1
|
Silver GS, Lampman RT, Percival N, Timoshevskaya N, Smith JJ, Bentley KT, Wade J, Narum SR, Hess JE. Genetic Identification of Lamprey Genera and Anadromous Ecotypes in Watersheds of the Northeastern Pacific Ocean. Evol Appl 2025; 18:e70108. [PMID: 40352138 PMCID: PMC12064929 DOI: 10.1111/eva.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 04/14/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025] Open
Abstract
Nonparasitic, nonmigratory Western Brook Lamprey (WBL; Lampetra ayresii), and parasitic, anadromous Western River Lamprey (WRL; L. ayresii) are sympatric lampreys that likely represent different life history variations of a single species. Novel genetic tools are critical for differentiating WBL and WRL, whose larvae preclude morphological identification (ID) and will enable comprehensive assessment of imperiled native lampreys of the Northeastern Pacific (including WBL, WRL, and Pacific Lamprey, Entosphenus tridentatus). We developed 47 candidate single nucleotide polymorphism (SNP) markers using whole genome resequencing of WBL (N = 24) and WRL (N = 15) from Ksi Ts'oohl Ts'ap Creek (Nass River, British Columbia, Canada) which are likely ecotypes distinguished by few divergent SNPs across multiple chromosomes. We used five novel candidate SNPs to perform genetic ID of WBL and WRL ecotypes in collections of mixed native lampreys from lower Columbia River tributaries (N = 1474), Ksi Ts'oohl Ts'ap Creek (N = 352), and ocean phase WRL from the Georgia Basin (Salish Sea, British Columbia, Canada; N = 91). Two previously published SNPs were used to ID genera, Entosphenus versus Lampetra. Morphological ID utilized photographs collected from a subset of genotyped lampreys, and high concordance was demonstrated between ID methods for genera (99%) and Lampetra ecotypes (> 98%). We characterized spatial and temporal composition of lamprey genera and ecotypes surveyed across NE Pacific tributaries under the expectation these compositions would be similar across nearby sites and across years at the same site. Proportions of lamprey genera were highly variable within regions and across years; however, Lampetra ecotypic proportions were spatially and temporally stable. WRL were rare in lower Columbia tributaries (~1% average rate among Lampetra) and common further north (> 40% of Lampetra). Genetic ID methods are powerful monitoring tools that create the novel ability to ascertain genera and ecotypes regardless of life stage, while increasing the efficiency of surveys by eliminating time-intensive morphological data collection.
Collapse
Affiliation(s)
- G. S. Silver
- Columbia River Inter‐Tribal Fish CommissionPortlandOregonUSA
| | - R. T. Lampman
- Yakama Nation Fisheries Resource Management ProgramPacific Lamprey ProjectToppenishWashingtonUSA
| | - N. Percival
- Nisga'a Fisheries and Wildlife, Nisg̱a'a Lisims GovernmentGitlax̱t'aamiksBritish ColumbiaCanada
| | | | - J. J. Smith
- Department of BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - K. T. Bentley
- Washington Department of Fish & WildlifeRidgefieldWashingtonUSA
| | - J. Wade
- Fundy Aqua Services Inc.Nanoose BayBritish ColumbiaCanada
| | - S. R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| | - J. E. Hess
- Columbia River Inter‐Tribal Fish CommissionPortlandOregonUSA
| |
Collapse
|
2
|
Choi TY, Son DC, Oh A, Lee SR. Unveiling a potential threat to forest ecosystems: molecular diagnosis of Alliaria petiolata, a newly introduced alien plant in Korea. FRONTIERS IN PLANT SCIENCE 2024; 15:1395676. [PMID: 39011305 PMCID: PMC11246967 DOI: 10.3389/fpls.2024.1395676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
Identifying stages of a species invasion in a new habitat (i.e., colonization, establishment, and landscape spread) and their primary determinants in biological invasion warrants attention, as it provides vital insights for preventing non-native species from becoming pervasive invaders. However, delineating invasion stages and their associated factors can pose significant challenges due to the ambiguous distinctions between these stages. Alliaria petiolata, one of the most noxious weeds in woodland habitats, has recently been introduced to Korea and observed in a few distant locations. Although the plant's spread has been relatively slow thus far, rapid spread is highly likely in the future, given the high invasive potential reported elsewhere. We indirectly diagnose the current status of A. petiolata invasion in Korea through the assessment of genetic diversity and phylogenetic inferences using genome-wide molecular markers and cytological data. We analyzed 86 individual samples collected from two native and six introduced populations, employing 1,172 SNPs. Our analysis estimated within- and among-population genetic diversity and included two clustering analyses. Furthermore, we investigated potential gene flow and reticulation events among the sampled populations. Our data unraveled that Korean garlic mustard exhibits a hexaploid ploidy level with two distinct chromosome numbers, 2n = 36 and 42. The extent of genetic diversity measured in Korean populations was comparable to that of native populations. Using genome-wide SNP data, we identified three distinct clusters with minor gene flow, while failing to detect indications of reticulation among Korean populations. Based on the multifaceted analyses, our study provides valuable insights into the colonization process and stressed the importance of closely monitoring A. petiolata populations in Korea.
Collapse
Affiliation(s)
- Tae-Young Choi
- Department of Biology Education, College of Education, Chosun University, Gwangju, Republic of Korea
| | - Dong Chan Son
- Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon, Republic of Korea
| | - Ami Oh
- Department of Biology Education, College of Education, Chosun University, Gwangju, Republic of Korea
| | - Soo-Rang Lee
- Department of Biology Education, College of Education, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Lee S, Choi T, Son D. Multiple introductions of divergent lineages and admixture conferred the high invasiveness in a widespread weed ( Hypochaeris radicata). Evol Appl 2024; 17:e13740. [PMID: 38911265 PMCID: PMC11192970 DOI: 10.1111/eva.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Biological invasion consists of spatially and temporally varying stages, accompanied by ecological and evolutionary changes. Understanding the genomics underlying invasion dynamics provides critical insights into the geographic sources and genetic diversity, contributing to successful invasions across space and time. Here, we used genomic data and model-based approaches to characterize the invasion dynamics of Hypochaeris radicata L., a noxious weed in Korea. Genetic diversity and assignment patterns were investigated using 3563 SNPs of 283 individuals sampled from 22 populations. We employed a coalescent-based simulation method to estimate demographic changes for each population and inferred colonization history using both phylogenetic and population genetic model-based approaches. Our data suggest that H. radicata has been repeatedly been introduced to Korea from multiple genetic sources within the last 50 years, experiencing weak population bottlenecks followed by subsequent population expansions. These findings highlight the potential for further range expansion, particularly in the presence of human-mediated dispersal. Our study represents the first population-level genomic research documenting the invasion dynamics of the successful worldwide invader, H. radicata, outside of Europe.
Collapse
Affiliation(s)
- Soo‐Rang Lee
- Department of Biology Education, College of EducationChosun UniversityGwangjuSouth Korea
| | - Tae‐Young Choi
- Department of Biology Education, College of EducationChosun UniversityGwangjuSouth Korea
| | - Dong‐Chan Son
- Division of Forest Biodiversity and HerbariumKorea National ArboretumPocheonKorea
| |
Collapse
|
4
|
Schwaner C, Farhat S, Boutet I, Tanguy A, Barbosa M, Grouzdev D, Pales Espinosa E, Allam B. Combination of RNAseq and RADseq to Identify Physiological and Adaptive Responses to Acidification in the Eastern Oyster (Crassostrea virginica). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:997-1019. [PMID: 37864760 DOI: 10.1007/s10126-023-10255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Ocean acidification (OA) is a major stressor threatening marine calcifiers, including the eastern oyster (Crassostrea virginica). In this paper, we provide insight into the molecular mechanisms associated with resilience to OA, with the dual intentions of probing both acclimation and adaptation potential in this species. C. virginica were spawned, and larvae were reared in control or acidified conditions immediately after fertilization. RNA samples were collected from larvae and juveniles, and DNA samples were collected from juveniles after undergoing OA-induced mortality and used to contrast gene expression (RNAseq) and SNP (ddRADseq) profiles from animals reared under both conditions. Results showed convergence of evidence from both approaches, particularly in genes involved in biomineralization that displayed significant changes in variant frequencies and gene expression levels among juveniles that survived acidification as compared to controls. Downregulated genes were related to immune processes, supporting previous studies demonstrating a reduction in immunity from exposure to OA. Acclimation to OA via regulation of gene expression might confer short-term resilience to immediate threats; however, the costs may not be sustainable, underscoring the importance of selection of resilient genotypes. Here, we identified SNPs associated with survival under OA conditions, suggesting that this commercially and ecologically important species might have the genetic variation needed for adaptation to future acidification. The identification of genetic features associated with OA resilience is a highly-needed step for the development of marker-assisted selection of oyster stocks for aquaculture and restoration activities.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Isabelle Boutet
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier 29680, Roscoff, France
| | - Arnaud Tanguy
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier 29680, Roscoff, France
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Denis Grouzdev
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| |
Collapse
|
5
|
Delomas TA, Willis SC. Estimating microhaplotype allele frequencies from low-coverage or pooled sequencing data. BMC Bioinformatics 2023; 24:415. [PMID: 37923981 PMCID: PMC10623847 DOI: 10.1186/s12859-023-05554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Microhaplotypes have the potential to be more cost-effective than SNPs for applications that require genetic panels of highly variable loci. However, development of microhaplotype panels is hindered by a lack of methods for estimating microhaplotype allele frequency from low-coverage whole genome sequencing or pooled sequencing (pool-seq) data. RESULTS We developed new methods for estimating microhaplotype allele frequency from low-coverage whole genome sequence and pool-seq data. We validated these methods using datasets from three non-model organisms. These methods allowed estimation of allele frequency and expected heterozygosity at depths routinely achieved from pooled sequencing. CONCLUSIONS These new methods will allow microhaplotype panels to be designed using low-coverage WGS and pool-seq data to discover and evaluate candidate loci. The python script implementing the two methods and documentation are available at https://www.github.com/delomast/mhFromLowDepSeq .
