1
|
Machii N, Hatashima R, Niwa T, Taguchi H, Kimirei IA, Mrosso HDJ, Aibara M, Nagasawa T, Nikaido M. Pronounced expression of extracellular matrix proteoglycans regulated by Wnt pathway underlies the parallel evolution of lip hypertrophy in East African cichlids. eLife 2025; 13:RP99160. [PMID: 40259743 PMCID: PMC12014132 DOI: 10.7554/elife.99160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Abstract
Cichlid fishes inhabiting the East African Great Lakes, Victoria, Malawi, and Tanganyika, are textbook examples of parallel evolution, as they have acquired similar traits independently in each of the three lakes during the process of adaptive radiation. In particular, 'hypertrophied lip' has been highlighted as a prominent example of parallel evolution. However, the underlying molecular mechanisms remain poorly understood. In this study, we conducted an integrated comparative analysis between the hypertrophied and normal lips of cichlids across three lakes based on histology, proteomics, and transcriptomics. Histological and proteomic analyses revealed that the hypertrophied lips were characterized by enlargement of the proteoglycan-rich layer, in which versican and periostin proteins were abundant. Transcriptome analysis revealed that the expression of extracellular matrix-related genes, including collagens, glycoproteins, and proteoglycans, was higher in hypertrophied lips, regardless of their phylogenetic relationships. In addition, the genes in Wnt signaling pathway, which is involved in promoting proteoglycan expression, was highly expressed in both the juvenile and adult stages of hypertrophied lips. Our comprehensive analyses showed that hypertrophied lips of the three different phylogenetic origins can be explained by similar proteomic and transcriptomic profiles, which may provide important clues into the molecular mechanisms underlying phenotypic parallelisms in East African cichlids.
Collapse
Affiliation(s)
- Nagatoshi Machii
- School of Life Science and Technology, Tokyo Institute of TechnologyTokyoJapan
| | - Ryo Hatashima
- School of Life Science and Technology, Tokyo Institute of TechnologyTokyoJapan
| | - Tatsuya Niwa
- School of Life Science and Technology, Tokyo Institute of TechnologyTokyoJapan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of TechnologyYokohamaJapan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of TechnologyTokyoJapan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of TechnologyYokohamaJapan
| | - Ismael A Kimirei
- Tanzania Fisheries Research InstituteDar es SalaamUnited Republic of Tanzania
| | - Hillary DJ Mrosso
- Tanzania Fisheries Research Institute (TAFIRI), Mwanza Fisheries Research CenterMwanzaUnited Republic of Tanzania
| | - Mitsuto Aibara
- School of Life Science and Technology, Tokyo Institute of TechnologyTokyoJapan
| | - Tatsuki Nagasawa
- School of Life Science and Technology, Tokyo Institute of TechnologyTokyoJapan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of TechnologyTokyoJapan
| |
Collapse
|
2
|
Cerca J. Understanding natural selection and similarity: Convergent, parallel and repeated evolution. Mol Ecol 2023; 32:5451-5462. [PMID: 37724599 DOI: 10.1111/mec.17132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Parallel and convergent evolution offer some of the most compelling evidence for the significance of natural selection in evolution, as the emergence of similar adaptive solutions is unlikely to occur by random chance alone. However, these terms are often employed inconsistently, leading to misinterpretation and confusion, and recently proposed definitions have unintentionally diminished the emphasis on the evolution of similar adaptive solutions. Here, I examine various conceptual frameworks and definitions related to parallel and convergent evolution and propose a consolidated framework that enhances our comprehension of these evolutionary patterns. The primary aim of this framework is to harmonize the concepts of parallel and convergent evolution together with natural selection and the idea of similarity. Both concepts involve the evolution of similar adaptive solutions as a result of environmental challenges. The distinction lies in ancestral phenotypes. Parallel evolution takes place when the ancestral phenotypes (before selection) of the lineages are similar. Convergent evolution happens when the lineages have distinct ancestral phenotypes (before selection). Because an ancestral-based distinction will inevitably lead to cases where uncertainty in the distinction may arise, the framework includes a general term, repeated evolution, which can be used as a term applying to the evolution of similar phenotypes and genotypes as well as similar responses to environmental pressures. Based on the argument that genetic similarity may frequently arise without selection, the framework posits that the similarity of genetic sequences is not of great interest unless linked to the actions of natural selection or to the origins (mutation, standing genetic variation, gene flow) and locations of the similar sequences.
Collapse
Affiliation(s)
- José Cerca
- CEES - Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Levin B, Komarova A, Simonov E, Tiunov A, Levina M, Golubtsov A, Kondrashov F, Meyer A. Speciation and repeated origins of hypertrophied lips in parallel adaptive radiations of cyprinid fish from East Africa. Ecol Evol 2023; 13:e10523. [PMID: 37711500 PMCID: PMC10497736 DOI: 10.1002/ece3.10523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
The evolution of convergent phenotypes is one of the most interesting phenomena of repeated adaptive radiations. Here, we examined the repeated patterns of thick-lipped or "rubberlip" phenotype of cyprinid fish of the genus Labeobarbus discovered in riverine environments of the Ethiopian Highlands, East Africa. To test the adaptive value of thickened lips, identify the ecological niche of the thick-lipped ecomorphs, and test whether these ecomorphs are the products of adaptive divergence, we studied six sympatric pairs of ecomorphs with hypertrophied lips and the normal lip structure from different riverine basins. Trophic morphology, diet, stable isotope (δ15N and δ13C) signatures, as well as mtDNA markers and genome-wide SNP variation, were analyzed. Our results show that thick-lipped ecomorphs partition trophic resources with generalized ecomorphs in only one-half of the examined sympatric pairs despite the pronounced divergence in lip structure. In these thick-lipped ecomorphs that were trophically diverged, the data on their diet along with the elevated 15N values suggest an invertivorous specialization different from the basal omnivorous-detritivouros feeding mode of the generalized ecomorphs. Genetic data confirmed an independent and parallel origin of all six lipped ecomorphs. Yet, only one of those six thick-lipped ecomorphs had a notable genetic divergence with sympatric non-lipped ecomorphs based on nuclear SNPs data (F ST = 0.21). Sympatric pairs can be sorted by combinations of phenotypic, ecological, and genetic divergence from an ecologically non-functional mouth polymorphism via ecologically functional polymorphism to a matured speciation stage via divergent evolution.
Collapse
Affiliation(s)
- Boris Levin
- Papanin Institute for Biology of Inland WatersRussian Academy of SciencesYaroslavlRussia
- Zoological Institute of Russian Academy of SciencesSaint‐PetersburgRussia
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of SciencesMoscowRussia
| | - Aleksandra Komarova
- Papanin Institute for Biology of Inland WatersRussian Academy of SciencesYaroslavlRussia
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of SciencesMoscowRussia
| | - Evgeniy Simonov
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of SciencesMoscowRussia
| | - Alexei Tiunov
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of SciencesMoscowRussia
| | - Marina Levina
- Papanin Institute for Biology of Inland WatersRussian Academy of SciencesYaroslavlRussia
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of SciencesMoscowRussia
- Eco‐Analytical LaboratoryCherepovets State UniversityCherepovetsRussia
| | - Alexander Golubtsov
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of SciencesMoscowRussia
| | | | - Axel Meyer
- Department of BiologyUniversity of KonstanzKonstanzGermany
| |
Collapse
|
4
|
Lozano-Martín C, Bracamonte SE, Barluenga M. Evolution of MHC IIB Diversity Across Cichlid Fish Radiations. Genome Biol Evol 2023; 15:evad110. [PMID: 37314153 PMCID: PMC10306275 DOI: 10.1093/gbe/evad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
The genes of the major histocompatibility complex (MHC) are among the most polymorphic genes in vertebrates and crucial for their adaptive immune response. These genes frequently show inconsistencies between allelic genealogies and species phylogenies. This phenomenon is thought to be the result of parasite-mediated balancing selection maintaining ancient alleles through speciation events (trans-species polymorphism [TSP]). However, allele similarities may also arise from postspeciation mechanisms, such as convergence or introgression. Here, we investigated the evolution of MHC class IIB diversity in the cichlid fish radiations across Africa and the Neotropics by a comprehensive review of available MHC IIB DNA sequence information. We explored what mechanism explains the MHC allele similarities found among cichlid radiations. Our results showed extensive allele similarity among cichlid fish across continents, likely due to TSP. Functionality at MHC was also shared among species of the different continents. The maintenance of MHC alleles for long evolutionary times and their shared functionality may imply that certain MHC variants are essential in immune adaptation, even in species that diverged millions of years ago and occupy different environments.
