODS The PubMed and EMBASE databases were searched to identify studies published between January 1, 2010, and August 1, 2021, that compared the diagnostic performance of cWO and mWO for HCC. The mWOs added transition phase (TP) hypointensity (mWO-1), hepatobiliary phase (HBP) hypointensity (mWO-2), or both (mWO-3). The pooled sensitivity and specificity were calculated using a bivariate random-effects model. Study heterogeneity was explored by subgroup analysis and meta-regression analysis. RESULTS Ten comparative studies with 2391 patients were included. Compared to cWO, the overall mWO yielded significantly higher sensitivity (71% vs. 81%, p = 0.00) and lower specificity (97% vs. 93%, p = 0.01) for diagnosing HCC. The area under the curve (AUC) was 0.90 and 0.94 for the cWO and mWO, respectively. Regarding the three types of mWOs, mWO-2 showed the highest sensitivity (85%) and specificity (96%) for diagnosing HCC. mWO-2 achieved the highest AUC (0.97), followed by mWO-1 (0.90), and mWO-3 (0.89). Average reviewer experience and scanner field strength were significantly associated with study heterogeneity (p < 0.05). CONCLUSIONS Inclusion of TP and HBP hypointensity in the definition of washout improved the sensitivity with slightly lower specificity for diagnosing HCC in LI-RADS. KEY POINTS • Compared to the conventional definition of washout, studies using a modified definition had higher sensitivity (71% vs. 81%) but lower specificity (97% vs. 93%) in LI-RADS for the diagnosis of HCC. • Hepatobiliary phase hypointensity may be a preferred alternative washout for HCC diagnosis with the highest area under the curve. • Studies with experienced reviewer or 3.0T MRI showed higher sensitivity and lower specificity for diagnosing HCC when using modified washout (p < 0.05).
Collapse
|
15
|
Gauthier ID, Macleod CA, Sathiadoss P, McGrath TA, Nair V, Schieda N. Risk of nephrogenic systemic fibrosis (NSF) in oncology patients receiving gadoxetic acid and updated risk of estimate of NSF in patients receiving gadoxetic acid with moderate and severe renal impairment. Abdom Radiol (NY) 2022; 47:1196-1201. [PMID: 34997298 DOI: 10.1007/s00261-021-03367-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/01/2022]
Abstract
OBJECTIVES Gadoxetic acid (GA) is a half-biliary excreted gadolinium-based contrast agent (GBCA) administered at lower dose than gadobenic acid with similar ionic structure. Gadobenic acid is considered low-risk for nephrogenic systemic fibrosis (NSF) in patients with impaired renal function; however, safety of GA is unclear. The objective of this study was to determine the incidence of NSF in oncology patients undergoing GA-enhanced MRI and to update the risk estimate of NSF in patients receiving GA with severe renal impairment. MATERIALS AND METHODS We retrospectively identified GA-enhanced MRI performed for treatment planning in confirmed cancer patients between March 2011 and December 2020. Serum creatinine values within 180 days of GA administration were retrieved and estimated glomerular filtration rate (eGFR) calculated. The eGFR value nearest to each MRI examination was used. The search result was linked to a prospectively maintained registry of reported cases of NSF. An updated literature review was conducted to identify published cases of NSF related to GA administration in patients with severe renal impairment (eGFR < 30 mL/min/1.73 m2 or on dialysis) and the incidence of NSF with 95% confidence intervals (CI) was determined combining published data with our results. RESULTS 192 oncology patients underwent GA-enhanced MRI, mean age was 65.6 ± 11.8 years with 73 women. The mean eGFR was 89.6 ± 33.0 mL/min/1.73 m2. There were 33 patients with moderate (eGFR 30-60 mL/min/1.73 m2) and 1 patient with severe (eGFR < 30 mL/min/1.73 m2) renal impairment. There were no reported cases of NSF. Updated literature review including our results identified 340 patients with severe renal impairment or on dialysis with zero cases of NSF (0/340; 95% confidence intervals 0% and 0.9%). CONCLUSION No cases of NSF were documented in this study related to gadoxetic acid use in oncology patients, including those with moderate and severe renal impairment. Recent data indicate use of gadoxetic acid in patients with renal impairment can be considered low-risk.
Collapse
|
16
|
Park J, Lee JM, Kim TH, Yoon JH. Imaging Diagnosis of HCC: Future directions with special emphasis on hepatobiliary MRI and contrast-enhanced ultrasound. Clin Mol Hepatol 2021; 28:362-379. [PMID: 34955003 PMCID: PMC9293611 DOI: 10.3350/cmh.2021.0361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a unique cancer entity that can be noninvasively diagnosed using imaging modalities without pathologic confirmation. In 2018, several major guidelines for HCC were updated to include hepatobiliary contrast agent magnetic resonance imaging (HBA-MRI) and contrast-enhanced ultrasound (CEUS) as major imaging modalities for HCC diagnosis. HBA-MRI enables the achievement of high sensitivity in HCC detection using the hepatobiliary phase (HBP). CEUS is another imaging modality with real-time imaging capability, and it is reported to be useful as a second-line modality to increase sensitivity without losing specificity for HCC diagnosis. However, until now, there is an unsolved discrepancy among guidelines on whether to accept “HBP hypointensity” as a definite diagnostic criterion for HCC or include CEUS in the diagnostic algorithm for HCC diagnosis. Furthermore, there is variability in terminology and inconsistencies in the definition of imaging findings among guidelines; therefore, there is an unmet need for the development of a standardized lexicon. In this article, we review the performance and limitations of HBA-MRI and CEUS after guideline updates in 2018 and briefly introduce some future aspects of imaging-based HCC diagnosis.
Collapse
Affiliation(s)
- Junghoan Park
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Tae-Hyung Kim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
17
|
Chang SD, Cunha GM, Chernyak V. MR Imaging Contrast Agents: Role in Imaging of Chronic Liver Diseases. Magn Reson Imaging Clin N Am 2021; 29:329-345. [PMID: 34243921 DOI: 10.1016/j.mric.2021.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Contrast-enhanced MR imaging plays an important role in the evaluation of patients with chronic liver disease, particularly for detection and characterization of liver lesions. The two most commonly used contrast agents for liver MR imaging are extracellular agents (ECAs) and hepatobiliary agents (HBAs). In patients with liver disease, the main advantage of ECA-enhanced MR imaging is its high specificity for the diagnosis of progressed HCCs. Conversely, HBAs have an additional contrast mechanism, which results in high liver-to-lesion contrast and highest sensitivity for lesion detection in the hepatobiliary phase. Emerging data suggest that features depicted on contrast-enhanced MR imaging scans are related to tumor biology and are predictive of patients' prognosis, likely to further expand the role of contrast-enhanced MR imaging in the clinical care of patients with chronic liver disease.
Collapse
Affiliation(s)
- Silvia D Chang
- Department of Radiology, University of British Columbia, Vancouver General Hospital, 899 West 12th Avenue, Vancouver, British Columbia V5Z 1M9, Canada. https://twitter.com/SilviaChangMD
| | - Guilherme Moura Cunha
- Department of Radiology, University of Washington, 1959 NE Pacific Street 2nd Floor, Seattle, WA 98195, USA
| | - Victoria Chernyak
- Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
18
|
Rimola J, Forner A. Hepatobiliary contrast agents in MR: Where we stand and future perspectives. Liver Int 2021; 41:888-890. [PMID: 33861894 DOI: 10.1111/liv.14883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Jordi Rimola
- Radiology Department, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alejandro Forner
- Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|