1
|
Burge KY, Zhong H, Wilson AP, Chaaban H. Network-Based Bioinformatics Highlights Broad Importance of Human Milk Hyaluronan. Int J Mol Sci 2024; 25:12679. [PMID: 39684390 DOI: 10.3390/ijms252312679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Human milk (HM) is rich in bioactive factors promoting postnatal small intestinal development and maturation of the microbiome. HM is also protective against necrotizing enterocolitis (NEC), a devastating inflammatory condition predominantly affecting preterm infants. The HM glycosaminoglycan, hyaluronan (HA), is present at high levels in colostrum and early milk. Our group has demonstrated that HA with a molecular weight of 35 kDa (HA35) promotes maturation of the murine neonatal intestine and protects against two distinct models of NEC. However, the molecular mechanisms underpinning HA35-induced changes in the developing ileum are unclear. CD-1 mouse pups were treated with HA35 or vehicle control daily, from P7 to P14, and we used network and functional analyses of bulk RNA-seq ileal transcriptomes to further characterize molecular mechanisms through which HA35 likely influences intestinal maturation. HA35-treated pups separated well by principal component analysis, and cell deconvolution revealed increases in stromal, Paneth, and mature enterocyte and progenitor cells in HA35-treated pups. Gene set enrichment and pathway analyses demonstrated upregulation in key processes related to antioxidant and growth pathways, such as nuclear factor erythroid 2-related factor-mediated oxidative stress response, hypoxia inducible factor-1 alpha, mechanistic target of rapamycin, and downregulation of apoptotic signaling. Collectively, pro-growth and differentiation signals induced by HA35 may present novel mechanisms by which this HM bioactive factor may protect against NEC.
Collapse
Affiliation(s)
- Kathryn Y Burge
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hua Zhong
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Adam P Wilson
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hala Chaaban
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Zeng Y, Zhang R, Jiang Y, Li D, Chen L, Dong G, Zhang R, Niu Y, Chen W, Chen S. Interactions between fibroblasts and monocyte-derived cells in chronic lung injuries induced by real-ambient particulate matter exposure. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 899:503807. [PMID: 39326935 DOI: 10.1016/j.mrgentox.2024.503807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/28/2024]
Abstract
Long-term exposure to fine particulate matter (PM2.5) can lead to chronic lung injury, including inflammation, idiopathic pulmonary fibrosis, and cancer. Mesenchymal cells, such as fibroblasts, myeloid-derived suppressor cells (MDSCs), and interstitial macrophages (IMs), contribute to immune regulation in lung, yet their diversity and functions upon long-term exposure to particulate matter (PM) remain inadequately characterized. In this study, we conducted a 16-week real-ambient PM exposure experiment on C57BL/6 J male mice in Shijiazhuang, China. We used single-cell RNA sequencing to analyze the cellular and molecular changes in lung tissues. Notably, we revealed a significant increase in specific fibroblast (ATX+, Col5a1+Meg3+, universal fibroblasts) and monocyte-derived cell subpopulations (monocytic-MDSCs (M-MDSCs), Lyve1loMHC-Ⅱhi IMs, Lyve1hiMHC-Ⅱlo IMs) that exhibited pro-inflammatory and pro-fibrotic functions. These cell subpopulations engaged in immunosuppressive signaling pathways and interactions with various cytokines, shaping a pulmonary microenvironment similar to those associated with cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). This altered immune environment may promote the development of pulmonary fibrosis caused by PM exposure, underscoring the intricate roles of mesenchymal cells in chronic lung injury and highlighting the cancer-causing potential of PM2.5 exposure.