Collapse
|
5
|
Ahi EP, Richter F, Sefc KM. Gene expression patterns associated with caudal fin shape in the cichlid Lamprologus tigripictilis. HYDROBIOLOGIA 2022; 850:2257-2273. [PMID: 37325486 PMCID: PMC10261199 DOI: 10.1007/s10750-022-05068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Variation in fin shape is one of the most prominent features of morphological diversity among fish. Regulation of fin growth has mainly been studied in zebrafish, and it is not clear whether the molecular mechanisms underlying shape variation are equally diverse or rather conserved across species. In the present study, expression levels of 37 candidate genes were tested for association with fin shape in the cichlid fish Lamprologus tigripictilis. The tested genes included members of a fin shape-associated gene regulatory network identified in a previous study and novel candidates selected within this study. Using both intact and regenerating fin tissue, we tested for expression differences between the elongated and the short regions of the spade-shaped caudal fin and identified 20 genes and transcription factors (including angptl5, cd63, csrp1a, cx43, esco2, gbf1, and rbpj), whose expression patterns were consistent with a role in fin growth. Collated with available gene expression data of two other cichlid species, our study not only highlights several genes that were correlated with fin growth in all three species (e.g., angptl5, cd63, cx43, and mmp9), but also reveals species-specific gene expression and correlation patterns, which indicate considerable divergence in the regulatory mechanisms of fin growth across cichlids. Supplementary Information The online version contains supplementary material available at 10.1007/s10750-022-05068-4.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Florian Richter
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Kristina M. Sefc
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
6
|
Masonick P, Meyer A, Hulsey CD. Phylogenomic analyses show repeated evolution of hypertrophied lips among Lake Malawi cichlid fishes. Genome Biol Evol 2022; 14:6568296. [PMID: 35417557 PMCID: PMC9017819 DOI: 10.1093/gbe/evac051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 11/27/2022] Open
Abstract
Cichlid fishes have repeatedly evolved an astounding diversity of trophic morphologies. For example, hypertrophied lips have evolved multiple times in both African and Neotropical cichlids and could have even evolved convergently within single species assemblages such as African Lake Malawi cichlids. However, the extremely high diversification rate in Lake Malawi cichlids and extensive potential for hybridization has cast doubt on whether even genome-level phylogenetic reconstructions could delineate if these types of adaptations have evolved once or multiple times. To examine the evolution of this iconic trait using protein-coding and noncoding single nucleotide polymorphisms (SNPs), we analyzed the genomes of 86 Lake Malawi cichlid species, including 33 de novo resequenced genomes. Surprisingly, genome-wide protein-coding SNPs exhibited enough phylogenetic informativeness to reconstruct interspecific and intraspecific relationships of hypertrophied lip cichlids, although noncoding SNPs provided better support. However, thinning of noncoding SNPs indicated most discrepancies come from the relatively smaller number of protein-coding sites and not from fundamental differences in their phylogenetic informativeness. Both coding and noncoding reconstructions showed that several “sand-dwelling” hypertrophied lip species, sampled intraspecifically, form a clade interspersed with a few other nonhypertrophied lip lineages. We also recovered Abactochromis labrosus within the rock-dwelling “mbuna” lineage, starkly contrasting with the affinities of other hypertrophied lip taxa found in the largely sand-dwelling “nonmbuna” component of this radiation. Comparative analyses coupled with tests for introgression indicate there is no widespread introgression between the hypertrophied lip lineages and taken together suggest this trophic phenotype has likely evolved at least twice independently within-lake Malawi.
Collapse
Affiliation(s)
- Paul Masonick
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - C Darrin Hulsey
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany.,Current Address: School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
7
|
Bracamonte SE, Hofmann MJ, Lozano-Martín C, Eizaguirre C, Barluenga M. Divergent and non-parallel evolution of MHC IIB in the Neotropical Midas cichlid species complex. BMC Ecol Evol 2022; 22:41. [PMID: 35365100 PMCID: PMC8974093 DOI: 10.1186/s12862-022-01997-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/21/2022] [Indexed: 01/09/2023] Open
Abstract
Background Ecological diversification is the result of divergent natural selection by contrasting habitat characteristics that favours the evolution of distinct phenotypes. This process can happen in sympatry and in allopatry. Habitat-specific parasite communities have the potential to drive diversification among host populations by imposing selective pressures on their host's immune system. In particular, the hyperdiverse genes of the major histocompatibility complex (MHC) are implicated in parasite-mediated host divergence. Here, we studied the extent of divergence at MHC, and discuss how it may have contributed to the Nicaraguan Midas cichlid species complex diversification, one of the most convincing examples of rapid sympatric parallel speciation. Results We genotyped the MHC IIB for individuals from six sympatric Midas cichlid assemblages, each containing species that have adapted to exploit similar habitats. We recovered large allelic and functional diversity within the species complex. While most alleles were rare, functional groups of alleles (supertypes) were common, suggesting that they are key to survival and that they were maintained during colonization and subsequent radiations. We identified lake-specific and habitat-specific signatures for both allelic and functional diversity, but no clear pattern of parallel divergence among ecomorphologically similar phenotypes. Conclusions Colonization and demographic effects of the fish could have contributed to MHC evolution in the Midas cichlid in conjunction with habitat-specific selective pressures, such as parasites associated to alternative preys or environmental features. Additional ecological data will help evaluating the role of host–parasite interactions in the Midas cichlid radiations and aid in elucidating the potential role of non-parallel features differentiating crater lake species assemblages. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01997-9.
Collapse
Affiliation(s)
- Seraina E Bracamonte
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Melinda J Hofmann
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Carlos Lozano-Martín
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Marta Barluenga
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
8
|
Burress ED, Piálek L, Casciotta J, Almirón A, Říčan O. Rapid Parallel Morphological and Mechanical Diversification of South American Pike Cichlids (Crenicichla). Syst Biol 2022; 72:120-133. [PMID: 35244182 DOI: 10.1093/sysbio/syac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Explosive bouts of diversification are one of the most conspicuous features of the tree of life. When such bursts are repeated in similar environments it suggests some degree of predictability in the evolutionary process. We assess parallel adaptive radiation of South American pike cichlids (Crenicichla) using phylogenomics and phylogenetic comparative methods. We find that species flocks in the Uruguay and Iguazú River basins rapidly diversified into the same set of ecomorphs that reflect feeding ecology. Both adaptive radiations involve expansion of functional morphology, resulting in unique jaw phenotypes. Yet, form and function were decoupled such that most ecomorphs share similar mechanical properties of the jaws (i.e., jaw motion during a feeding strike). Prey mobility explained six to nine-fold differences in the rate of morphological evolution, but had no effect on the rate of mechanical evolution. We find no evidence of gene flow between species flocks or with surrounding coastal lineages that may explain their rapid diversification. When compared to cichlids of the East African Great Lakes and other prominent adaptive radiations, pike cichlids share many themes, including rapid expansion of phenotypic diversity, specialization along the benthic-to-pelagic habitat and soft-to-hard prey axes, and the evolution of conspicuous functional innovations. Yet, decoupled evolution of form and function and the absence of hybridization as a catalyzing force are departures from patterns observed in other adaptive radiations. Many-to-one mapping of morphology to mechanical properties is a mechanism by which pike cichlids exhibit a diversity of feeding ecologies while avoiding exacerbating underlying mechanical trade-offs.
Collapse
Affiliation(s)
- Edward D Burress
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Lubomír Piálek
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Jorge Casciotta
- División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo,UNLP, Paseo del Bosque, 1900 La Plata, Buenos Aires, Argentina.,CIC,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
| | - Adriana Almirón
- División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo,UNLP, Paseo del Bosque, 1900 La Plata, Buenos Aires, Argentina
| | - Oldřich Říčan
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
9
|
Sowersby W, Cerca J, Wong BBM, Lehtonen TK, Chapple DG, Leal-Cardín M, Barluenga M, Ravinet M. Pervasive admixture and the spread of a large-lipped form in a cichlid fish radiation. Mol Ecol 2021; 30:5551-5571. [PMID: 34418206 DOI: 10.1111/mec.16139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 07/31/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022]
Abstract
Adaptive radiations have proven important for understanding the mechanisms and processes underlying biological diversity. The convergence of form and function, as well as admixture and adaptive introgression, are common in adaptive radiations. However, distinguishing between these two scenarios remains a challenge for evolutionary research. The Midas cichlid species complex (Amphilophus spp.) is a prime example of adaptive radiation, with phenotypic diversification occurring at various stages of genetic differentiation. One species, A. labiatus, has large fleshy lips, is associated with rocky lake substrates, and occurs patchily within Lakes Nicaragua and Managua. By contrast, the similar, but thin-lipped, congener, A. citrinellus, is more common and widespread. We investigated the evolutionary history of the large-lipped form, specifically regarding whether the trait has evolved independently in both lakes from ancestral thin-lipped populations, or via dispersal and/or admixture events. We collected samples from distinct locations in both lakes, and assessed differences in morphology and ecology. Using RAD-seq, we genotyped thousands of SNPs to measure population structure and divergence, demographic history, and admixture. We found significant between-species differences in ecology and morphology, local intraspecific differences in body shape and trophic traits, but only limited intraspecific variation in lip shape. Despite clear ecological differences, our genomic approach uncovered pervasive admixture between the species and low genomic differentiation, with species within lakes being genetically more similar than species between lakes. Taken together, our results suggest a single origin of large-lips, followed by pervasive admixture and adaptive introgression, with morphology being driven by local ecological opportunities, despite ongoing gene-flow.
Collapse
Affiliation(s)
- Will Sowersby
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.,Department of Biology, Osaka City University, Osaka, Japan
| | - José Cerca
- Frontiers of Evolutionary Zoology Research Group, Natural History Museum, University of Oslo, Oslo, Norway.,Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, California, USA.,Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Topi K Lehtonen
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.,Department of Biology, University of Turku, Turku, Finland.,Organismal and Evolutionary Biology, University of Helsinki, Helsinki, Finland
| | - David G Chapple
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Mariana Leal-Cardín
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.,Universidad de Alcalá de Henares, Madrid, Spain
| | - Marta Barluenga
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Mark Ravinet
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway.,Division of Population Genetics, National Institute of Genetics, Mishima, Japan.,School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
10
|
Abstract
Abstract
Cave animals and species flocks exhibit common evolutionary principles. In caves, all traits dependent on the information derived from light lose their biological function. Mutations destructive for such traits, but neutral for the organism as a whole, can persist and accumulate until a trait has vanished. Adaptive radiations start in ecosystems containing open niches. Here, selection on niche-specific traits, such as the viscerocranium in fish, is relaxed owing to the absence of competing species, and viscerocranial variability arises. It is transitorily high in recent and phylogenetically younger flocks, providing new phenotypes. It lessens and is completely lost after directional selection promotes the fixation of phenotypes that are best adapted. In cave animals and species flocks, single traits manifest phenotypic variability owing to relaxed selection. Like the eye in cave species, the viscerocranium can be classified a module, the development of which is encoded in gene regulatory networks. Mutations in these genes can result in new phenotypes. Regarding functionality, these mutations might be destructive and eliminated by selection, neutral and thus persisting, or beneficial and promoted to fixation by directional selection. Given the ancient heritage of teleostean fish, these gene regulatory networks might be prone to mutations at the same loci or to developmental reactions resulting in similar phenotypes in closely related or taxonomically and geographically distant species.