Collapse
Affiliation(s)
- Thomas A Delomas
- Agricultural Research Service, United States Department of Agriculture, National Cold Water Marine Aquaculture Center, 483 CBLS, 120 Flagg Road, Kingston, RI, 02881, USA.
| | - Stuart C Willis
- Hagerman Genetics Laboratory, Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| |
Collapse
|
6
|
Swift DG, O'Leary SJ, Grubbs RD, Frazier BS, Fields AT, Gardiner JM, Drymon JM, Bethea DM, Wiley TR, Portnoy DS. Philopatry influences the genetic population structure of the blacktip shark (Carcharhinus limbatus) at multiple spatial scales. Mol Ecol 2023; 32:4953-4970. [PMID: 37566208 DOI: 10.1111/mec.17096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
Understanding how interactions among microevolutionary forces generate genetic population structure of exploited species is vital to the implementation of management policies that facilitate persistence. Philopatry displayed by many coastal shark species can impact gene flow and facilitate selection, and has direct implications for the spatial scales of management. Here, genetic structure of the blacktip shark (Carcharhinus limbatus) was examined using a mixed-marker approach employing mitochondrial control region sequences and 4339 SNP-containing loci generated using ddRAD-Seq. Genetic variation was assessed among young-of-the-year sampled in 11 sites in waters of the United States in the western North Atlantic Ocean, including the Gulf of Mexico. Spatial and environmental analyses detected 68 nuclear loci putatively under selection, enabling separate assessments of neutral and adaptive genetic structure. Both mitochondrial and neutral SNP data indicated three genetically distinct units-the Atlantic, eastern Gulf, and western Gulf-that align with regional stocks and suggest regional philopatry by males and females. Heterogeneity at loci putatively under selection, associated with temperature and salinity, was observed among sites within Gulf units, suggesting local adaptation. Furthermore, five pairs of siblings were identified in the same site across timescales corresponding with female reproductive cycles. This indicates that females re-used a site for parturition, which has the potential to facilitate the sorting of adaptive variation among neighbouring sites. The results demonstrate differential impacts of microevolutionary forces at varying spatial scales and highlight the importance of conserving essential habitats to maintain sources of adaptive variation that may buffer species against environmental change.
Collapse
Affiliation(s)
- Dominic G Swift
- Marine Genomics Laboratory, Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Shannon J O'Leary
- Marine Genomics Laboratory, Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
- Department of Biology, Saint Anselm College, Manchester, New Hampshire, USA
| | - R Dean Grubbs
- Florida State University Coastal and Marine Laboratory, St. Teresa, Florida, USA
| | - Bryan S Frazier
- South Carolina Department of Natural Resources, Marine Resources Research Institute, Charleston, South Carolina, USA
| | - Andrew T Fields
- Marine Genomics Laboratory, Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Jayne M Gardiner
- Division of Natural Sciences, New College of Florida, Sarasota, Florida, USA
| | - J Marcus Drymon
- Coastal Research and Extension Center, Mississippi State University, Biloxi, Mississippi, USA
- Mississippi-Alabama Sea Grant Consortium, Ocean Springs, Mississippi, USA
| | - Dana M Bethea
- NOAA Fisheries, U.S. Department of Commerce, Southeast Regional Office, Interagency Cooperation Branch, Protected Resources Division, St. Petersburg, Florida, USA
| | - Tonya R Wiley
- Havenworth Coastal Conservation, Palmetto, Florida, USA
| | - David S Portnoy
- Marine Genomics Laboratory, Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| |
Collapse
|
7
|
Kim HN, Lee O, Lee HJ, Kim GC, Kim HS, Derbridge JJ, Jo YS. The Origin and Invasion Pathway of Brown Rats Rattus norvegicus on Dok-Do Island Revealed by Genome-Wide Markers from 3-RADseq Approach. Animals (Basel) 2023; 13:ani13071243. [PMID: 37048499 PMCID: PMC10093337 DOI: 10.3390/ani13071243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/12/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Biological invasions are known to cause local extinctions on islands. Dok-do, a small, remote volcanic island in the East Sea of Korea in the western Pacific, has recently been invaded by rats, posing ecological problems. To infer their origin and invasion pathway, we collected rats from Dok-do and from the potential introduction source locations, Ulleung-do in the Pacific Ocean, and four east coastal ports. First, we identified that the brown rat (Rattus norvegicus) was the only rat species occurring at collecting sites based on the key morphological characteristics. To determine the population-level genetic diversity pattern, we applied the 3-RADseq approach. After a series of filtrations (minor allele frequency < 0.05, Hardy–Weinberg equilibrium p < 1 × 10−7), 4042 SNPs were retained for the final dataset from the 25,439 SNPs initially isolated. The spatial structure and genetic diversity pattern of brown rats suggested that the rat population on Dok-do was likely introduced from Ulleung-do. Our work provides practical information that will assist in the management of invasive brown rats in vulnerable island ecosystems.
Collapse
Affiliation(s)
- Han-Na Kim
- Department of Biology Education, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Ohsun Lee
- Department of Biology Education, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Hwa-Jin Lee
- Department of Biology Education, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Gyu-Cheol Kim
- Department of Biology Education, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Hyeon-Soo Kim
- Department of Biology Education, Daegu University, Gyeongsan 38453, Republic of Korea
| | | | - Yeong-Seok Jo
- Department of Biology Education, Daegu University, Gyeongsan 38453, Republic of Korea
| |
Collapse
|
8
|
Cryptic Lineage and Genetic Structure of Acanthopagrus pacificus Populations in a Natural World Heritage Site Revealed by Population Genetic Analysis. DIVERSITY 2022. [DOI: 10.3390/d14121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent studies have revealed extensive genetic differentiation among some populations of marine taxa that were previously believed to be essentially homogeneous because larvae are widely dispersed in ocean currents. Acanthopagrus pacificus is a commercially and ecologically important teleost fish that is endemic to shallow coastal waters and estuaries of some tropical and sub-tropical areas in the West Pacific Ocean. Here, we examined genetic structure and the inferred demographic history of A. pacificus populations from mtDNA control region sequence data. A 677–678 base-pair fragment was sequenced from 159 individuals sampled at three localities across the West Pacific Ocean. Haplotype diversity was high, ranging from 0.915 to 0.989, while nucleotide diversity was low to medium, ranging from 0.8% to 2.60%. Analysis of molecular variance (AMOVA) showed significant genetic subdivision (FST = 0.155, p < 0.05) among sampled populations while pairwise FST estimates also revealed strong genetic differentiation among populations indicating that gene flow was restricted. Two distinct cryptic lineages were identified that were estimated to have diverged during the Pleistocene. In summary, contemporary factors including regional oceanic currents and self-recruitment are considered to have played significant roles in producing the population structure in this fish. In particular, the genetic information generated in the current study will allow appropriate fisheries management and conservation strategies to be developed for this important local fish in the waters around Iriomotejima Island, a World Heritage site.
Collapse
|
9
|
Lee SR, Son DC. Genetic diversity pattern reveals the primary determinant of burcucumber ( Sicyos angulatus L.) invasion in Korea. FRONTIERS IN PLANT SCIENCE 2022; 13:997521. [PMID: 36457533 PMCID: PMC9706109 DOI: 10.3389/fpls.2022.997521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Biological invasion is a complex process associated with propagule pressure, dispersal ability, environmental constraints, and human interventions, which leave genetic signatures. The population genetics of an invasive species thus provides invaluable insights into the patterns of invasion. Burcucumber, one of the most detrimental weeds for soybean production in US, has recently colonized Korea and rapidly spread posing a great threat to the natural ecosystem. We aim to infer the determinants of the rapid burcucumber invasion by examining the genetic diversity, demography, and spread pattern with advanced genomic tools. We employed 2,696 genome-wide single-nucleotide polymorphisms to assess the level of diversity and the spatial pattern associated with the landscape factors and to infer the demographic changes of 24 populations (364 genotypes) across four major river basins with the east coastal streams in South Korea. Through the approximate Bayesian computation, we inferred the likely invasion scenario of burcucumber in Korea. The landscape genetics approach adopting the circuit theory and MaxEnt model was applied to determine the landscape contributors. Our data suggested that most populations have experienced population bottlenecks, which led to lowered within-population genetic diversity and inflated population divergences. Burcucumber colonization in Korea has strongly been affected by demographic bottlenecks and multiple introductions, whereas environmental factors were not the primary determinant of the invasion. Our work highlighted the significance of preventing secondary introductions, particularly for aggressive weedy plants such as the burcucumber.