Collapse
Affiliation(s)
- Youjin Zeng
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Jiang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guanghui Dong
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yujie Niu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Wen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Ma Y, Lu L, Tan K, Li Z, Guo T, Wu Y, Wu W, Zheng L, Fan F, Mo J, Gong Z. Reduced peroxisome proliferator-activated receptor-α and bile acid nuclear receptor NR1H4/FXR may affect the hepatic immune microenvironment of biliary atresia. Front Immunol 2022; 13:875593. [PMID: 36090996 PMCID: PMC9454303 DOI: 10.3389/fimmu.2022.875593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Biliary atresia (BA) is a childhood liver disease characterized by fibrous obstruction and obstruction of the extrahepatic biliary system and is one of the most common and serious biliary disorders in infants. Significant inflammation and fibrosis of the liver and biliary tract are the most prominent features, regardless of the initial damage to the BA. Abnormalities in innate or adaptive immunity have been found in human patients and mouse models of BA. We previously reported that children with BA had abnormal lipid metabolism, including free serum carnitine. OBJECTIVE To study gene and protein expression levels of the hepatic peroxisome proliferator-activated receptor-α (PPARα) signaling pathway and farnesoid X receptor (FXR) in BA and BA fibrosis, and assess their clinical values. METHODS Low expression of PPARα and NR1H4 (FXR) in BA were validated in the Gene Expression Omnibus database. Functional differences were determined by gene set enrichment analysis based on of PPARα and NR1H4 expression. BA patients from GSE46960 were divided into two clusters by using consensus clustering according to PPARα, NR1H4, and SMAD3 expression levels, and immunoinfiltration analysis was performed. Finally, 58 cases treated in our hospital were used for experimental verification. (IHC: 10 Biliary atresia, 10 choledochal cysts; PCR: 10 Biliary atresia, 14 choledochal cysts; WB: 10 Biliary atresia, 4 choledochal cysts). RESULTS Bioinformatics analysis showed that the expression of PPARα, CYP7A1 and NR1H4 (FXR) in the biliary atresia group was significantly lower than in the control group. More BA-specific pathways, including TGFβ signaling pathway, P53 signaling pathway, PI3K-AKT-mTOR signaling pathway, etc., are enriched in BA patients with low PPARα and NR1H4 expression. In addition, low NR1H4 expression is abundant in inflammatory responses, IL6/STAT3 signaling pathways, early estrogen responses, IL2 STAT5 signaling pathways, and TGFβ signaling pathways. The TGFβ signaling pathway was significant in both groups. According to the expression of PPARα, NR1H4 and SMAD3, a key node in TGFβ pathway, BA patients were divided into two clusters using consensus clustering. In cluster 2, SMAD3 expression was high, and PPARα and NR1H4 expression were low. In contrast to cluster 1, immune cell infiltration was higher in cluster 2, which was confirmed by immunohistochemistry. The mRNA and protein levels of PPARα and NR1H4 in BA patients were lower than in the control group by immunohistochemistry, Western blot analysis and real-time PCR. CONCLUSIONS The downregulation of PPARα and NR1H4 (FXR) signaling pathway may be closely related to biliary atresia.
Collapse
Affiliation(s)
- Yingxuan Ma
- Department of General Surgery, Children’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Li Lu
- Department of General Surgery, Children’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Kezhe Tan
- Department of General Surgery, Children’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Li
- Pathology Department, Children’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Guo
- Department of General Surgery, Children’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Yibo Wu
- Department of General Surgery, Children’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wu
- Department of General Surgery, Children’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Lulu Zheng
- Department of General Surgery, Children’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Feilong Fan
- Department of General Surgery, Children’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayu Mo
- Department of General Surgery, Children’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenhua Gong