Collapse
Affiliation(s)
- Horst Wilkens
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum Hamburg, Hamburg, Germany
| |
Collapse
|
11
|
Lecaudey LA, Singh P, Sturmbauer C, Duenser A, Gessl W, Ahi EP. Transcriptomics unravels molecular players shaping dorsal lip hypertrophy in the vacuum cleaner cichlid, Gnathochromis permaxillaris. BMC Genomics 2021; 22:506. [PMID: 34225643 PMCID: PMC8256507 DOI: 10.1186/s12864-021-07775-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Teleosts display a spectacular diversity of craniofacial adaptations that often mediates ecological specializations. A considerable amount of research has revealed molecular players underlying skeletal craniofacial morphologies, but less is known about soft craniofacial phenotypes. Here we focus on an example of lip hypertrophy in the benthivorous Lake Tangnayika cichlid, Gnathochromis permaxillaris, considered to be a morphological adaptation to extract invertebrates out of the uppermost layer of mud bottom. We investigate the molecular and regulatory basis of lip hypertrophy in G. permaxillaris using a comparative transcriptomic approach. RESULTS We identified a gene regulatory network involved in tissue overgrowth and cellular hypertrophy, potentially associated with the formation of a locally restricted hypertrophic lip in a teleost fish species. Of particular interest were the increased expression level of apoda and fhl2, as well as reduced expression of cyp1a, gimap8, lama5 and rasal3, in the hypertrophic lip region which have been implicated in lip formation in other vertebrates. Among the predicted upstream transcription factors, we found reduced expression of foxp1 in the hypertrophic lip region, which is known to act as repressor of cell growth and proliferation, and its function has been associated with hypertrophy of upper lip in human. CONCLUSION Our results provide a genetic foundation for future studies of molecular players shaping soft and exaggerated, but locally restricted, craniofacial morphological changes in fish and perhaps across vertebrates. In the future, we advocate integrating gene regulatory networks of various craniofacial phenotypes to understand how they collectively govern trophic and behavioural adaptations.
Collapse
Affiliation(s)
- Laurène Alicia Lecaudey
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Anna Duenser
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Wolfgang Gessl
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| | - Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| |
Collapse
|
12
|
Konings AF, Wisor JM, Stauffer JR. Microcomputed tomography used to link head morphology and observed feeding behavior in cichlids of Lake Malaŵi. Ecol Evol 2021; 11:4605-4615. [PMID: 33976834 PMCID: PMC8093705 DOI: 10.1002/ece3.7359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 11/30/2022] Open
Abstract
Cichlids inhabiting the Great Lakes of Africa have radiated extremely rapidly, with Lake Malaŵi harboring some 850 species. This rapid radiation may be linked to the diversity in behaviors, sexual selection, and phenotypic plasticity. To determine the relationships between morphology and behaviors, microcomputed tomography (microCT) was used to observe internal morphological structures. Observed morphological adaptations were linked with observed behavior of cichlids in Lake Malaŵi with respect to the various available food resources. Many of these adaptations have parallels, sometimes into the finest details, in other drainage systems and can thus be considered as variations of how cichlids in general respond to environmental opportunities and challenges. Variations in the structure and teeth of the pharyngeal jaws and the oral jaws allowed for fine tuning of specializations, so that various species can utilize the same source without direct competition. We suggested that high-resolution X-ray computed tomography will permit scientists to infer life history and behavior characters of rare or extinct taxa from a detailed examination of morphology and linkages between morphology and behavior found in extant species.
Collapse
Affiliation(s)
| | - Joshua M. Wisor
- Ecosystem Science and ManagementPenn State UniversityUniversity ParkPAUSA
| | - Jay R. Stauffer
- Ecosystem Science and ManagementPenn State UniversityUniversity ParkPAUSA
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
| |
Collapse
|
13
|
Munyandamutsa PS, Jere WL, Kassam D, Mtethiwa A. Trophic divergence of Lake Kivu cichlid fishes along a pelagic versus littoral habitat axis. Ecol Evol 2021; 11:1570-1585. [PMID: 33613990 PMCID: PMC7882941 DOI: 10.1002/ece3.7117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/16/2023] Open
Abstract
Local adaptation to the littoral and pelagic zones in two cichlid haplochromine fish species from Lake Kivu was investigated using morphometrics. Cranial variation and inferred jaw mechanics in both sexes of the two species across the two habitat types were quantified and compared. Comparisons of littoral versus pelagic populations revealed habitat-specific differences in the shape of the feeding apparatus. Also, kinematic transmission of the anterior jaw four-bar linkage that promotes greater jaw protrusion was higher in the pelagic zone than in the littoral zone for both species. Inferred bite force was likewise higher in pelagic zone fish. There were also sex-specific differences in craniofacial morphology as males exhibited longer heads than females in both habitats. As has been described for other cichlids in the East African Great Lakes, local adaptation to trophic resources in the littoral and pelagic habitats characterizes these two Lake Kivu cichlids. Similar studies involving other types of the Lake Kivu fishes are recommended to test the evidence of the observed trophic patterns and their genetic basis of divergences.
Collapse
Affiliation(s)
- Philippe S. Munyandamutsa
- Africa Centre of Excellence in Aquaculture and Fisheries ScienceDepartment of Aquaculture and Fisheries ScienceBunda CollegeLilongwe University of Agriculture and Natural ResourcesLilongweCentreMalawi
- Department of Animal ProductionCollege of Agriculture, Animal Sciences and Veterinary MedicineUniversity of RwandaKK 737MusanzeNorthRwanda
| | - Wilson L. Jere
- Africa Centre of Excellence in Aquaculture and Fisheries ScienceDepartment of Aquaculture and Fisheries ScienceBunda CollegeLilongwe University of Agriculture and Natural ResourcesLilongweCentreMalawi
| | - Daud Kassam
- Africa Centre of Excellence in Aquaculture and Fisheries ScienceDepartment of Aquaculture and Fisheries ScienceBunda CollegeLilongwe University of Agriculture and Natural ResourcesLilongweCentreMalawi
| | - Austin Mtethiwa
- Africa Centre of Excellence in Aquaculture and Fisheries ScienceDepartment of Aquaculture and Fisheries ScienceBunda CollegeLilongwe University of Agriculture and Natural ResourcesLilongweCentreMalawi
| |
Collapse
|
14
|
Figueiredo PICC, Malabarba LR, Fagundes NJR. Hydrography rather than lip morphology better explains the evolutionary relationship between Gymnogeophagus labiatus and G. lacustris in Southern Brazil (Cichlidae: Geophagini). NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2020-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Gymnogeophagus labiatus and G. lacustris have been long recognized as sister species exhibiting different ecological requirements. Gymnogeophagus labiatus occurs in rock bottom rivers in the hydrographic basins of Patos Lagoon (HBP) and Tramandaí River (HBT), while G. lacustris is exclusive from sand bottom coastal lagoons of the HBT. In this study, we used molecular markers, morphological measurements and data from nuptial male coloration to investigate the evolutionary relationship between these species in each hydrographic basin. We found, for all data sets, a closer relationship between G. labiatus and G. lacustris from the HBT than between G. labiatus populations from HBT and HBP. In particular, lip area had a large intraspecific plasticity, being uninformative to diagnose G. lacustris from G. labiatus. Molecular clock-based estimates suggest a recent divergence between species in the HBT (17,000 years ago), but not between G. labiatus from HBP and HBT (3.6 millions of years ago). Finally, we also found a divergent G. labiatus genetic lineage from the Camaquã River, in the HBP. These results show that the current taxonomy of G. labiatus and G. lacustris does not properly represent evolutionary lineages in these species.
Collapse
Affiliation(s)
| | - Luiz R. Malabarba
- Universidade Federal do Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Brazil
| | - Nelson J. R. Fagundes
- Universidade Federal do Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Brazil; Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Vranken N, Van Steenberge M, Snoeks J. Similar ecology, different morphology: Three new species of oral-mollusc shellers from Lake Edward. JOURNAL OF FISH BIOLOGY 2020; 96:1202-1217. [PMID: 31338837 DOI: 10.1111/jfb.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Lake Edward, East Africa, harbours a largely understudied assemblage of haplochromine cichlids that displays a range of adaptions to various specialised trophic niches. In this system, we discovered specimens of Haplochromis with morphologies similar to those of oral-mollusc shellers from Lake Victoria. These morphologies are characterised by short oral jaws with stout teeth that are used either to crush molluscs or to grab the soft bodies of snails and wrench them out of their shells. A morphometric study on 47 specimens from Lake Edward revealed the presence of three new species with an oral-shelling morphology: Haplochromis concilians sp. nov., H. erutus sp. nov. and H. planus sp. nov. All three species are formally described. Stomach-content observations confirmed an opportunistic oral-shelling ecology for H. concilians sp. nov. and H. erutus sp. nov. Within H. planus sp. nov., only large specimens displayed a specialised oral-shelling morphology, but their stomachs were nearly empty, while small specimens consumed mainly Ostracoda and Hydrachnidia. Remarkably, the three species differed considerably in morphology from each other, but they each resembled oral-sheller species from Lake Victoria.