Collapse
Affiliation(s)
- Soo-Rang Lee
- Department of Biology Education, College of Education, Chosun University, Gwangju, South Korea
| | - Dong Chan Son
- Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon, South Korea
| |
Collapse
|
10
|
Xuereb A, Rougemont Q, Dallaire X, Moore J, Normandeau E, Bougas B, Perreault‐Payette A, Koop BF, Withler R, Beacham T, Bernatchez L. Re-evaluating Coho salmon ( Oncorhynchus kisutch) conservation units in Canada using genomic data. Evol Appl 2022; 15:1925-1944. [PMID: 36426130 PMCID: PMC9679250 DOI: 10.1111/eva.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022] Open
Abstract
Conservation units (CUs) are important tools for supporting the implementation of standardized management practices for exploited species. Following the adoption of the Wild Salmon Policy in Canada, CUs were defined for Pacific salmon based on characteristics related to ecotype, life history and genetic variation using microsatellite markers as indirect measures of local adaptation. Genomic data sets have the potential to improve the definition of CUs by reducing variance around estimates of population genetic parameters, thereby increasing the power to detect more subtle patterns of population genetic structure and by providing an opportunity to incorporate adaptive information more directly with the identification of variants putatively under selection. We used one of the largest genomic data sets recently published for a nonmodel species, comprising 5662 individual Coho salmon (Oncorhynchus kisutch) from 149 sampling locations and a total of 24,542 high-quality SNPs obtained using genotyping-by-sequencing and mapped to the Coho salmon reference genome to (1) evaluate the current delineation of CUs for Coho in Canada and (2) compare patterns of population structure observed using neutral and outlier loci from genotype-environment association analyses to determine whether separate CUs that capture adaptive diversity are needed. Our results reflected CU boundaries on the whole, with the majority of sampling locations managed in the same CU clustering together within genetic groups. However, additional groups that are not currently represented by CUs were also uncovered. We observed considerable overlap in the genetic clusters identified using neutral or candidate loci, indicating a general congruence in patterns of genetic variation driven by local adaptation and gene flow in this species. Consequently, we suggest that the current CU boundaries for Coho salmon are largely well-suited for meeting the Canadian Wild Salmon Policy's objective of defining biologically distinct groups, but we highlight specific areas where CU boundaries may be refined.
Collapse
Affiliation(s)
- Amanda Xuereb
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Quentin Rougemont
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
- CEFE, Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Univ Montpellier, CNRS, EPHE, IRDUniv Paul Valéry MontpellierMontpellierFrance
| | - Xavier Dallaire
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Jean‐Sébastien Moore
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Eric Normandeau
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Bérénice Bougas
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Alysse Perreault‐Payette
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Ben F. Koop
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Ruth Withler
- Department of Fisheries and OceanPacific Biological StationNanaimoBritish ColumbiaCanada
| | - Terry Beacham
- Department of Fisheries and OceanPacific Biological StationNanaimoBritish ColumbiaCanada
| | - Louis Bernatchez
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| |
Collapse
|
11
|
Lv W, Yuan Q, Huang W, Sun X, Lv W, Zhou W. Asian Swamp eel Monopterus albus Population Structure and Genetic Diversity in China. Front Genet 2022; 13:898958. [PMID: 35719368 PMCID: PMC9198659 DOI: 10.3389/fgene.2022.898958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
The Asian swamp eel (Monopterus albus) is one of the most widely distributed freshwater fish in China. In this study, we identified the single nucleotide polymorphisms (SNPs) of M. albus from 19 wild populations in China using restriction-site associated DNA sequencing (RAD-seq), and used SNP markers to investigate the swamp eel the genetic diversity and population genetic structure. A total of 8941794 SNPs were identified. Phylogenetic and principal component analysis suggested that the 19 populations were clustered into four groups: The Jiaoling County (JL) and Poyang Lake (PYH)populations in Group Ⅰ; the Chengdu City (CD), Dali City (YN), Eli Village (EL), Dongting Lake (DTH), Huoqiu County (HQ), and Chaohu Lake (CH) populations in Group Ⅱ; the Puyang City (PY), Chongming Island (CM), Tai Lake (TH), Gaoyou Lake (GYH), Weishan Lake (WSH), Haimen City (HM), Hongze Lake (HZH), Baiyangdian Lake (BYD), Dagushan (DGS), and Pinghu City (PH) populations in group Ⅲ; and the Lingshui County (LS) populations in Group Ⅳ. All 19 populations may have evolved from four ancestors. The genetic diversity was relatively high in CM, GYH, and HM; and low in LS, EL, and JL. The LS, and CM populations had the highest and lowest differentiation from the other populations, respectively. These findings provide new insights for germplasm resources protection and artificial breeding of M. albus.
Collapse
Affiliation(s)
- Weiwei Lv
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Quan Yuan
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Weiwei Huang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaolin Sun
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Weiguang Lv
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wenzong Zhou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
12
|
Jafari O, Zeinalabedini M, Robledo D, Fernandes JMO, Hedayati AA, Arefnezhad B. Genotyping-by-Sequencing Reveals the Impact of Restocking on Wild Common Carp Populations of the Southern Caspian Basin. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.872176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Understanding the population structure and level of genetic diversity of wild populations is fundamental for appropriate stock management and species conservation. The common carp (Cyprinus carpio) is one of the most important bony fish throughout the Southern coastline of the Caspian Sea, but captures of this species have seen a dramatic reduction during the last decade. As a consequence, a restocking program has been put in place to maintain C. carpio populations, but its impact is not clear. In the present study, the population structure and genetic diversity of C. carpio in the Southern Caspian basin was determined using 17,828 single-nucleotide polymorphism (SNP) markers. A total of 117 individuals collected from four different locations in the southern Caspian basin and a farm were genotyped by genotyping-by-sequencing. The overall Fst obtained was 0.04, indicating a low level of differentiation between populations, and most genetic diversity was attributed to within population variation (97%). The low Fst values suggest that frequent migration events between different locations occur, and three migration events were inferred in the present study. However, each population still showed a distinct genetic profile, which allowed distinguishing the origin of the fish. This indicates that the ongoing restocking program is maintaining the differences between populations to some extent. Nonetheless, high inbreeding and low heterozygosity were detected in all populations, suggesting that additional conservation efforts are required to protect C. carpio populations in the Southern coast of the Caspian Sea.
Collapse
|
13
|
Miller AK, Timoshevskaya N, Smith JJ, Gillum J, Sharif S, Clarke S, Baker C, Kitson J, Gemmell NJ, Alexander A. Population genomics of New Zealand pouched lamprey (kanakana; piharau; Geotria australis). J Hered 2022; 113:380-397. [PMID: 35439308 PMCID: PMC9308044 DOI: 10.1093/jhered/esac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/23/2022] [Indexed: 11/12/2022] Open
Abstract
Pouched lamprey (Geotria australis) or kanakana/piharau is a culturally and ecologically significant jawless fish that is distributed throughout Aotearoa New Zealand. Despite its importance, much remains unknown about historical relationships and gene flow between populations of this enigmatic species within New Zealand. To help inform management, we assembled a draft G. australis genome and completed the first comprehensive population genomics analysis of pouched lamprey within New Zealand using targeted gene sequencing (Cyt-b and COI) and restriction site-associated DNA sequencing (RADSeq) methods. Employing 16 000 genome-wide single nucleotide polymorphisms (SNPs) derived from RADSeq (n = 186) and sequence data from Cyt-b (766 bp, n = 94) and COI (589 bp, n = 20), we reveal low levels of structure across 10 sampling locations spanning the species range within New Zealand. F-statistics, outlier analyses, and STRUCTURE suggest a single panmictic population, and Mantel and EEMS tests reveal no significant isolation by distance. This implies either ongoing gene flow among populations or recent shared ancestry among New Zealand pouched lamprey. We can now use the information gained from these genetic tools to assist managers with monitoring effective population size, managing potential diseases, and conservation measures such as artificial propagation programs. We further demonstrate the general utility of these genetic tools for acquiring information about elusive species.
Collapse
Affiliation(s)
- Allison K Miller
- Anatomy Department, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Nataliya Timoshevskaya
- Department of Biology, University of Kentucky, 101 Morgan Building, Lexington, Kentucky, 40506-0225 USA
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, 101 Morgan Building, Lexington, Kentucky, 40506-0225 USA
| | - Joanne Gillum
- Anatomy Department, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Saeed Sharif
- Anatomy Department, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Shannon Clarke
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Cindy Baker
- National Institute of Water and Atmospheric Research Limited, PO Box 11 115, Hamilton 3251 New Zealand
| | - Jane Kitson
- Ngāi Tahu, Kitson Consulting Ltd, Invercargill/Waihopai, 9879, New Zealand
| | - Neil J Gemmell
- Anatomy Department, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| | - Alana Alexander
- Anatomy Department, School of Biomedical Sciences, University of Otago, 270 Great King Street, Dunedin, 9016, New Zealand
| |
Collapse
|
14
|
Lee SR, Choi TY, Jung SY. Genetic Diversity on a Rare Terrestrial Orchid, Habenaria linearifolia in South Korea: Implications for Conservation Offered by Genome-Wide Single Nucleotide Polymorphisms. FRONTIERS IN PLANT SCIENCE 2022; 13:772621. [PMID: 35283866 PMCID: PMC8907889 DOI: 10.3389/fpls.2022.772621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Monitoring intraspecific diversity offers invaluable insights on conservation practices as the variation is the product of species evolution. Accordingly, the role of population genetic diversity has drawn great attention over the last century responding to the biodiversity loss induced by a series of anthropogenic changes. Orchids are one of the most diverse, yet ironically most rapidly disappearing plant groups due to the specialized habitat preferences. Thus, population-level genetic diversity studies may offer a powerful tool for orchid conservation programs. Using the 3 restriction site-associated DNA (3RAD) approach, 2,734 genome-wide single nucleotide polymorphisms (SNPs) were isolated. With the 2,734 SNPs, we investigated genetic diversity and population structure on 72 individuals of Habenaria linearifolia and Habenaria cruciformis in South Korea. Overall, the genetic diversity was well maintained in South Korean Habenaria, but high F ST values were estimated suggesting large population diversification with limited gene flow. Bayesian assignment analysis revealed a morphologically cryptic diversity pattern in Jeju Island populations, which might serve as an evolutionarily significant unit.