- Department of General Surgery, Children’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Inhibitory Effects of Rhein on Renal Interstitial Fibrosis via the SHH-Gli1 Signal Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4398265. [PMID: 35966731 PMCID: PMC9374561 DOI: 10.1155/2022/4398265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Background. Rhein is the main extract of Rheum palmatum L., which has been proved to improve the renal function of chronic kidney disease, but its mechanism is not clear. Therefore, this experiment explored the potential pharmacological effect of rhein on renal interstitial fibrosis rats. Methods. This study explores the potential pharmacological action of rhein. In this work, we investigate the potential pharmacological action of rhein in unilateral urethral obstruction (UUO) rats. Thirty Sprague Dawley rats were randomly divided into three groups: sham, UUO, and rhein (rhein-treated UUO rats) groups. The left ureters of the UUO group rats were exposed and bluntly dissected. The rhein group rats were administered an intragastric gavage of rhein (2 mg·kg−1·d−1) for 14 d. Kidney function-related indicators were monitored in these rats, while indexes of pathologic aspects were determined histologically. The expression of α-SMA, TGF-β1, SHH, Gli1, and Snail was quantified using real-time polymerase chain reaction and western blotting. The NRK-49F cells were incubated with and without SHH (100 ng·ml−1) for 48 hours. The SHH-activated NRK-49F cells were incubated with cyclopamine (CNP, 20 umol L−1) or rhein (1 ng·ml−1). The Gli1 and Snail mRNA and protein level were detected. Results. In the in vivo experiment, the results exhibited that UUO caused renal pathological damages. However, these changes could be significantly reversed by the administration of rhein. Compared with the untreated UUO group, the rhein group showed reduced kidney tubular atrophy and necrosis, interstitial fibrosis, hyperplasia, and abnormal deposition of extracellular matrix. Rhein reduced the RNA and protein expression of SHH, Gli1, and Snail of the UUO rats. In the in vitro experiment, CNP or rhein treatment decreased the expression of Gli1 and Snail on mRNA and protein levels in SHH-induced NRK-49F cells, suggesting that CNP or rhein suppresses SHH-induced NRK-49F activation. Taken together, these results demonstrated that rhein suppresses SHH-Gli1-Snail signal pathway activation, with potential implications for the treatment of renal fibrosis. Conclusions. Treatment with rhein remarkably ameliorated renal interstitial fibrosis in UUO rats by regulating the SHH-Gli1-Snail signal pathway.
Collapse
|
5
|
Zhou Y, Pang H, Wang J, Wu H, Xu Z, Liu X, Xiao Z. Progranulin Promotes the Formation and Development of Capsules Caused by Silicone in Sprague-Dawley Rats. Clin Cosmet Investig Dermatol 2022; 15:1561-1573. [PMID: 35967917 PMCID: PMC9365064 DOI: 10.2147/ccid.s374128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022]
Abstract
Background Silicone implants are currently the most widely used artificial materials in plastic surgery. Capsule formation following implant application is unavoidable. When the capsule is excessively thick and strongly contracted, it can lead to obvious symptoms, clinically known as capsular contracture. Biological factors have always been the focus of research on the capsule formation. As a growth factor, progranulin (PGRN) plays an important regulatory role in wound healing, tissue fibrosis, tumor proliferation and invasion, and inflammation regulation. At present, the research on the capsule mainly involves the regulation of tissue healing and fibrosis under the influence of inflammation. Because PGRN has a regulatory role in these processes, we believe that the study of both can provide a new theoretical basis and intervention sites for monitoring and inhibiting the development of the capsule. Methods In this experiment, the effects of different surgical operations on the content of PGRN in the surgical site and plasma of rats were detected. Sprague-Dawley (SD) rat dermal fibroblasts were co-cultured by recombinant PGRN. The effects of r-PGRN on fibroblasts were detected by 5-ethynyl-2’-deoxyuridine (EdU) assay, wound healing assay and Western blot assay. Finally, the effect of PGRN on capsule formation and contracture was studied by changing the content of PGRN in the prosthesis in rats after operation. Results Surgical trauma and silicone implant increased plasma and local PGRN levels in SD rats. PGRN can activate the TGF-β/SMAD signaling pathway in a dose-dependent manner, thereby promoting fibroblast proliferation, differentiation and migration and inhibiting apoptosis and enhancing cell function, thereby promoting capsule formation and contracture. Conclusion PGRN promotes the formation and contracture of the silicone implant capsule in SD rats by activating the TGF-β/SMAD signaling pathway. This discovery may provide new therapeutic targets and detection indicators.
Collapse
Affiliation(s)
- Yongting Zhou
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Hao Pang
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Jie Wang
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Hao Wu
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Zidi Xu
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xueyi Liu
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Zhibo Xiao
- Department of Plastic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Correspondence: Zhibo Xiao, Email
| |
Collapse
|