Collapse
Affiliation(s)
- Nathan Vranken
- Biology Department, Section Vertebrates, Royal Museum for Central Africa, Tervuren, Belgium
- KU Leuven, Ecology, Evolution and Biodiversity Conservation, Charles Deberiotstraat 32, Leuven, Belgium
| | - Maarten Van Steenberge
- Biology Department, Section Vertebrates, Royal Museum for Central Africa, Tervuren, Belgium
- KU Leuven, Ecology, Evolution and Biodiversity Conservation, Charles Deberiotstraat 32, Leuven, Belgium
- Royal Belgian Institute of Natural Sciences, Operational Directorate Taxonomy and Phylogeny, Brussels, Belgium
| | - Jos Snoeks
- Biology Department, Section Vertebrates, Royal Museum for Central Africa, Tervuren, Belgium
- KU Leuven, Ecology, Evolution and Biodiversity Conservation, Charles Deberiotstraat 32, Leuven, Belgium
| |
Collapse
|
16
|
Resource trait specialisation in an introduced fish population with reduced genetic diversity. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02264-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Huang Y, Feulner PGD, Eizaguirre C, Lenz TL, Bornberg-Bauer E, Milinski M, Reusch TBH, Chain FJJ. Genome-Wide Genotype-Expression Relationships Reveal Both Copy Number and Single Nucleotide Differentiation Contribute to Differential Gene Expression between Stickleback Ecotypes. Genome Biol Evol 2020; 11:2344-2359. [PMID: 31298693 PMCID: PMC6735750 DOI: 10.1093/gbe/evz148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Repeated and independent emergence of trait divergence that matches habitat differences is a sign of parallel evolution by natural selection. Yet, the molecular underpinnings that are targeted by adaptive evolution often remain elusive. We investigate this question by combining genome-wide analyses of copy number variants (CNVs), single nucleotide polymorphisms (SNPs), and gene expression across four pairs of lake and river populations of the three-spined stickleback (Gasterosteus aculeatus). We tested whether CNVs that span entire genes and SNPs occurring in putative cis-regulatory regions contribute to gene expression differences between sticklebacks from lake and river origins. We found 135 gene CNVs that showed a significant positive association between gene copy number and gene expression, suggesting that CNVs result in dosage effects that can fuel phenotypic variation and serve as substrates for habitat-specific selection. Copy number differentiation between lake and river sticklebacks also contributed to expression differences of two immune-related genes in immune tissues, cathepsin A and GIMAP7. In addition, we identified SNPs in cis-regulatory regions (eSNPs) associated with the expression of 1,865 genes, including one eSNP upstream of a carboxypeptidase gene where both the SNP alleles differentiated and the gene was differentially expressed between lake and river populations. Our study highlights two types of mutations as important sources of genetic variation involved in the evolution of gene expression and in potentially facilitating repeated adaptation to novel environments.
Collapse
Affiliation(s)
- Yun Huang
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland.,Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Switzerland
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom
| | - Tobias L Lenz
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Erich Bornberg-Bauer
- Evolutionary Bioinformatics, Institute for Evolution and Biodiversity, Westfälische Wilhelms University, Münster, Germany
| | - Manfred Milinski
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
| | - Frédéric J J Chain
- Department of Biological Sciences, University of Massachusetts Lowell, USA
| |
Collapse
|
18
|
Lecaudey LA, Sturmbauer C, Singh P, Ahi EP. Molecular mechanisms underlying nuchal hump formation in dolphin cichlid, Cyrtocara moorii. Sci Rep 2019; 9:20296. [PMID: 31889116 PMCID: PMC6937230 DOI: 10.1038/s41598-019-56771-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
East African cichlid fishes represent a model to tackle adaptive changes and their connection to rapid speciation and ecological distinction. In comparison to bony craniofacial tissues, adaptive morphogenesis of soft tissues has been rarely addressed, particularly at the molecular level. The nuchal hump in cichlids fishes is one such soft-tissue and exaggerated trait that is hypothesized to play an innovative role in the adaptive radiation of cichlids fishes. It has also evolved in parallel across lakes in East Africa and Central America. Using gene expression profiling, we identified and validated a set of genes involved in nuchal hump formation in the Lake Malawi dolphin cichlid, Cyrtocara moorii. In particular, we found genes differentially expressed in the nuchal hump, which are involved in controlling cell proliferation (btg3, fosl1a and pdgfrb), cell growth (dlk1), craniofacial morphogenesis (dlx5a, mycn and tcf12), as well as regulators of growth-related signals (dpt, pappa and socs2). This is the first study to identify the set of genes associated with nuchal hump formation in cichlids. Given that the hump is a trait that evolved repeatedly in several African and American cichlid lineages, it would be interesting to see if the molecular pathways and genes triggering hump formation follow a common genetic track or if the trait evolved in parallel, with distinct mechanisms, in other cichlid adaptive radiations and even in other teleost fishes.
Collapse
Affiliation(s)
- Laurène Alicia Lecaudey
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
- Institute of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada
| | - Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria.
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-75 236, Uppsala, Sweden.
| |
Collapse
|
19
|
Conith MR, Conith AJ, Albertson RC. Evolution of a soft-tissue foraging adaptation in African cichlids: Roles for novelty, convergence, and constraint. Evolution 2019; 73:2072-2084. [PMID: 31418824 DOI: 10.1111/evo.13824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 06/25/2019] [Accepted: 07/05/2019] [Indexed: 12/12/2022]
Abstract
Understanding the origins of biodiversity demands consideration of both extrinsic (e.g., ecological opportunity) and intrinsic (e.g., developmental constraint) factors. Here, we use a combination of phylogenetic and genetic tools to address the origin of novelty in African cichlids. In particular, we focus on an extreme hypertrophied snout that is structurally integrated with the upper jaw. We show that this bizarre trait has evolved independently in at least two distinct and ecologically successful cichlid clades. We find that snout dimensions are decoupled both phenotypically and genetically, which has enabled it to evolve independently in multiple directions. Further, patterns of variation among species and within a genetic mapping pedigree suggest that relative to snout length, depth is under greater genetic and/or developmental constraint. Models of evolution suggest that snout shape is under selection for feeding behavior, with snout depth being important for algae scraping and snout length for sand sifting. Indeed, the deep snout of some algivores is achieved via an expansion of the intermaxillary ligament, which is important for jaw stability and may increase feeding performance. Overall, our data imply that the evolution of exaggerated snout depth required overcoming a genetic/developmental constraint, which led to expanded ecological opportunity via foraging adaptation.
Collapse
Affiliation(s)
- Moira R Conith
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, 01003
| | - Andrew J Conith
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, 01003
| | - R Craig Albertson
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, 01003.,Department of Biology, University of Massachusetts, Amherst, Massachusetts, 01003
| |
Collapse
|
20
|
Darrin Hulsey C, Zheng J, Holzman R, Alfaro ME, Olave M, Meyer A. Phylogenomics of a putatively convergent novelty: did hypertrophied lips evolve once or repeatedly in Lake Malawi cichlid fishes? BMC Evol Biol 2018; 18:179. [PMID: 30486792 PMCID: PMC6263179 DOI: 10.1186/s12862-018-1296-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 11/16/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Phylogenies provide critical information about convergence during adaptive radiation. To test whether there have been multiple origins of a distinctive trophic phenotype in one of the most rapidly radiating groups known, we used ultra-conserved elements (UCEs) to examine the evolutionary affinities of Lake Malawi cichlids lineages exhibiting greatly hypertrophied lips. RESULTS The hypertrophied lip cichlids Cheilochromis euchilus, Eclectochromis ornatus, Placidochromis "Mbenji fatlip", and Placidochromis milomo are all nested within the non-mbuna clade of Malawi cichlids based on both concatenated sequence and single nucleotide polymorphism (SNP) inferred phylogenies. Lichnochromis acuticeps that exhibits slightly hypertrophied lips also appears to have evolutionary affinities to this group. However, Chilotilapia rhoadesii that lacks hypertrophied lips was recovered as nested within the species Cheilochromis euchilus. Species tree reconstructions and analyses of introgression provided largely ambiguous patterns of Malawi cichlid evolution. CONCLUSIONS Contrary to mitochondrial DNA phylogenies, bifurcating trees based on our 1024 UCE loci supported close affinities of Lake Malawi lineages with hypertrophied lips. However, incomplete lineage sorting in Malawi tends to render these inferences more tenuous. Phylogenomic analyses will continue to provide powerful inferences about whether phenotypic novelties arose once or multiple times during adaptive radiation.
Collapse
Affiliation(s)
- C. Darrin Hulsey
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jimmy Zheng
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA USA
| | - Roi Holzman
- Department of Zoology, Tel Aviv University and the Inter-University Institute for Marine Sciences in Eilat, 88103 Eilat, Israel
| | - Michael E. Alfaro
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, CA USA
| | - Melisa Olave
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
21
|
Salzburger W. Understanding explosive diversification through cichlid fish genomics. Nat Rev Genet 2018; 19:705-717. [DOI: 10.1038/s41576-018-0043-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Markevich G, Esin E, Anisimova L. Basic description and some notes on the evolution of seven sympatric morphs of Dolly Varden Salvelinus malma from the Lake Kronotskoe Basin. Ecol Evol 2018; 8:2554-2567. [PMID: 29531676 PMCID: PMC5838070 DOI: 10.1002/ece3.3806] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 11/11/2017] [Accepted: 12/07/2017] [Indexed: 11/29/2022] Open
Abstract
The study examines the basic morphological and ecological features of Dolly Varden from Lake Kronotskoe (Russia, Kamchatka). Seven valid morphs different in head proportions, feeding, timing, and place of spawning have been determined in this ecosystem. The basic morphometric characteristics clearly separate Lake Kronotskoe morphs from each other, as well as from its potential ancestor (Dolly Varden). According to CVA analysis, the most notable morphological characteristics determining the mouth position are the length of a lower jaw and rostrum. Furthermore, five of seven morphs inhabit different depth zones of the lake and feed on different food resources. Our data suggest that reproductive isolation may be maintained by temporal/spatial isolation for two morphs with lacustrine spawning, and by spatial isolation only for the rest of the morphs with riverine spawning. The sympatric diversity of the Lake Kronotskoe charrs is exceptionally wide, and there are no other examples for seven sympatric morphs of genus Salvelinus to coexist within a single ecosystem. This study puts forward a three-step hypothetical model of charr divergence in Lake Kronotskoe as a potential ground for future studies.