Collapse
Affiliation(s)
- Soo-Rang Lee
- Department of Biology Education, College of Education, Chosun University, Gwangju, South Korea
| | - Tae-Young Choi
- Department of Biology Education, College of Education, Chosun University, Gwangju, South Korea
| | - Su-Young Jung
- Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon, South Korea
| |
Collapse
|
15
|
Development and Validation of a Multi-Locus PCR-HRM Method for Species Identification in Mytilus Genus with Food Authenticity Purposes. Foods 2021; 10:foods10081684. [PMID: 34441462 PMCID: PMC8391999 DOI: 10.3390/foods10081684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
DNA-based methods using informative markers such as single nucleotide polymorphism (SNPs) are suitable for reliable species identification (SI) needed to enforce compliance with seafood labelling regulations (EU No.1379/2013). We developed a panel of 10 highly informative SNPs to be genotyped by PCR-High resolution melting (HRM) for SI in the Mytilus genus through in silico and in vitro stages. Its fitness for purpose and concordance were assessed by an internal validation process and by the transference to a second laboratory. The method was applicable to identify M. chilensis, M. edulis, M. galloprovincialis and M. trossulus mussels, fresh, frozen and canned with brine, oil and scallop sauce, but not in preserves containing acetic acid (wine vinegar) and tomato sauce. False-positive and negative rates were zero. Sensitivity, expressed as limit of detection (LOD), ranged between 5 and 8 ng/μL. The method was robust against small variations in DNA quality, annealing time and temperature, primer concentration, reaction volume and HRM kit. Reference materials and 220 samples were tested in an inter-laboratory assay obtaining an “almost perfect agreement” (κ = 0.925, p < 0.001). In conclusion, the method was suitable for the intended use and to be applied in the seafood industry.
Collapse
|
16
|
Ajmani N, Yasmin T, Docker MF, Good SV. Transcriptomic analysis of gonadal development in parasitic and non-parasitic lampreys (Ichthyomyzon spp.), with a comparison of genomic resources in these non-model species. G3-GENES GENOMES GENETICS 2021; 11:6134134. [PMID: 33576778 PMCID: PMC8022942 DOI: 10.1093/g3journal/jkab030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
Lampreys are jawless fishes that diverged ∼550 million years ago from other vertebrates. Sequencing of the somatic and the germline genomes of the sea lamprey (Petromyzon marinus) in 2013 and 2018, respectively, has helped to improve our understanding of the genes and gene networks that control many aspects of lamprey development. However, little is known about the genetic basis of gonadal differentiation in lampreys, partly due to the prolonged period during which their gonads remain sexually indeterminate. We performed RNA-sequencing on gonadal samples from four chestnut lamprey (Ichthyomyzon castaneus) and six northern brook lamprey (I. fossor) to identify differentially expressed genes (DEG’s) and pathways associated with transcriptomic differences in: (1) larvae during early gonadal differentiation versus definitive females (i.e., with oocytes in the slow cytoplasmic growth phase); and (2) females versus definitive males undergoing spermatogonial proliferation. We compared the mapping percentages of these transcriptomes to the two available sea lamprey reference genomes and three annotation files (Ensembl and UCSC for the somatic genome and SIMRbase for the germline genome). We found that mapping the RNA-seq reads to the germline genome gave superior results and, using Trinotate, we provided new putative annotations for 8161 genes in the somatic assembly and 880 genes for the germline assembly. We identified >2000 DEG’s between stages and sexes, as well as biological pathways associated with each. Interestingly, some of the upregulated genes (e.g., DEG’s associated with spermiation) suggest that changes in gene expression can precede morphological changes by several months. In contrast, only 81 DEG’s were evident between the chestnut lamprey (that remains sexually immature during an extended post-metamorphic parasitic feeding phase) and the nonparasitic northern brook lamprey (that undergoes sexual maturation near the end of metamorphosis), but few replicates were available for comparable stages and sexes. This work lays the foundation for identifying and confirming the orthology and the function of genes involved in gonadal development in these and other lamprey species across more developmental stages.
Collapse
Affiliation(s)
- Nisha Ajmani
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| | - Tamanna Yasmin
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| | - Margaret F Docker
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| | - Sara V Good
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada.,Department of Biology, University of Winnipeg, Winnipeg, Canada
| |
Collapse
|
17
|
Rougemont Q, Dolo V, Oger A, Besnard AL, Huteau D, Coutellec MA, Perrier C, Launey S, Evanno G. Riverscape genetics in brook lamprey: genetic diversity is less influenced by river fragmentation than by gene flow with the anadromous ecotype. Heredity (Edinb) 2021; 126:235-250. [PMID: 32989279 PMCID: PMC8027852 DOI: 10.1038/s41437-020-00367-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 01/05/2023] Open
Abstract
Understanding the effect of human-induced landscape fragmentation on gene flow and evolutionary potential of wild populations has become a major concern. Here, we investigated the effect of riverscape fragmentation on patterns of genetic diversity in the freshwater resident European brook lamprey (Lampetra planeri) that has a low ability to pass obstacles to migration. We tested the hypotheses of (i) asymmetric gene flow following water current and (ii) an effect of gene flow with the closely related anadromous river lamprey (L. fluviatilis) ecotype on L. planeri genetic diversity. We genotyped 2472 individuals, including 225 L. fluviatilis, sampled from 81 sites upstream and downstream barriers to migration, in 29 western European rivers. Linear modelling revealed a strong positive relationship between genetic diversity and the distance from the river source, consistent with expected patterns of decreased gene flow into upstream populations. However, the presence of anthropogenic barriers had a moderate effect on spatial genetic structure. Accordingly, we found evidence for downstream-directed gene flow, supporting the hypothesis that barriers do not limit dispersal mediated by water flow. Downstream L. planeri populations in sympatry with L. fluviatilis displayed consistently higher genetic diversity. We conclude that genetic drift and slight downstream gene flow drive the genetic make-up of upstream L. planeri populations whereas gene flow between ecotypes maintains higher levels of genetic diversity in L. planeri populations sympatric with L. fluviatilis. We discuss the implications of these results for the design of conservation strategies of lamprey, and other freshwater organisms with several ecotypes, in fragmented dendritic river networks.
Collapse
Affiliation(s)
- Quentin Rougemont
- ESE, Ecology and Ecosystem Health, INRAE, Agrocampus Ouest, 35042, Rennes, France.
- Département de biologie, Institut de Biologie Intégrative etsu des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada.
| | - Victoria Dolo
- ESE, Ecology and Ecosystem Health, INRAE, Agrocampus Ouest, 35042, Rennes, France
| | - Adrien Oger
- ESE, Ecology and Ecosystem Health, INRAE, Agrocampus Ouest, 35042, Rennes, France
| | - Anne-Laure Besnard
- ESE, Ecology and Ecosystem Health, INRAE, Agrocampus Ouest, 35042, Rennes, France
| | - Dominique Huteau
- ESE, Ecology and Ecosystem Health, INRAE, Agrocampus Ouest, 35042, Rennes, France
| | | | - Charles Perrier
- Centre de Biologie pour la Gestion des Populations UMR CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Sophie Launey
- ESE, Ecology and Ecosystem Health, INRAE, Agrocampus Ouest, 35042, Rennes, France
| | - Guillaume Evanno
- ESE, Ecology and Ecosystem Health, INRAE, Agrocampus Ouest, 35042, Rennes, France
- OFB, INRAE, Agrocampus Ouest, University Pau Pays Adour, Management of Diadromous Fish in their Environment, Rennes, France
| |
Collapse
|
18
|
Undin M, Lockhart PJ, Hills SFK, Castro I. Genetic Rescue and the Plight of Ponui Hybrids. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2020.622191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Long-term sustainable and resilient populations is a key goal of conservation. How to best achieve this is controversial. There are, for instance, polarized views concerning the fitness and conservation value of hybrid populations founded through multi-origin translocations. A classic example concerns Apteryx (kiwi) in New Zealand. The A. mantelli of Ponui Island constitute a hybrid population where the birds are highly successful in their island habitat. A key dilemma for managers is understanding the reason for this success. Are the hybrid birds of Ponui Island of “no future conservation value” as recently asserted, or do they represent an outstanding example of genetic rescue and an important resource for future translocations? There has been a paradigm shift in scientific thinking concerning hybrids, but the ecological significance of admixed genomes remains difficult to assess. This limits what we can currently predict in conservation science. New understanding from genome science challenges the sufficiency of population genetic models to inform decision making and suggests instead that the contrasting outcomes of hybridization, “outbreeding depression” and “heterosis,” require understanding additional factors that modulate gene and protein expression and how these factors are influenced by the environment. We discuss these findings and the investigations that might help us to better understand the birds of Ponui, inform conservation management of kiwi and provide insight relevant for the future survival of Apteryx.
