1
|
Cherubini A, Della Torre S, Pelusi S, Valenti L. Sexual dimorphism of metabolic dysfunction-associated steatotic liver disease. Trends Mol Med 2024; 30:1126-1136. [PMID: 38890029 DOI: 10.1016/j.molmed.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver condition. MASLD is a sexually dimorphic condition, with its development and progression influenced by sex chromosomes and hormones. Estrogens typically protect against, whereas androgens promote, MASLD. Therapeutic approaches for a sex-specific personalized medicine include estrogen replacement, androgen blockers, and novel drugs targeting hormonal pathways. However, the interactions between hormonal factors and inherited genetic variation impacts MASLD risk, necessitating more tailored therapies. Understanding sex disparities and the role of estrogens could improve MASLD interventions and management, whereas clinical trials addressing sex differences are crucial for advancing personalized treatment. This review explores the underappreciated impact of sexual dimorphism in MASLD and discusses the potential therapeutic application of sex-related hormones.
Collapse
Affiliation(s)
- Alessandro Cherubini
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Serena Pelusi
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
2
|
Smyk W, Adrych K, Krawczyk M. Artificial replication cohort: Leveraging AI-fabricated data for genetic studies. Liver Int 2024; 44:1286-1289. [PMID: 38426626 DOI: 10.1111/liv.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Recent advancements in artificial intelligence (AI) present both opportunities and challenges within the scientific community. This study explores the capability of AI to replicate findings from genetic research, focusing on findings from prior work. Using an AI model without exposing any raw data, we created a dataset that closely mirrors the results of our original study, illustrating the ease of fabricating datasets with authenticity. This approach highlights the risks associated with AI misuse in scientific research. The study emphasizes the critical importance of maintaining the integrity of scientific inquiry in an era increasingly influenced by advanced AI technologies.
Collapse
Affiliation(s)
- Wiktor Smyk
- Department of Gastroenterology and Hepatology, Medical University of Gdansk, Gdansk, Poland
| | - Krystian Adrych
- Department of Gastroenterology and Hepatology, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
- Laboratory of Metabolic Liver Diseases, Center for Preclinical Research, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Kozlitina J, Cohen NM, Sturtevant D, Cohen JC, Murphey-Half C, Saltarrelli JG, Jindra P, Askar M, Hwang CS, Vagefi PA, Lacelle C, Hobbs HH, MacConmara MP. Effect of donor HSD17B13 genotype on patient survival after liver transplant: a retrospective cohort study. EClinicalMedicine 2024; 67:102350. [PMID: 38169797 PMCID: PMC10758751 DOI: 10.1016/j.eclinm.2023.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
Background Several genetic variants are associated with chronic liver disease. The role of these variants in outcomes after liver transplantation (LT) is uncertain. The aim of this study was to determine if donor genotype at risk-associated variants in PNPLA3 (rs738409 C>G, p.I148M) and HSD17B13 (rs72613567 T>TA; rs80182459, p.A192Lfs∗8) influences post-LT survival. Methods In this retrospective cohort study, data on 2346 adults who underwent first-time LT between January 1, 1999 and June 30, 2020 and who had donor DNA samples available at five large Transplant Immunology Laboratories in Texas, USA, were obtained from the United Network for Organ Sharing (UNOS). Duplicates, patients with insufficient donor DNA for genotyping, those who were <18 years of age at the time of transplant, had had a previous transplant or had missing genotype data were excluded. The primary outcomes were patient and graft survival after LT. The association between donor genotype and post-LT survival was examined using Kaplan-Meier method and multivariable-adjusted Cox proportional hazards models. Findings Median age of LT recipients was 57 [interquartile range (IQR), 50-62] years; 837 (35.7%) were women; 1362 (58.1%) White, 713 (30.4%) Hispanic, 182 (7.8%) Black/African-American. Median follow-up time was 3.95 years. Post-LT survival was not affected by donor PNPLA3 genotype but was significantly reduced among recipients of livers with two HSD17B13 loss-of-function (LoF) variants compared to those receiving livers with no HSD17B13 LoF alleles (unadjusted one-year survival: 82.6% vs 93.9%, P < 0.0001; five-year survival: 73.1% vs 82.9%, P = 0.0017; adjusted hazard ratio [HR], 2.25; 95% CI, 1.61-3.15 after adjustment for recipient age, sex, and self-reported ethnicity). Excess mortality was restricted to those receiving steroid induction immunosuppression (crude 90-day post-LT mortality, 9.3% [95% CI, 1.9%-16.1%] vs 1.9% [95% CI, 0.9%-2.9%] in recipients of livers with two vs no HSD17B13 LoF alleles, P = 0.0012; age, sex, and ethnicity-adjusted HR, 2.85; 95% CI, 1.72-4.71, P < 0.0001). No reduction was seen among patients who did not receive steroid induction (90-day mortality 3.1% [95% CI, 0%-7.3%] vs 2% [95% CI, 0.9%-3.1%], P = 0.65; adjusted HR, 1.17; 95% CI, 0.66-2.08, P = 0.60). Interpretation Donor HSD17B13 genotype adversely affects post-LT survival in patients receiving steroid induction. Additional studies are required to confirm this association. Funding The National Institutes of Health and American Society of Transplant Surgeons Collaborative Scientist Grant.
Collapse
Affiliation(s)
- Julia Kozlitina
- The Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Naomi M. Cohen
- The Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Drew Sturtevant
- The Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jonathan C. Cohen
- The Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- The Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Cathi Murphey-Half
- Histocompatibility and Immunogenetics Laboratory, Southwest Immunodiagnostics, Inc, San Antonio, TX, USA
| | - Jerome G. Saltarrelli
- Histocompatibility and Immune Evaluation Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Peter Jindra
- Immune Evaluation Laboratory, Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Medhat Askar
- Transplant Immunology, Baylor University Medical Center, Dallas, TX, USA
| | - Christine S. Hwang
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Parsia A. Vagefi
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chantale Lacelle
- Transplant Immunology and Histocompatibility, Department of Pathology, University of Texas Southwestern Medical Center Dallas, TX, 75390, USA
| | - Helen H. Hobbs
- The Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Malcolm P. MacConmara
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
4
|
Tavaglione F, Jamialahmadi O, Valenti L, Romeo S. Fatty liver disease genetic risk variants and interference on sex hormones. Liver Int 2023; 43:958-961. [PMID: 37161848 DOI: 10.1111/liv.15562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 05/11/2023]
Affiliation(s)
- Federica Tavaglione
- Clinical Medicine and Hepatology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Luca Valenti
- Department of Transfusion Medicine, Precision Medicine, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
- Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|