Collapse
|
23
|
Burress ED, Alda F, Duarte A, Loureiro M, Armbruster JW, Chakrabarty P. Phylogenomics of pike cichlids (Cichlidae: Crenicichla): the rapid ecological speciation of an incipient species flock. J Evol Biol 2017; 31:14-30. [PMID: 29044782 DOI: 10.1111/jeb.13196] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/13/2017] [Accepted: 10/12/2017] [Indexed: 12/18/2022]
Abstract
The rapid rise of phenotypic and ecological diversity in independent lake-dwelling groups of cichlids is emblematic of the East African Great Lakes. In this study, we show that similar ecologically based diversification has occurred in pike cichlids (Crenicichla) throughout the Uruguay River drainage of South America. We collected genomic data from nearly 500 ultraconserved element (UCEs) loci and >260 000 base pairs across 33 species, to obtain a phylogenetic hypothesis for the major species groups and to evaluate the relationships and genetic structure among five closely related, endemic, co-occurring species (the Uruguay River species flock; URSF). Additionally, we evaluated ecological divergence of the URSF based on body and lower pharyngeal jaw (LPJ) shape and gut contents. Across the genus, we recovered novel relationships among the species groups. We found strong support for the monophyly of the URSF; however, relationships among these species remain problematic, likely because of the rapid and recent evolution of this clade. Clustered co-ancestry analysis recovered most species as well delimited genetic groups. The URSF species exhibit species-specific body and LPJ shapes associated with specialized trophic roles. Collectively, our results suggest that the URSF consists of incipient species that arose via ecological speciation associated with the exploration of novel trophic roles.
Collapse
Affiliation(s)
- E D Burress
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL, USA
| | - F Alda
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - A Duarte
- Sección Zoología Vertebrados, Departmento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - M Loureiro
- Sección Zoología Vertebrados, Departmento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Sección Ictología, Departmento de Zoología, Museo Nacional de Historia Natural, Montevideo, Uruguay
| | - J W Armbruster
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL, USA
| | - P Chakrabarty
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
24
|
Hablützel PI, Vanhove MPM, Deschepper P, Grégoir AF, Roose AK, Volckaert FAM, Raeymaekers JAM. Parasite escape through trophic specialization in a species flock. J Evol Biol 2017; 30:1437-1445. [DOI: 10.1111/jeb.13111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/11/2017] [Accepted: 04/26/2017] [Indexed: 02/02/2023]
Affiliation(s)
- P. I. Hablützel
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Leuven Belgium
| | - M. P. M. Vanhove
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Leuven Belgium
- Capacities for Biodiversity and Sustainable Development; Operational Directorate Natural Environment; Royal Belgian Institute of Natural Sciences; Brussels Belgium
- Department of Botany and Zoology; Faculty of Science; Masaryk University; Brno Czech Republic
- Hasselt University; Centre for Environmental Sciences; Research Group Zoology: Biodiversity & Toxicology; Diepenbeek Belgium
| | - P. Deschepper
- Laboratory of Plant Conservation and Population Biology; University of Leuven; Leuven Belgium
| | - A. F. Grégoir
- Laboratory of Aquatic Ecology and Evolution; University of Leuven; Leuven Belgium
| | - A. K. Roose
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Leuven Belgium
| | - F. A. M. Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Leuven Belgium
| | - J. A. M. Raeymaekers
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Leuven Belgium
- Department of Biology; Centre for Biodiversity Dynamics; Norwegian University of Science and Technology; Trondheim Norway
- Faculty of Biosciences and Aquaculture; Nord University; Bodø Norway
| |
Collapse
|
25
|
de la Harpe M, Paris M, Karger DN, Rolland J, Kessler M, Salamin N, Lexer C. Molecular ecology studies of species radiations: current research gaps, opportunities and challenges. Mol Ecol 2017; 26:2608-2622. [PMID: 28316112 DOI: 10.1111/mec.14110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/11/2017] [Accepted: 03/06/2017] [Indexed: 12/28/2022]
Abstract
Understanding the drivers and limits of species radiations is a crucial goal of evolutionary genetics and molecular ecology, yet research on this topic has been hampered by the notorious difficulty of connecting micro- and macroevolutionary approaches to studying the drivers of diversification. To chart the current research gaps, opportunities and challenges of molecular ecology approaches to studying radiations, we examine the literature in the journal Molecular Ecology and revisit recent high-profile examples of evolutionary genomic research on radiations. We find that available studies of radiations are highly unevenly distributed among taxa, with many ecologically important and species-rich organismal groups remaining severely understudied, including arthropods, plants and fungi. Most studies employed molecular methods suitable over either short or long evolutionary time scales, such as microsatellites or restriction site-associated DNA sequencing (RAD-seq) in the former case and conventional amplicon sequencing of organellar DNA in the latter. The potential of molecular ecology studies to address and resolve patterns and processes around the species level in radiating groups of taxa is currently limited primarily by sample size and a dearth of information on radiating nuclear genomes as opposed to organellar ones. Based on our literature survey and personal experience, we suggest possible ways forward in the coming years. We touch on the potential and current limitations of whole-genome sequencing (WGS) in studies of radiations. We suggest that WGS and targeted ('capture') resequencing emerge as the methods of choice for scaling up the sampling of populations, species and genomes, including currently understudied organismal groups and the genes or regulatory elements expected to matter most to species radiations.
Collapse
Affiliation(s)
- Marylaure de la Harpe
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, CH-1700, Switzerland.,Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, A-1030, Austria
| | - Margot Paris
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, CH-1700, Switzerland
| | - Dirk N Karger
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zürich, CH-8008, Switzerland
| | - Jonathan Rolland
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, CH-1015, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, Lausanne, CH-1015, Switzerland
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, Zürich, CH-8008, Switzerland
| | - Nicolas Salamin
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, CH-1015, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, Lausanne, CH-1015, Switzerland
| | - Christian Lexer
- Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, CH-1700, Switzerland.,Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, Vienna, A-1030, Austria
| |
Collapse
|
26
|
Henning F, Machado-Schiaffino G, Baumgarten L, Meyer A. Genetic dissection of adaptive form and function in rapidly speciating cichlid fishes. Evolution 2017; 71:1297-1312. [PMID: 28211577 DOI: 10.1111/evo.13206] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/04/2017] [Indexed: 12/14/2022]
Abstract
Genes of major phenotypic effects and strong genetic correlations can facilitate adaptation, direct selective responses, and potentially lead to phenotypic convergence. However, the preponderance of this type of genetic architecture in repeatedly evolved adaptations remains unknown. Using hybrids between Haplochromis chilotes (thick-lipped) and Pundamilia nyererei (thin-lipped) we investigated the genetics underlying hypertrophied lips and elongated heads, traits that evolved repeatedly in cichlids. At least 25 loci of small-to-moderate and mainly additive effects were detected. Phenotypic variation in lip and head morphology was largely independent. Although several QTL overlapped for lip and head morphology traits, they were often of opposite effects. The distribution of effect signs suggests strong selection on lips. The fitness implications of several detected loci were demonstrated using a laboratory assay testing for the association between genotype and variation in foraging performance. The persistence of low fitness alleles in head morphology appears to be maintained through antagonistic pleiotropy/close linkage with positive-effect lip morphology alleles. Rather than being based on few major loci with strong positive genetic correlations, our results indicate that the evolution of the Lake Victoria thick-lipped ecomorph is the result of selection on numerous loci distributed throughout the genome.
Collapse
Affiliation(s)
- Frederico Henning
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany.,Department of Genetics, CCS, Federal University of Rio de Janeiro, Ilha do Fundão, 21941-599, Rio de Janeiro, Brazil
| | | | - Lukas Baumgarten
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| |
Collapse
|
27
|
Machado-Schiaffino G, Kautt AF, Torres-Dowdall J, Baumgarten L, Henning F, Meyer A. Incipient speciation driven by hypertrophied lips in Midas cichlid fishes? Mol Ecol 2017; 26:2348-2362. [PMID: 28133841 DOI: 10.1111/mec.14029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/22/2016] [Accepted: 01/11/2017] [Indexed: 01/03/2023]
Abstract
Sympatric speciation has been debated in evolutionary biology for decades. Although it has gained in acceptance recently, still only a handful of empirical examples are seen as valid (e.g. crater lake cichlids). In this study, we disentangle the role of hypertrophied lips in the repeated adaptive radiations of Nicaraguan crater lake cichlid fish. We assessed the role of disruptive selection and assortative mating during the early stages of divergence and found a functional trade-off in feeding behaviour between thick- and thin-lipped ecotypes, suggesting that this trait is a target of disruptive selection. Thick-lipped fish perform better on nonevasive prey at the cost of a poorer performance on evasive prey. Using enclosures in the wild, we found that thick-lipped fish perform significantly better in rocky than in sandy habitats. We found almost no mixed pairs during two breeding seasons and hence significant assortative mating. Genetic differentiation between ecotypes seems to be related to the time since colonization, being subtle in L. Masaya (1600 generations ago) and absent in the younger L. Apoyeque (<600 generations ago). Genome-wide differentiation between ecotypes was higher in the old source lakes than in the young crater lakes. Our results suggest that hypertrophied lips might be promoting incipient sympatric speciation through divergent selection (ecological divergence in feeding performance) and nonrandom mating (assortative mating) in the young Nicaraguan crater lakes. Nonetheless, further manipulative experiments are needed in order to confirm the role of hypertrophied lips as the main cue for assortative mating.
Collapse
Affiliation(s)
| | - Andreas F Kautt
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Julian Torres-Dowdall
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Lukas Baumgarten
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Frederico Henning
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| |
Collapse
|
28
|
The transcriptional architecture of phenotypic dimorphism. Nat Ecol Evol 2017; 1:6. [PMID: 28812569 DOI: 10.1038/s41559-016-0006] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/06/2016] [Indexed: 12/11/2022]
Abstract
The profound differences in gene expression between the sexes are increasingly used to study the molecular basis of sexual dimorphism, sexual selection and sexual conflict. Studies of transcriptional architecture, based on comparisons of gene expression, have also been implemented for a wide variety of other intra-specific polymorphisms. These efforts are based on key assumptions regarding the relationship between transcriptional architecture, phenotypic variation and the target of selection. Some of these assumptions are better supported by available evidence than others. In all cases, the evidence is largely circumstantial, leaving considerable gaps in our understanding of the relationship between transcriptional and phenotypic dimorphism.