Collapse
|
19
|
Amaral AR, Chanfana C, Smith BD, Mansur R, Collins T, Baldwin R, Minton G, Parra GJ, Krützen M, Jefferson TA, Karczmarski L, Guissamulo A, Brownell RL, Rosenbaum HC. Genomics of Population Differentiation in Humpback Dolphins, Sousa spp. in the Indo-Pacific Ocean. J Hered 2020; 111:652-660. [PMID: 33475708 DOI: 10.1093/jhered/esaa055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Speciation is a fundamental process in evolution and crucial to the formation of biodiversity. It is a continuous and complex process, which can involve multiple interacting barriers leading to heterogeneous genomic landscapes with various peaks of divergence among populations. In this study, we used a population genomics approach to gain insights on the speciation process and to understand the population structure within the genus Sousa across its distribution in the Indo-Pacific region. We found 5 distinct clusters, corresponding to S. plumbea along the eastern African coast and the Arabian Sea, the Bangladesh population, S. chinensis off Thailand and S. sahulensis off Australian waters. We suggest that the high level of differentiation found, even across geographically close areas, is likely determined by different oceanographic features such as sea surface temperature and primary productivity.
Collapse
Affiliation(s)
- Ana R Amaral
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY.,Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Cátia Chanfana
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Brian D Smith
- Wildlife Conservation Society, Ocean Giants Program, Bronx, NY
| | - Rubaiyat Mansur
- Wildlife Conservation Society, Ocean Giants Program, Bronx, NY
| | - Tim Collins
- Wildlife Conservation Society, Ocean Giants Program, Bronx, NY
| | | | - Gianna Minton
- Megaptera Marine Conservation, The Hague, The Netherlands
| | - Guido J Parra
- Cetacean Ecology, Behaviour and Evolution Lab, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Michael Krützen
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, CH Zurich, Switzerland
| | | | - Leszek Karczmarski
- Division of Cetacean Ecology and Division of Comparative Behavioural Ecology, Cetacea Research Institute, Lantau, Hong Kong.,Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Almeida Guissamulo
- Universidade Eduardo Mondlane, Museu de Historia Natural, Praca Travessia do Zambeze, Maputo, Mozambique
| | - Robert L Brownell
- NOAA Fisheries, Southwest Fisheries Science Center, La Jolla Shores Drive, La Jolla, CA
| | - Howard C Rosenbaum
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY.,Wildlife Conservation Society, Ocean Giants Program, Bronx, NY
| |
Collapse
|
20
|
Stuart KC, Cardilini APA, Cassey P, Richardson MF, Sherwin WB, Rollins LA, Sherman CDH. Signatures of selection in a recent invasion reveal adaptive divergence in a highly vagile invasive species. Mol Ecol 2020; 30:1419-1434. [PMID: 33463838 DOI: 10.1111/mec.15601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Abstract
A detailed understanding of population genetics in invasive populations helps us to identify drivers of successful alien introductions. Here, we investigate putative signals of selection in Australian populations of invasive common starlings, Sturnus vulgaris, and seek to understand how these have been influenced by introduction history. We used reduced representation sequencing to determine population structure, and identify Single Nucleotide Polymorphisms (SNPs) that are putatively under selection. We found that since their introduction into Australia, starling populations have become genetically differentiated despite the potential for high levels of dispersal, and that starlings have responded to selective pressures imposed by a wide range of environmental conditions across their geographic range. Isolation by distance appears to have played a strong role in determining genetic substructure across the starling's Australian range. Analyses of candidate SNPs that are putatively under selection indicated that aridity, precipitation and temperature may be important factors driving adaptive variation across the starling's invasive range in Australia. However, we also noted that the historic introduction regime may leave footprints on sites flagged as being under adaptive selection, and encourage critical interpretation of selection analyses in non-native populations.
Collapse
Affiliation(s)
- Katarina C Stuart
- Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Adam P A Cardilini
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Phillip Cassey
- Centre for Applied Conservation Science and School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark F Richardson
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia.,Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - William B Sherwin
- Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Lee A Rollins
- Evolution & Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Craig D H Sherman
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
21
|
Hess JE, Smith JJ, Timoshevskaya N, Baker C, Caudill CC, Graves D, Keefer ML, Kinziger AP, Moser ML, Porter LL, Silver G, Whitlock SL, Narum SR. Genomic islands of divergence infer a phenotypic landscape in Pacific lamprey. Mol Ecol 2020; 29:3841-3856. [PMID: 32814354 DOI: 10.1111/mec.15605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/26/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Abstract
High rates of dispersal can breakdown coadapted gene complexes. However, concentrated genomic architecture (i.e., genomic islands of divergence) can suppress recombination to allow evolution of local adaptations despite high gene flow. Pacific lamprey (Entosphenus tridentatus) is a highly dispersive anadromous fish. Observed trait diversity and evidence for genetic basis of traits suggests it may be locally adapted. We addressed whether concentrated genomic architecture could influence local adaptation for Pacific lamprey. Using two new whole genome assemblies and genotypes from 7,716 single nucleotide polymorphism (SNP) loci in 518 individuals from across the species range, we identified four genomic islands of divergence (on chromosomes 01, 02, 04, and 22). We determined robust phenotype-by-genotype relationships by testing multiple traits across geographic sites. These trait associations probably explain genomic divergence across the species' range. We genotyped a subset of 302 broadly distributed SNPs in 2,145 individuals for association testing for adult body size, sexual maturity, migration distance and timing, adult swimming ability, and larval growth. Body size traits were strongly associated with SNPs on chromosomes 02 and 04. Moderate associations also implicated SNPs on chromosome 01 as being associated with variation in female maturity. Finally, we used candidate SNPs to extrapolate a heterogeneous spatiotemporal distribution of these predicted phenotypes based on independent data sets of larval and adult collections. These maturity and body size results guide future elucidation of factors driving regional optimization of these traits for fitness. Pacific lamprey is culturally important and imperiled. This research addresses biological uncertainties that challenge restoration efforts.
Collapse
Affiliation(s)
- Jon E Hess
- Columbia River Inter-Tribal Fish Commission, Portland, OR, USA
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | | | - Cyndi Baker
- Oregon Department of Fish and Wildlife, Clackamas, OR, USA
| | | | - David Graves
- Columbia River Inter-Tribal Fish Commission, Portland, OR, USA
| | | | | | | | - Laurie L Porter
- Columbia River Inter-Tribal Fish Commission, Portland, OR, USA
| | - Greg Silver
- Columbia River Inter-Tribal Fish Commission, Portland, OR, USA
| | | | - Shawn R Narum
- Columbia River Inter-Tribal Fish Commission, Hagerman, ID, USA
| |
Collapse
|
22
|
Dorant Y, Cayuela H, Wellband K, Laporte M, Rougemont Q, Mérot C, Normandeau E, Rochette R, Bernatchez L. Copy number variants outperform SNPs to reveal genotype–temperature association in a marine species. Mol Ecol 2020; 29:4765-4782. [PMID: 32803780 DOI: 10.1111/mec.15565] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yann Dorant
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Hugo Cayuela
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Kyle Wellband
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Martin Laporte
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Quentin Rougemont
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Claire Mérot
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Rémy Rochette
- Department of Biology University of New Brunswick Saint John NB Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| |
Collapse
|
23
|
Asaduzzaman M, Wahab MA, Rahman MM, Mariom, Nahiduzzaman M, Rahman MJ, Roy BK, Phillips MJ, Wong LL. Morpho-Genetic Divergence and Adaptation of Anadromous Hilsa shad (Tenualosa ilisha) Along Their Heterogenic Migratory Habitats. FRONTIERS IN MARINE SCIENCE 2020; 7. [DOI: 10.3389/fmars.2020.00554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
|
24
|
Sard NM, Smith SR, Homola JJ, Kanefsky J, Bravener G, Adams JV, Holbrook CM, Hrodey PJ, Tallon K, Scribner KT. RAPTURE (RAD capture) panel facilitates analyses characterizing sea lamprey reproductive ecology and movement dynamics. Ecol Evol 2020; 10:1469-1488. [PMID: 32076528 PMCID: PMC7029094 DOI: 10.1002/ece3.6001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
Genomic tools are lacking for invasive and native populations of sea lamprey (Petromyzon marinus). Our objective was to discover single nucleotide polymorphism (SNP) loci to conduct pedigree analyses to quantify reproductive contributions of adult sea lampreys and dispersion of sibling larval sea lampreys of different ages in Great Lakes tributaries. Additional applications of data were explored using additional geographically expansive samples. We used restriction site-associated DNA sequencing (RAD-Seq) to discover genetic variation in Duffins Creek (DC), Ontario, Canada, and the St. Clair River (SCR), Michigan, USA. We subsequently developed RAD capture baits to genotype 3,446 RAD loci that contained 11,970 SNPs. Based on RAD capture assays, estimates of variance in SNP allele frequency among five Great Lakes tributary populations (mean F ST 0.008; range 0.00-0.018) were concordant with previous microsatellite-based studies; however, outlier loci were identified that contributed substantially to spatial population genetic structure. At finer scales within streams, simulations indicated that accuracy in genetic pedigree reconstruction was high when 200 or 500 independent loci were used, even in situations of high spawner abundance (e.g., 1,000 adults). Based on empirical collections of larval sea lamprey genotypes, we found that age-1 and age-2 families of full and half-siblings were widely but nonrandomly distributed within stream reaches sampled. Using the genomic scale set of SNP loci developed in this study, biologists can rapidly genotype sea lamprey in non-native and native ranges to investigate questions pertaining to population structuring and reproductive ecology at previously unattainable scales.
Collapse
Affiliation(s)
- Nicholas M. Sard
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichigan
- Biology DepartmentSUNY OswegoOswegoNew York
| | - Seth R. Smith
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichigan
| | - Jared J. Homola
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichigan
| | - Jeannette Kanefsky
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichigan
| | | | - Jean V. Adams
- Great Lakes Science CenterU.S. Geological SurveyAnn ArborMichigan
| | - Christopher M. Holbrook
- Great Lakes Science CenterHammond Bay Biological StationU.S. Geological SurveyMillersburgMichigan
| | | | - Kevin Tallon
- Fisheries and Oceans CanadaSault Ste. MarieONCanada
| | - Kim T. Scribner
- Department of Fisheries and WildlifeMichigan State UniversityEast LansingMichigan
- Department of Integrative BiologyState UniversityEast LansingMichigan
| |
Collapse
|
25
|
Verwimp C, Vansteenbrugge L, Derycke S, Kerkhove T, Muylle H, Honnay O, Ruttink T, Roldán‐Ruiz I, Hostens K. Population genomic structure of the gelatinous zooplankton species Mnemiopsis leidyi in its nonindigenous range in the North Sea. Ecol Evol 2020; 10:11-25. [PMID: 31988713 PMCID: PMC6972810 DOI: 10.1002/ece3.5468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 11/07/2022] Open
Abstract
Nonindigenous species pose a major threat for coastal and estuarine ecosystems. Risk management requires genetic information to establish appropriate management units and infer introduction and dispersal routes. We investigated one of the most successful marine invaders, the ctenophore Mnemiopsis leidyi, and used genotyping-by-sequencing (GBS) to explore the spatial population structure in its nonindigenous range in the North Sea. We analyzed 140 specimens collected in different environments, including coastal and estuarine areas, and ports along the coast. Single nucleotide polymorphisms (SNPs) were called in approximately 40 k GBS loci. Population structure based on the neutral SNP panel was significant (F ST .02; p < .01), and a distinct genetic cluster was identified in a port along the Belgian coast (Ostend port; pairwise F ST .02-.04; p < .01). Remarkably, no population structure was detected between geographically distant regions in the North Sea (the Southern part of the North Sea vs. the Kattegat/Skagerrak region), which indicates substantial gene flow at this geographical scale and recent population expansion of nonindigenous M. leidyi. Additionally, seven specimens collected at one location in the indigenous range (Chesapeake Bay, USA) were highly differentiated from the North Sea populations (pairwise F ST .36-.39; p < .01). This study demonstrates the utility of GBS to investigate fine-scale population structure of gelatinous zooplankton species and shows high population connectivity among nonindigenous populations of this recently introduced species in the North Sea. OPEN RESEARCH BADGES This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at: The DNA sequences generated for this study are deposited in the NCBI sequence read archive under SRA accession numbers SRR6950721-SRR6950884, and will be made publically available upon publication of this manuscript.
Collapse
Affiliation(s)
- Christophe Verwimp
- Animal Sciences UnitFlanders Research Institute for Agriculture, Fisheries and Food (ILVO)OostendeBelgium
- Plant Sciences UnitFlanders Research Institute for Agriculture, Fisheries and Food (ILVO)MelleBelgium
- Department of Biology, Plant Conservation and Population BiologyUniversity of Leuven (KUL)HeverleeBelgium
| | - Lies Vansteenbrugge
- Animal Sciences UnitFlanders Research Institute for Agriculture, Fisheries and Food (ILVO)OostendeBelgium
| | - Sofie Derycke
- Animal Sciences UnitFlanders Research Institute for Agriculture, Fisheries and Food (ILVO)OostendeBelgium
- Marine Biology Research GroupGhent UniversityGentBelgium
| | - Thomas Kerkhove
- Animal Sciences UnitFlanders Research Institute for Agriculture, Fisheries and Food (ILVO)OostendeBelgium
- Marine Biology Research GroupGhent UniversityGentBelgium
| | - Hilde Muylle
- Plant Sciences UnitFlanders Research Institute for Agriculture, Fisheries and Food (ILVO)MelleBelgium
| | - Olivier Honnay
- Department of Biology, Plant Conservation and Population BiologyUniversity of Leuven (KUL)HeverleeBelgium
| | - Tom Ruttink
- Plant Sciences UnitFlanders Research Institute for Agriculture, Fisheries and Food (ILVO)MelleBelgium
| | - Isabel Roldán‐Ruiz
- Plant Sciences UnitFlanders Research Institute for Agriculture, Fisheries and Food (ILVO)MelleBelgium
- Department of Plant Biotechnology and BioinformaticsGhent UniversityZwijnaardeBelgium
| | - Kris Hostens
- Animal Sciences UnitFlanders Research Institute for Agriculture, Fisheries and Food (ILVO)OostendeBelgium
| |
Collapse
|
26
|
Asaduzzaman M, Igarashi Y, Wahab MA, Nahiduzzaman M, Rahman MJ, Phillips MJ, Huang S, Asakawa S, Rahman MM, Wong LL. Population Genomics of an Anadromous Hilsa Shad Tenualosa ilisha Species across Its Diverse Migratory Habitats: Discrimination by Fine-Scale Local Adaptation. Genes (Basel) 2019; 11:46. [PMID: 31905942 PMCID: PMC7017241 DOI: 10.3390/genes11010046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/23/2022] Open
Abstract
The migration of anadromous fish in heterogenic environments unceasingly imposes a selective pressure that results in genetic variation for local adaptation. However, discrimination of anadromous fish populations by fine-scale local adaptation is challenging because of their high rate of gene flow, highly connected divergent population, and large population size. Recent advances in next-generation sequencing (NGS) have expanded the prospects of defining the weakly structured population of anadromous fish. Therefore, we used NGS-based restriction site-associated DNA (NextRAD) techniques on 300 individuals of an anadromous Hilsa shad (Tenualosa ilisha) species, collected from nine strategic habitats, across their diverse migratory habitats, which include sea, estuary, and different freshwater rivers. The NextRAD technique successfully identified 15,453 single nucleotide polymorphism (SNP) loci. Outlier tests using the FST OutFLANK and pcadapt approaches identified 74 and 449 SNPs (49 SNPs being common), respectively, as putative adaptive loci under a divergent selection process. Our results, based on the different cluster analyses of these putatively adaptive loci, suggested that local adaptation has divided the Hilsa shad population into two genetically structured clusters, in which marine and estuarine collection sites were dominated by individuals of one genetic cluster and different riverine collection sites were dominated by individuals of another genetic cluster. The phylogenetic analysis revealed that all the riverine populations of Hilsa shad were further subdivided into the north-western riverine (turbid freshwater) and the north-eastern riverine (clear freshwater) ecotypes. Among all of the putatively adaptive loci, only 36 loci were observed to be in the coding region, and the encoded genes might be associated with important biological functions related to the local adaptation of Hilsa shad. In summary, our study provides both neutral and adaptive contexts for the observed genetic divergence of Hilsa shad and, consequently, resolves the previous inconclusive findings on their population genetic structure across their diverse migratory habitats. Moreover, the study has clearly demonstrated that NextRAD sequencing is an innovative approach to explore how dispersal and local adaptation can shape genetic divergence of non-model anadromous fish that intersect diverse migratory habitats during their life-history stages.
Collapse
Affiliation(s)
- Md Asaduzzaman
- Department of Marine Bioresource Science, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Khulsi, Chattogram 4225, Bangladesh
- Department of Aquatic Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (Y.I.); (S.H.); (S.A.)
| | - Yoji Igarashi
- Department of Aquatic Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (Y.I.); (S.H.); (S.A.)
| | - Md Abdul Wahab
- WorldFish, Bangladesh and South Asia Office, Banani, Dhaka 1213, Bangladesh; (M.A.W.); (M.N.); (M.J.R.)
| | - Md Nahiduzzaman
- WorldFish, Bangladesh and South Asia Office, Banani, Dhaka 1213, Bangladesh; (M.A.W.); (M.N.); (M.J.R.)
| | - Md Jalilur Rahman
- WorldFish, Bangladesh and South Asia Office, Banani, Dhaka 1213, Bangladesh; (M.A.W.); (M.N.); (M.J.R.)
| | - Michael J. Phillips
- WorldFish Headquarters, Jalan Batu Maung, Batu Muang, Penang 11960, Malaysia;
| | - Songqian Huang
- Department of Aquatic Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (Y.I.); (S.H.); (S.A.)