Collapse
|
29
|
Schneider RF, Meyer A. How plasticity, genetic assimilation and cryptic genetic variation may contribute to adaptive radiations. Mol Ecol 2016; 26:330-350. [PMID: 27747962 DOI: 10.1111/mec.13880] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 12/13/2022]
Abstract
There is increasing evidence that phenotypic plasticity can promote population divergence by facilitating phenotypic diversification and, eventually, genetic divergence. When a 'plastic' population colonizes a new habitat, it has the possibility to occupy multiple niches by expressing several distinct phenotypes. These initially reflect the population's plastic range but may later become genetically fixed by selection via the process of 'genetic assimilation' (GA). Through this process multiple specialized sister lineages can arise that share a common plastic ancestor - the 'flexible stem'. Here, we review possible molecular mechanisms through which natural selection could fix an initially plastic trait during GA. These mechanisms could also explain how GA may contribute to cryptic genetic variation that can subsequently be coopted into other phenotypes or traits, but also lead to nonadaptive responses. We outline the predicted patterns of genetic and transcriptional divergence accompanying flexible stem radiations. The analysis of such patterns of (retained) adaptive and nonadaptive plastic responses within and across radiating lineages can inform on the state of ongoing GA. We conclude that, depending on the stability of the environment, the molecular architecture underlying plastic traits can facilitate diversification, followed by fixation and consolidation of an adaptive phenotype and degeneration of nonadaptive ones. Additionally, the process of GA may increase the cryptic genetic variation of populations, which on one hand may serve as substrate for evolution, but on another may be responsible for nonadaptive responses that consolidate local allopatry and thus reproductive isolation.
Collapse
Affiliation(s)
- Ralf F Schneider
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitaetstrasse 10, 78457, Konstanz, Germany
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitaetstrasse 10, 78457, Konstanz, Germany
| |
Collapse
|
30
|
Santos ME, Baldo L, Gu L, Boileau N, Musilova Z, Salzburger W. Comparative transcriptomics of anal fin pigmentation patterns in cichlid fishes. BMC Genomics 2016; 17:712. [PMID: 27600936 PMCID: PMC5012078 DOI: 10.1186/s12864-016-3046-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background Understanding the genetic basis of novel traits is a central topic in evolutionary biology. Two novel pigmentation phenotypes, egg-spots and blotches, emerged during the rapid diversification of East African cichlid fishes. Egg-spots are circular pigmentation markings on the anal fins of hundreds of derived haplochromine cichlids species, whereas blotches are patches of conspicuous anal fin pigmentation with ill-defined boundaries that occur in few species that belong to basal cichlid lineages. Both traits play an important role in the breeding behavior of this group of fishes. Knowledge about the origin, homology and underlying genetics of these pigmentation traits is sparse. Results Here, we present a comparative transcriptomic and differential gene expression analysis of egg-spots and blotches. We first conducted an RNA sequencing experiment where we compared egg-spot tissue with the remaining portion of egg-spot-free fin tissue using six individuals of Astatotilapia burtoni. We identified 1229 differentially expressed genes between the two tissue types. We then showed that rates of evolution of these genes are higher than average estimated on whole transcriptome data. Using quantitative real-time PCR, we found that 29 out of a subset of 46 differentially expressed genes showed an analogous expression pattern in another haplochromine species’ egg-spots, Cynotilapia pulpican, strongly suggesting that these genes are involved in the egg-spot phenotype. Among these are the previously identified egg-spot gene fhl2a, two known patterning genes (hoxC12a and bmp3) as well as other pigmentation related genes such as asip. Finally, we analyzed the expression patterns of the same gene subset in two species that feature blotches instead of egg-spots, one haplochromine species (Pseudocrenilabrus philander) and one ectodine species (Callochromis macrops), revealing that the expression patterns in blotches and egg-spots are rather distinct. Conclusions We identified several candidate genes that will serve as an important and useful resource for future research on the emergence and diversification of cichlid fishes’ egg-spots. Only a limited degree of conservation of gene expression patterns was detected between the egg-spots of the derived haplochromines and blotches from ancestral haplochromines, as well as between the two types of blotches, suggesting an independent origin of these traits. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3046-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Emília Santos
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland. .,Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure, CNRS UMR 5242, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| | - Laura Baldo
- Ecology Department, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| | - Langyu Gu
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Nicolas Boileau
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Zuzana Musilova
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.,Department of Zoology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44, Prague, Czech Republic
| | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| |
Collapse
|
31
|
Pfenninger M, Patel S, Arias-Rodriguez L, Feldmeyer B, Riesch R, Plath M. Unique evolutionary trajectories in repeated adaptation to hydrogen sulphide-toxic habitats of a neotropical fish (Poecilia mexicana). Mol Ecol 2016; 24:5446-59. [PMID: 26405850 DOI: 10.1111/mec.13397] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/05/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022]
Abstract
Replicated ecological gradients are prime systems to study processes of molecular evolution underlying ecological divergence. Here, we investigated the repeated adaptation of the neotropical fish Poecilia mexicana to habitats containing toxic hydrogen sulphide (H2 S) and compared two population pairs of sulphide-adapted and ancestral fish by sequencing population pools of >200 individuals (Pool-Seq). We inferred the evolutionary processes shaping divergence and tested the hypothesis of increase of parallelism from SNPs to molecular pathways. Coalescence analyses showed that the divergence occurred in the face of substantial bidirectional gene flow. Population divergence involved many short, widely dispersed regions across the genome. Analyses of allele frequency spectra suggest that differentiation at most loci was driven by divergent selection, followed by a selection-mediated reduction of gene flow. Reconstructing allelic state changes suggested that selection acted mainly upon de novo mutations in the sulphide-adapted populations. Using a corrected Jaccard index to quantify parallel evolution, we found a negligible proportion of statistically significant parallel evolution of Jcorr = 0.0032 at the level of SNPs, divergent genome regions (Jcorr = 0.0061) and genes therein (Jcorr = 0.0091). At the level of metabolic pathways, the overlap was Jcorr = 0.2545, indicating increasing parallelism with increasing level of biological integration. The majority of pathways contained positively selected genes in both sulphide populations. Hence, adaptation to sulphidic habitats necessitated adjustments throughout the genome. The largely unique evolutionary trajectories may be explained by a high proportion of de novo mutations driving the divergence. Our findings favour Gould's view that evolution is often the unrepeatable result of stochastic events with highly contingent effects.
Collapse
Affiliation(s)
- Markus Pfenninger
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325 Frankfurt am Main, Hessen, Germany
| | - Simit Patel
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325 Frankfurt am Main, Hessen, Germany
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, C.P. 86150 Tabasco, México
| | - Barbara Feldmeyer
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325 Frankfurt am Main, Hessen, Germany
| | - Rüdiger Riesch
- School of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, 712100 Yangling, China
| |
Collapse
|
32
|
Huang Y, Chain FJJ, Panchal M, Eizaguirre C, Kalbe M, Lenz TL, Samonte IE, Stoll M, Bornberg-Bauer E, Reusch TBH, Milinski M, Feulner PGD. Transcriptome profiling of immune tissues reveals habitat-specific gene expression between lake and river sticklebacks. Mol Ecol 2016; 25:943-58. [PMID: 26749022 PMCID: PMC4790908 DOI: 10.1111/mec.13520] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 11/18/2015] [Accepted: 12/10/2015] [Indexed: 12/16/2022]
Abstract
The observation of habitat-specific phenotypes suggests the action of natural selection. The three-spined stickleback (Gasterosteus aculeatus) has repeatedly colonized and adapted to diverse freshwater habitats across the northern hemisphere since the last glaciation, while giving rise to recurring phenotypes associated with specific habitats. Parapatric lake and river populations of sticklebacks harbour distinct parasite communities, a factor proposed to contribute to adaptive differentiation between these ecotypes. However, little is known about the transcriptional response to the distinct parasite pressure of those fish in a natural setting. Here, we sampled wild-caught sticklebacks across four geographical locations from lake and river habitats differing in their parasite load. We compared gene expression profiles between lake and river populations using 77 whole-transcriptome libraries from two immune-relevant tissues, the head kidney and the spleen. Differential expression analyses revealed 139 genes with habitat-specific expression patterns across the sampled population pairs. Among the 139 differentially expressed genes, eight are annotated with an immune function and 42 have been identified as differentially expressed in previous experimental studies in which fish have been immune challenged. Together, these findings reinforce the hypothesis that parasites contribute to adaptation of sticklebacks in lake and river habitats.
Collapse
Affiliation(s)
- Yun Huang
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Frédéric J J Chain
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Department of Biology, McGill University, Montreal, QC, Canada, H3A 1B1
| | - Mahesh Panchal
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Bioinformatics Infrastructures for Life Sciences (BILS), Uppsala Biomedicinska Centrum (BMC), Husargatan 3, 751 23, Uppsala, Sweden.,Institute of Medical Biochemistry and Microbiology, Uppsala Biomedicinska Centrum (BMC), Husargatan 3, 751 23, Uppsala, Sweden
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS, London, UK
| | - Martin Kalbe
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Tobias L Lenz
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Irene E Samonte
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology, Westfälische Wilhelms University, 48149, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Evolutionary Bioinformatics, Westfälische Wilhelms University, 48149, Münster, Germany
| | - Thorsten B H Reusch
- Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105, Kiel, Germany
| | - Manfred Milinski
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Philine G D Feulner
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.,Department of Fish Ecology and Evolution, Eawag Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, 6047, Kastanienbaum, Switzerland
| |
Collapse
|
33
|
Evolution of opercle shape in cichlid fishes from Lake Tanganyika - adaptive trait interactions in extant and extinct species flocks. Sci Rep 2015; 5:16909. [PMID: 26584885 PMCID: PMC4653715 DOI: 10.1038/srep16909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/22/2015] [Indexed: 11/08/2022] Open
Abstract
Phenotype-environment correlations and the evolution of trait interactions in adaptive radiations have been widely studied to gain insight into the dynamics underpinning rapid species diversification. In this study we explore the phenotype-environment correlation and evolution of operculum shape in cichlid fishes using an outline-based geometric morphometric approach combined with stable isotope indicators of macrohabitat and trophic niche. We then apply our method to a sample of extinct saurichthyid fishes, a highly diverse and near globally distributed group of actinopterygians occurring throughout the Triassic, to assess the utility of extant data to inform our understanding of ecomorphological evolution in extinct species flocks. A series of comparative methods were used to analyze shape data for 54 extant species of cichlids (N = 416), and 6 extinct species of saurichthyids (N = 44). Results provide evidence for a relationship between operculum shape and feeding ecology, a concentration in shape evolution towards present along with evidence for convergence in form, and significant correlation between the major axes of shape change and measures of gut length and body elongation. The operculum is one of few features that can be compared in extant and extinct groups, enabling reconstruction of phenotype-environment interactions and modes of evolutionary diversification in deep time.
Collapse
|
34
|
Macias-Muñoz A, Smith G, Monteiro A, Briscoe AD. Transcriptome-Wide Differential Gene Expression in Bicyclus anynana Butterflies: Female Vision-Related Genes Are More Plastic. Mol Biol Evol 2015; 33:79-92. [PMID: 26371082 DOI: 10.1093/molbev/msv197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vision is energetically costly to maintain. Consequently, over time many cave-adapted species downregulate the expression of vision genes or even lose their eyes and associated eye genes entirely. Alternatively, organisms that live in fluctuating environments, with different requirements for vision at different times, may evolve phenotypic plasticity for expression of vision genes. Here, we use a global transcriptomic and candidate gene approach to compare gene expression in the heads of a polyphenic butterfly. Bicyclus anynana have two seasonal forms that display sexual dimorphism and plasticity in eye morphology, and female-specific plasticity in opsin gene expression. Nonchoosy dry season females downregulate opsin expression, consistent with the high physiological cost of vision. To identify other genes associated with sexually dimorphic and seasonally plastic differences in vision, we analyzed RNA-sequencing data from whole head tissues. We identified two eye development genes (klarsicht and warts homologs) and an eye pigment biosynthesis gene (henna) differentially expressed between seasonal forms. By comparing sex-specific expression across seasonal forms, we found that klarsicht, warts, henna, and another eye development gene (domeless) were plastic in a female-specific manner. In a male-only analysis, white (w) was differentially expressed between seasonal forms. Reverse transcription polymerase chain reaction confirmed that warts and white are expressed in eyes only, whereas klarsicht, henna and domeless are expressed in both eyes and brain. We find that differential expression of eye development and eye pigment genes is associated with divergent eye phenotypes in B. anynana seasonal forms, and that there is a larger effect of season on female vision-related genes.
Collapse
Affiliation(s)
- Aide Macias-Muñoz
- Ecology and Evolutionary Biology, University of California, Irvine BEACON Center for the Study of Evolution in Action
| | - Gilbert Smith
- Ecology and Evolutionary Biology, University of California, Irvine BEACON Center for the Study of Evolution in Action
| | - Antónia Monteiro
- Biological Sciences, National University of Singapore, Singapore Yale-NUS College, Singapore
| | - Adriana D Briscoe
- Ecology and Evolutionary Biology, University of California, Irvine BEACON Center for the Study of Evolution in Action
| |
Collapse
|
35
|
Concannon MR, Albertson RC. The genetic and developmental basis of an exaggerated craniofacial trait in East African cichlids. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:662-70. [DOI: 10.1002/jez.b.22641] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/01/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Moira R. Concannon
- Graduate Program in Organismic and Evolutionary Biology; University of Massachusetts Amherst; Morrill Science Center South; Amherst Massachusetts
| | - R. Craig Albertson
- Department of Biology; University of Massachusetts Amherst; Morrill Science Center; Amherst Massachusetts
| |
Collapse
|
36
|
Wanek KA, Sturmbauer C. Form, function and phylogeny: comparative morphometrics of Lake Tanganyika's cichlid tribe Tropheini. ZOOL SCR 2015; 44:362-373. [PMID: 27478295 PMCID: PMC4949720 DOI: 10.1111/zsc.12110] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 01/29/2015] [Indexed: 01/28/2023]
Abstract
Lake Tanganyika's cichlid fishes represent one of the most diverse species assemblages of the world. In this study we focused on the tribe Tropheini which occupies several trophic niches, mostly in rocky habitats. We analysed morphological variation of seventeen closely related species by means of geometric morphometric methods and related these data to ecological characteristics and phylogeny of the study species. It turned out that morphology mostly correlated well with ecological parameters, but not always closely with the degree of the phylogenetic relatedness of the species. Overall, body shapes in the tribe Tropheini are of great evolutionary plasticity, but variation is restricted to particular body parts: the preorbital region once again emerged as a key factor that facilitated their impressive radiation.
Collapse
Affiliation(s)
- Katrin A. Wanek
- Department of ZoologyUniversity of GrazUniversitätsplatz 2A‐8010GrazAustria
| | | |
Collapse
|
37
|
Baumgarten L, Machado-Schiaffino G, Henning F, Meyer A. What big lips are good for: on the adaptive function of repeatedly evolved hypertrophied lips of cichlid fishes. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12502] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lukas Baumgarten
- Department of Biology; University of Konstanz; Universitaetsstrasse 10 78457 Konstanz Germany
| | | | - Frederico Henning
- Department of Biology; University of Konstanz; Universitaetsstrasse 10 78457 Konstanz Germany
| | - Axel Meyer
- Department of Biology; University of Konstanz; Universitaetsstrasse 10 78457 Konstanz Germany
| |
Collapse
|
38
|
Heule C, Göppert C, Salzburger W, Böhne A. Genetics and timing of sex determination in the East African cichlid fish Astatotilapia burtoni. BMC Genet 2014; 15:140. [PMID: 25494637 PMCID: PMC4278230 DOI: 10.1186/s12863-014-0140-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/01/2014] [Indexed: 11/22/2022] Open
Abstract
Background The factors determining sex are diverse in vertebrates and especially so in teleost fishes. Only a handful of master sex-determining genes have been identified, however great efforts have been undertaken to characterize the subsequent genetic network of sex differentiation in various organisms. East African cichlids offer an ideal model system to study the complexity of sexual development, since many different sex-determining mechanisms occur in closely related species of this fish family. Here, we investigated the sex-determining system and gene expression profiles during male development of Astatotilapia burtoni, a member of the rapidly radiating and exceptionally species-rich haplochromine lineage. Results Crossing experiments with hormonally sex-reversed fish provided evidence for an XX-XY sex determination system in A. burtoni. Resultant all-male broods were used to assess gene expression patterns throughout development of a set of candidate genes, previously characterized in adult cichlids only. Conclusions We could identify the onset of gonad sexual differentiation at 11–12 dpf. The expression profiles identified wnt4B and wt1A as the earliest gonad markers in A. burtoni. Furthermore we identified late testis genes (cyp19a1A, gsdf, dmrt1 and gata4), and brain markers (ctnnb1A, ctnnb1B, dax1A, foxl2, foxl3, nanos1A, nanos1B, rspo1, sf-1, sox9A and sox9B). Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0140-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corina Heule
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | - Carolin Göppert
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| | - Astrid Böhne
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| |
Collapse
|
39
|
Salzburger W, Van Bocxlaer B, Cohen AS. Ecology and Evolution of the African Great Lakes and Their Faunas. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2014. [DOI: 10.1146/annurev-ecolsys-120213-091804] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Bert Van Bocxlaer
- National Museum of Natural History, Smithsonian Institution, Washington, DC 20013;
- Department of Geology and Soil Science, Ghent University, 9000 Ghent, Belgium
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Andrew S. Cohen
- Department of Geosciences, University of Arizona, Tucson, Arizona 85721;
| |
Collapse
|
40
|
Wellenreuther M, Svensson EI, Hansson B. Sexual selection and genetic colour polymorphisms in animals. Mol Ecol 2014; 23:5398-414. [DOI: 10.1111/mec.12935] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Maren Wellenreuther
- Evolutionary Ecology; Department of Biology; Lund University; SE-223 62 Lund Sweden
| | - Erik I. Svensson
- Evolutionary Ecology; Department of Biology; Lund University; SE-223 62 Lund Sweden
| | - Bengt Hansson
- Molecular Ecology; Department of Biology; Lund University; SE-223 62 Lund Sweden
| |
Collapse
|
41
|
Zou M, Guo B, Ma X. Characterizing the transcriptome of yellow-cheek carp (Elopichthys bambusa) enables evolutionary analyses within endemic East Asian Cyprinidae. Gene 2014; 547:267-72. [PMID: 24973763 DOI: 10.1016/j.gene.2014.06.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 11/30/2022]
Abstract
The identification of genes that may be responsible for the divergence of closely related species is one of the central goals of evolutionary biology. The species of endemic East Asian Cyprinidae diverged less than 8millionyears ago, and the morphological differences among these species are great. However, the genetic basis of their divergence remains unknown. In this report, we investigated the transcriptome of one endemic East Asian cyprinid - the yellow-cheek carp Elopichthys bambusa. A comparison with the publicly available transcriptomes of other endemic East Asian cyprinids, including the silver carp (Hypophthalmichthys molitrix) and blunt-nose black bream (Megalobrama amblycephala), revealed a number of candidate adaptive genes in each species, such as zona pellucida glycoprotein 2 in E. bambusa and zebrafish vitelline envelope protein in M. amblycephala. An enrichment test showed the enrichment of some specific gene ontology (GO) terms for these putatively adaptive genes. Taken together, our work is the first step toward elucidating the genes that may be related to the divergence of endemic East Asian Cyprinidae, and these genes identified as being probably under positive selection should be good candidates for subsequent evolutionary and functional studies.