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (Y.I.); (S.H.); (S.A.)
| | - Md Moshiur Rahman
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna 9208, Bangladesh;
| | - Li Lian Wong
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala-Terengganu, Terengganu 21030, Malaysia
| |
Collapse
|
27
|
Prunier J, Lemaçon A, Bastien A, Jafarikia M, Porth I, Robert C, Droit A. LD-annot: A Bioinformatics Tool to Automatically Provide Candidate SNPs With Annotations for Genetically Linked Genes. Front Genet 2019; 10:1192. [PMID: 31850063 PMCID: PMC6889475 DOI: 10.3389/fgene.2019.01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/28/2019] [Indexed: 11/24/2022] Open
Abstract
A multitude of model and non-model species studies have now taken full advantage of powerful high-throughput genotyping advances such as SNP arrays and genotyping-by-sequencing (GBS) technology to investigate the genetic basis of trait variation. However, due to incomplete genome coverage by these technologies, the identified SNPs are likely in linkage disequilibrium (LD) with the causal polymorphisms, rather than be causal themselves. In addition, researchers could benefit from annotations for the identified candidate SNPs and, simultaneously, for all neighboring genes in genetic linkage. In such case, LD extent estimation surrounding the candidate SNPs is required to determine the regions encompassing genes of interest. We describe here an automated pipeline, “LD-annot,” designed to delineate specific regions of interest for a given experiment and candidate polymorphisms on the basis of LD extent, and furthermore, provide annotations for all genes within such regions. LD-annot uses standard file formats, bioinformatics tools, and languages to provide identifiers, coordinates, and annotations for genes in genetic linkage with each candidate polymorphism. Although the focus lies upon SNP arrays and GBS data as they are being routinely deployed, this pipeline can be applied to a variety of datasets as long as genotypic data are available for a high number of polymorphisms and formatted into a vcf file. A checkpoint procedure in the pipeline allows to test several threshold values for linkage without having to rerun the entire pipeline, thus saving the user computational time and resources. We applied this new pipeline to four different sample sets: two breeding populations GBS datasets, one within-pedigree SNP set coming from whole genome sequencing (WGS), and a very large multi-varieties SNP dataset obtained from WGS, representing variable sample sizes, and numbers of polymorphisms. LD-annot performed within minutes, even when very high numbers of polymorphisms are investigated and thus will efficiently assist research efforts aimed at identifying biologically meaningful genetic polymorphisms underlying phenotypic variation. LD-annot tool is available under a GPL license from https://github.com/ArnaudDroitLab/LD-annot.
Collapse
Affiliation(s)
- Julien Prunier
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec, QC, Canada.,Forestry Research Centre, Forestry Department, Université Laval, Quebec, QC, Canada
| | - Audrey Lemaçon
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec, QC, Canada
| | - Alexandre Bastien
- Faculty of Agricultural and Food Science, Université Laval, Quebec, QC, Canada
| | - Mohsen Jafarikia
- Canadian Centre for Swine Improvement, Ottawa, ON, Canada.,Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Ilga Porth
- Forestry Research Centre, Forestry Department, Université Laval, Quebec, QC, Canada
| | - Claude Robert
- Forestry Research Centre, Forestry Department, Université Laval, Quebec, QC, Canada
| | - Arnaud Droit
- Genomics Center, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, Quebec, QC, Canada
| |
Collapse
|
28
|
Fine-scale population structure and ecotypes of anadromous Hilsa shad (Tenualosa ilisha) across complex aquatic ecosystems revealed by NextRAD genotyping. Sci Rep 2019; 9:16050. [PMID: 31690767 PMCID: PMC6831668 DOI: 10.1038/s41598-019-52465-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/16/2019] [Indexed: 11/16/2022] Open
Abstract
The anadromous Hilsa shad (Tenualosa ilisha) live in the Bay of Bengal and migrate to the estuaries and freshwater rivers for spawning and nursing of the juveniles. This has led to two pertinent questions: (i) do all Hilsa shad that migrate from marine to freshwater rivers come from the same population? and (ii) is there any relationship between adults and juveniles of a particular habitat? To address these questions, NextRAD sequencing was applied to genotype 31,276 single nucleotide polymorphism (SNP) loci for 180 individuals collected from six strategic locations of riverine, estuarine and marine habitats. FST OutFLANK approach identified 14,815 SNP loci as putatively neutral and 79 SNP loci as putatively adaptive. We observed that divergent local adaptations in differing environmental habitats have divided Hilsa shad into three genetically structured ecotypes: turbid freshwater (Western Riverine), clear freshwater (Eastern Riverine) and brackish-saline (Southern Estuarine-Marine). Our results also revealed that genes involved in neuronal activity may have facilitated the juveniles’ Hilsa shad in returning to their respective natal rivers for spawning. This study emphasized the application of fundamental population genomics information in strategizing conservation and management of anadromous fish such as Hilsa shad that intersect diverse ecotypes during their life-history stages.
Collapse
|
29
|
|
30
|
Xu S, Yanagimoto T, Song N, Cai S, Gao T, Zhang X. Population genomics reveals possible genetic evidence for parallel evolution of Sebastiscus marmoratus in the northwestern Pacific Ocean. Open Biol 2019; 9:190028. [PMID: 31480992 PMCID: PMC6769290 DOI: 10.1098/rsob.190028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding patterns of population diversity and structuring among marine populations is of great importance for evolutionary biology, and can also directly inform fisheries management and conservation. In this study, genotyping-by-sequencing was used to assess population genetic diversity and connectivity of Sebastiscus marmoratus. Based on 130 individuals sampled from 10 locations in the northwestern Pacific Ocean, we identified and genotyped 17 653 single-nucleotide polymorphisms. The patterns of genetic diversity and population differentiation suggested that the Okinawa Trough might be the ancestral centre of S. marmoratus after the Last Glacial Maximum. A shallow genetic structure was observed among sampled populations based on the implemented structuring approaches. Surprisingly, we detected genetic homogeneity in two population pairs (i.e. Xiamen-Niigata and Zhuhai-Iki Island), in which populations have large geographical and latitudinal intervals. Population structure and allele frequency distribution based on outlier loci also mirrored the observed genetic homogeneity in the above-mentioned population pairs. Integrated with biological, environmental and genomic data, our results provide possible genetic evidence for parallel evolution. Our study also provides new perspectives on the population structure of S. marmoratus, which could have important implications for sound management and conservation of this fishery species.
Collapse
Affiliation(s)
- Shengyong Xu
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, 1st Haidanan Road, Zhoushan, Zhejiang, People's Republic of China
| | - Takashi Yanagimoto
- National Research Institute of Fisheries Science, 2-12-4, Fukuura, Kanazawa, Yokohama, Japan
| | - Na Song
- Institute of Evolution and Marine Biodiversity, Ocean University of China, 5th Yushan Road, Qingdao, Shandong, People's Republic of China
| | - Shanshan Cai
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, 1st Haidanan Road, Zhoushan, Zhejiang, People's Republic of China
| | - Tianxiang Gao
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, 1st Haidanan Road, Zhoushan, Zhejiang, People's Republic of China
| | - Xiumei Zhang
- National Engineering Research Center For Marine Aquaculture, Zhejiang Ocean University, 1st Haidanan Road, Zhoushan, Zhejiang, People's Republic of China
| |
Collapse
|
31
|
Zhang BD, Xue DX, Li YL, Liu JX. RAD genotyping reveals fine-scale population structure and provides evidence for adaptive divergence in a commercially important fish from the northwestern Pacific Ocean. PeerJ 2019; 7:e7242. [PMID: 31309001 PMCID: PMC6612258 DOI: 10.7717/peerj.7242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/02/2019] [Indexed: 01/08/2023] Open
Abstract
Exploring factors shaping genetic structure of marine fish is challenging due to fewer barriers to gene flow in the ocean. However, genome-wide sequence data can greatly enhance our ability to delineate previously unidentified population structure as well as potential adaptive divergence. The small yellow croaker (Larimichthys polyactis) is a commercially important fish species with high gene flow and its overwintering populations experience heterogeneous environment, suggesting possible population differentiation and adaptive divergence. To delineate patterns of population structure as well as test for signatures of local adaptation, a total of 68,666 quality filtered SNP markers were identified for 80 individuals from four overwintering populations by using restriction site-associated DNA sequencing (RAD-seq). Significant genetic differentiation among overwintering populations from the Central Yellow Sea, the South Yellow Sea and the North East China Sea were detected (Pair-wise FST: 0.00036–0.00390), which were consistent with population division of overwintering groups inferred from traditional ecological approaches. In addition, a total of 126 unique SNPs were detected to be significantly associated with environmental parameters (temperature, salinity and turbidity). These candidate SNPs were involved in multiple pathways such as energy metabolism and phagocytosis, suggesting they may play key roles in growth and innate immunity. Our results suggested the existence of hitherto unrecognized cryptic population structure and local adaptation in this high gene flow marine fish and thus gain new insights into the design of management strategies.