Collapse
Affiliation(s)
- Ming Zou
- College of Fisheries, Huazhong Agricultural University, Wuhan, People's Republic of China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, People's Republic of China.
| | - Baocheng Guo
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki 00014, Finland
| | - Xufa Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan, People's Republic of China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, People's Republic of China
| |
Collapse
|
42
|
Henning F, Meyer A. The evolutionary genomics of cichlid fishes: explosive speciation and adaptation in the postgenomic era. Annu Rev Genomics Hum Genet 2014; 15:417-41. [PMID: 24898042 DOI: 10.1146/annurev-genom-090413-025412] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With more than 1,500 species, cichlid fishes provide textbook examples of recent and diverse adaptive radiations, rapid rates of speciation, and the parallel evolution of adaptive phenotypes among both recently and distantly related lineages. This extraordinary diversity has attracted considerable interest from researchers across several biological disciplines. Their broad phenotypic variation coupled with recent divergence makes cichlids an ideal model system for understanding speciation, adaptation, and phenotypic diversification. Genetic mapping, genome-wide analyses, and genome projects have flourished in the past decade and have added new insights on the question of why there are so many cichlids. These recent findings also show that the sharing of older DNA polymorphisms is extensive and suggest that linage sorting is incomplete and that adaptive introgression played a role in the African radiation. Here, we review the results of genetic and genomic research on cichlids in the past decade and suggest some potential avenues to further exploit the potential of the cichlid model system to provide a better understanding of the genomics of adaptation and speciation.
Collapse
Affiliation(s)
- Frederico Henning
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany;
| | | |
Collapse
|
43
|
Machado-Schiaffino G, Henning F, Meyer A. Species-specific differences in adaptive phenotypic plasticity in an ecologically relevant trophic trait: hypertrophic lips in Midas cichlid fishes. Evolution 2014; 68:2086-91. [PMID: 24475874 DOI: 10.1111/evo.12367] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/14/2014] [Indexed: 12/28/2022]
Abstract
The spectacular species richness of cichlids and their diversity in morphology, coloration, and behavior have made them an ideal model for the study of speciation and adaptive evolution. Hypertrophic lips evolved repeatedly and independently in African and Neotropical cichlid radiations. Cichlids with hypertrophic lips forage predominantly in rocky crevices and it has been hypothesized that mechanical stress caused by friction could result in larger lips through phenotypic plasticity. To test the influence of the environment on the size and development of lips, we conducted a series of breeding and feeding experiments on Midas cichlids. Full-sibs of Amphilophus labiatus (thick-lipped) and Amphilophus citrinellus (thin-lipped) each were split into a control group which was fed food from the water column and a treatment group whose food was fixed to substrates. We found strong evidence for phenotypic plasticity on lip area in the thick-lipped species, but not in the thin-lipped species. Intermediate phenotypic values were observed in hybrids from thick- and thin-lipped species reared under "control" conditions. Thus, both a genetic, but also a phenotypic plastic component is involved in the development of hypertrophic lips in Neotropical cichlids. Moreover, species-specific adaptive phenotypic plasticity was found, suggesting that plasticity is selected for in recent thick-lipped species.
Collapse
Affiliation(s)
- Gonzalo Machado-Schiaffino
- Chair of Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitaetsstrasse 10, 78457, Konstanz, Germany
| | | | | |
Collapse
|
44
|
Rieseberg L, Vines T, Gow J, Kane N. Molecular Ecology continues to perform well according to the major publication metrics. Introduction. Mol Ecol 2014; 23:1-15. [PMID: 24372750 DOI: 10.1111/mec.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 11/28/2022]
|
45
|
Lee YW, Gould BA, Stinchcombe JR. Identifying the genes underlying quantitative traits: a rationale for the QTN programme. AOB PLANTS 2014; 6:plu004. [PMID: 24790125 PMCID: PMC4038433 DOI: 10.1093/aobpla/plu004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/01/2014] [Indexed: 05/19/2023]
Abstract
The goal of identifying the genes or even nucleotides underlying quantitative and adaptive traits has been characterized as the 'QTN programme' and has recently come under severe criticism. Part of the reason for this criticism is that much of the QTN programme has asserted that finding the genes and nucleotides for adaptive and quantitative traits is a fundamental goal, without explaining why it is such a hallowed goal. Here we outline motivations for the QTN programme that offer general insight, regardless of whether QTNs are of large or small effect, and that aid our understanding of the mechanistic dynamics of adaptive evolution. We focus on five areas: (i) vertical integration of insight across different levels of biological organization, (ii) genetic parallelism and the role of pleiotropy in shaping evolutionary dynamics, (iii) understanding the forces maintaining genetic variation in populations, (iv) distinguishing between adaptation from standing variation and new mutation, and (v) the role of genomic architecture in facilitating adaptation. We argue that rather than abandoning the QTN programme, we should refocus our efforts on topics where molecular data will be the most effective for testing hypotheses about phenotypic evolution.
Collapse
Affiliation(s)
- Young Wha Lee
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, CanadaM5S 3B2
| | - Billie A. Gould
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, CanadaM5S 3B2
| | - John R. Stinchcombe
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, CanadaM5S 3B2
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, CanadaM5S 3B2
- Corresponding author's e-mail address:
| |
Collapse
|
46
|
Diepeveen ET, Roth O, Salzburger W. Immune-related functions of the Hivep gene family in East African cichlid fishes. G3 (BETHESDA, MD.) 2013; 3:2205-17. [PMID: 24142922 PMCID: PMC3852383 DOI: 10.1534/g3.113.008839] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/07/2013] [Indexed: 01/20/2023]
Abstract
Immune-related genes are often characterized by adaptive protein evolution. Selection on immune genes can be particularly strong when hosts encounter novel parasites, for instance, after the colonization of a new habitat or upon the exploitation of vacant ecological niches in an adaptive radiation. We examined a set of new candidate immune genes in East African cichlid fishes. More specifically, we studied the signatures of selection in five paralogs of the human immunodeficiency virus type I enhancer-binding protein (Hivep) gene family, tested their involvement in the immune defense, and related our results to explosive speciation and adaptive radiation events in cichlids. We found signatures of long-term positive selection in four Hivep paralogs and lineage-specific positive selection in Hivep3b in two radiating cichlid lineages. Exposure of the cichlid Astatotilapia burtoni to a vaccination with Vibrio anguillarum bacteria resulted in a positive correlation between immune response parameters and expression levels of three Hivep loci. This work provides the first evidence for a role of Hivep paralogs in teleost immune defense and links the signatures of positive selection to host-pathogen interactions within an adaptive radiation.
Collapse
Affiliation(s)
| | - Olivia Roth
- Evolutionary Ecology of Marine Fishes, Helmholtz Centre of Ocean Research Kiel (GEOMAR), D-24105 Kiel, Germany
| | | |
Collapse
|
47
|
Affiliation(s)
- Luisa Orsini
- Laboratory of Aquatic Ecology, Evolution and Conservation, University of Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
48
|
Maan ME, Sefc KM. Colour variation in cichlid fish: developmental mechanisms, selective pressures and evolutionary consequences. Semin Cell Dev Biol 2013; 24:516-28. [PMID: 23665150 PMCID: PMC3778878 DOI: 10.1016/j.semcdb.2013.05.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/15/2013] [Accepted: 05/01/2013] [Indexed: 12/17/2022]
Abstract
Cichlid fishes constitute one of the most species-rich families of vertebrates. In addition to complex social behaviour and morphological versatility, they are characterised by extensive diversity in colouration, both within and between species. Here, we review the cellular and molecular mechanisms underlying colour variation in this group and the selective pressures responsible for the observed variation. We specifically address the evidence for the hypothesis that divergence in colouration is associated with the evolution of reproductive isolation between lineages. While we conclude that cichlid colours are excellent models for understanding the role of animal communication in species divergence, we also identify taxonomic and methodological biases in the current research effort. We suggest that the integration of genomic approaches with ecological and behavioural studies, across the entire cichlid family and beyond it, will contribute to the utility of the cichlid model system for understanding the evolution of biological diversity.
Collapse
Affiliation(s)
- Martine E. Maan
- University of Groningen, Behavioural Biology, PO Box 11103, 9700 CC Groningen, The Netherlands
| | - Kristina M. Sefc
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| |
Collapse
|
49
|
Roda F, Liu H, Wilkinson MJ, Walter GM, James ME, Bernal DM, Melo MC, Lowe A, Rieseberg LH, Prentis P, Ortiz-Barrientos D. CONVERGENCE AND DIVERGENCE DURING THE ADAPTATION TO SIMILAR ENVIRONMENTS BY AN AUSTRALIAN GROUNDSEL. Evolution 2013; 67:2515-29. [DOI: 10.1111/evo.12136] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/03/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Federico Roda
- School of Biological Sciences; The University of Queensland; St. Lucia; QLD; 4072; Australia
| | - Huanle Liu
- School of Biological Sciences; The University of Queensland; St. Lucia; QLD; 4072; Australia
| | - Melanie J. Wilkinson
- School of Biological Sciences; The University of Queensland; St. Lucia; QLD; 4072; Australia
| | - Gregory M. Walter
- School of Biological Sciences; The University of Queensland; St. Lucia; QLD; 4072; Australia
| | - Maddie E. James
- School of Biological Sciences; The University of Queensland; St. Lucia; QLD; 4072; Australia
| | - Diana M. Bernal
- School of Biological Sciences; The University of Queensland; St. Lucia; QLD; 4072; Australia
| | - Maria C. Melo
- School of Biological Sciences; The University of Queensland; St. Lucia; QLD; 4072; Australia
| | | | | | - Peter Prentis
- Queensland Institute of Technology; Biogeosciences; Brisbane; QLD; 4001; Australia
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences; The University of Queensland; St. Lucia; QLD; 4072; Australia
| |
Collapse
|
50
|
Affiliation(s)
- M Emília Santos
- Zoological Institute, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland.
| | | |
Collapse
|