Collapse
Affiliation(s)
- Bai-Dong Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Dong-Xiu Xue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
32
|
Parker KA, Hess JE, Narum SR, Kinziger AP. Evidence for the genetic basis and epistatic interactions underlying ocean‐ and river‐maturing ecotypes of Pacific Lamprey (
Entosphenus tridentatus
) returning to the Klamath River, California. Mol Ecol 2019; 28:3171-3185. [DOI: 10.1111/mec.15136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Keith A. Parker
- Department of Fisheries Biology Humboldt State University Arcata California
| | - Jon E. Hess
- Columbia River Inter‐Tribal Fish Commission Portland Oregon
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish Commission Hagerman Idaho
| | - Andrew P. Kinziger
- Department of Fisheries Biology Humboldt State University Arcata California
| |
Collapse
|
33
|
Miller AD, Hoffmann AA, Tan MH, Young M, Ahrens C, Cocomazzo M, Rattray A, Ierodiaconou DA, Treml E, Sherman CDH. Local and regional scale habitat heterogeneity contribute to genetic adaptation in a commercially important marine mollusc (
Haliotis rubra
) from southeastern Australia. Mol Ecol 2019; 28:3053-3072. [DOI: 10.1111/mec.15128] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/17/2019] [Accepted: 05/01/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Adam D. Miller
- School of Life and Environmental Sciences Centre for Integrative Ecology, Deakin University Geelong Victoria Australia
- Deakin Genomics Centre Deakin University Geelong Victoria Australia
| | - Ary A. Hoffmann
- School of BioSciences Bio21 Institute, The University of Melbourne Parkville Victoria Australia
| | - Mun Hua Tan
- School of Life and Environmental Sciences Centre for Integrative Ecology, Deakin University Geelong Victoria Australia
- Deakin Genomics Centre Deakin University Geelong Victoria Australia
| | - Mary Young
- School of Life and Environmental Sciences Centre for Integrative Ecology, Deakin University Geelong Victoria Australia
| | - Collin Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University Penrith New South Wales Australia
| | - Michael Cocomazzo
- School of Life and Environmental Sciences Centre for Integrative Ecology, Deakin University Geelong Victoria Australia
| | - Alex Rattray
- School of Life and Environmental Sciences Centre for Integrative Ecology, Deakin University Geelong Victoria Australia
| | - Daniel A. Ierodiaconou
- School of Life and Environmental Sciences Centre for Integrative Ecology, Deakin University Geelong Victoria Australia
| | - Eric Treml
- School of Life and Environmental Sciences Centre for Integrative Ecology, Deakin University Geelong Victoria Australia
| | - Craig D. H. Sherman
- School of Life and Environmental Sciences Centre for Integrative Ecology, Deakin University Geelong Victoria Australia
- Deakin Genomics Centre Deakin University Geelong Victoria Australia
| |
Collapse
|
34
|
Phair NL, Toonen RJ, Knapp I, von der Heyden S. Shared genomic outliers across two divergent population clusters of a highly threatened seagrass. PeerJ 2019; 7:e6806. [PMID: 31106053 PMCID: PMC6497040 DOI: 10.7717/peerj.6806] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
The seagrass, Zostera capensis, occurs across a broad stretch of coastline and wide environmental gradients in estuaries and sheltered bays in southern and eastern Africa. Throughout its distribution, habitats are highly threatened and poorly protected, increasing the urgency of assessing the genomic variability of this keystone species. A pooled genomic approach was employed to obtain SNP data and examine neutral genomic variation and to identify potential outlier loci to assess differentiation across 12 populations across the ∼9,600 km distribution of Z. capensis. Results indicate high clonality and low genomic diversity within meadows, which combined with poor protection throughout its range, increases the vulnerability of this seagrass to further declines or local extinction. Shared variation at outlier loci potentially indicates local adaptation to temperature and precipitation gradients, with Isolation-by-Environment significantly contributing towards shaping spatial variation in Z. capensis. Our results indicate the presence of two population clusters, broadly corresponding to populations on the west and east coasts, with the two lineages shaped only by frequency differences of outlier loci. Notably, ensemble modelling of suitable seagrass habitat provides evidence that the clusters are linked to historical climate refugia around the Last Glacial Maxi-mum. Our work suggests a complex evolutionary history of Z. capensis in southern and eastern Africa that will require more effective protection in order to safeguard this important ecosystem engineer into the future.
Collapse
Affiliation(s)
- Nikki Leanne Phair
- Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| | - Robert John Toonen
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawai’i, United States of America
| | - Ingrid Knapp
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawai’i, United States of America
| | - Sophie von der Heyden
- Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
35
|
Sromek L, Forcioli D, Lasota R, Furla P, Wolowicz M. Next-generation phylogeography of the cockle Cerastoderma glaucum: Highly heterogeneous genetic differentiation in a lagoon species. Ecol Evol 2019; 9:4667-4682. [PMID: 31031934 PMCID: PMC6476780 DOI: 10.1002/ece3.5070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/30/2019] [Accepted: 02/25/2019] [Indexed: 11/10/2022] Open
Abstract
AIM Coastal lagoons form an intriguing example of fragmented marine habitats. Restricted gene flow among isolated populations of lagoon species may promote their genetic divergence and may thus provide a first step toward speciation. In the present study, the population genetic structure of the lagoon cockle Cerastoderma glaucum has been investigated to clarify the complex phylogeographic pattern found in previous studies, to localize major genetic breaks, and to discuss their origin and maintenance. LOCATION The Atlantic and Mediterranean coasts, including the Baltic, North Sea, and Black Sea. METHODS A total of 204 C. glaucum individuals from 14 populations were genotyped using restriction site-associated DNA sequencing (RADseq). The genetic diversity, divergence, and structure were analyzed using genome-wide single nucleotide polymorphisms (SNPs). Phylogenetic relationships were inferred under a coalescent model using svdquartets. RESULTS The RADseq approach allowed inferring phylogeographic relationships with an unprecedented resolution. Three deeply divergent lineages were identified within C. glaucum that are separated by many genetic barriers: one lineage in the Aegean-Black Sea region, one in the Ionian Sea, and the last one widely distributed from the Western Mediterranean to the Baltic Sea. The nested branching pattern displayed on the species tree largely agrees with the likely scenario of C. glaucum postglacial expansion from the Mediterranean to the Baltic Sea. MAIN CONCLUSION The genetic differentiations between geographically separated lagoons proved to be strong, highlighting the evolutionary influence of these naturally fragmented habitats. The postglacial expansion created complex patterns of spatial segregation of genetic diversity with allele frequency gradients in many outlier loci, but also discrepancies between the nuclear and mitochondrial genetic markers that probably arose from genetic surfing of mitochondrial variation.
Collapse
Affiliation(s)
- Ludmila Sromek
- Department of Marine Ecosystems Functioning, Institute of Oceanography, Faculty of Oceanography and Geography University of Gdansk Gdynia Poland
- UPMC Université Paris 06, Université Antilles, Université Nice Sophia Antipolis, CNRS, Laboratoire Evolution Paris Seine, Institut de Biologie Paris Seine (EPS-IBPS) Sorbonne Universités Paris France
| | - Didier Forcioli
- UPMC Université Paris 06, Université Antilles, Université Nice Sophia Antipolis, CNRS, Laboratoire Evolution Paris Seine, Institut de Biologie Paris Seine (EPS-IBPS) Sorbonne Universités Paris France
| | - Rafal Lasota
- Department of Marine Ecosystems Functioning, Institute of Oceanography, Faculty of Oceanography and Geography University of Gdansk Gdynia Poland
| | - Paola Furla
- UPMC Université Paris 06, Université Antilles, Université Nice Sophia Antipolis, CNRS, Laboratoire Evolution Paris Seine, Institut de Biologie Paris Seine (EPS-IBPS) Sorbonne Universités Paris France
| | - Maciej Wolowicz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, Faculty of Oceanography and Geography University of Gdansk Gdynia Poland
| |
Collapse
|
36
|
A novel transcriptome-derived SNPs array for tench (Tinca tinca L.). PLoS One 2019; 14:e0213992. [PMID: 30889192 PMCID: PMC6424483 DOI: 10.1371/journal.pone.0213992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/05/2019] [Indexed: 11/19/2022] Open
Abstract
Tench (Tinca tinca L.) has great economic potential due to its high rate of fecundity and long-life span. Population genetic studies based on allozymes, microsatellites, PCR-RFLP and sequence analysis of genes and DNA fragments have revealed the presence of Eastern and Western phylogroups. However, the lack of genomic resources for this species has complicated the development of genetic markers. In this study, the tench transcriptome and genome were sequenced by high-throughput sequencing. A total of 60,414 putative SNPs were identified in the tench transcriptome using a computational pipeline. A set of 96 SNPs was selected for validation and a total of 92 SNPs was validated, resulting in the highest conversion and validation rate for a non-model species obtained to date (95.83%). The validated SNPs were used to genotype 140 individuals belonging to two tench breeds (Tabor and Hungarian), showing low (FST = 0.0450) but significant (<0.0001) genetic differentiation between the two tench breeds. This implies that set of validated SNPs array can be used to distinguish the tench breeds and that it might be useful for studying a range of associations between DNA sequence and traits of importance. These genomic resources created for the tench will provide insight into population genetics, conservation fish stock management, and aquaculture.
Collapse
|
37
|
Contemporary and historical river connectivity influence population structure in western brook lamprey in the Columbia River Basin. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1137-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Shink KG, Sutton TM, Murphy JM, López JA. Genetic variation and population structure among larval Lethenteron spp. within the Yukon River drainage, Alaska. JOURNAL OF FISH BIOLOGY 2018; 93:1130-1140. [PMID: 30306562 DOI: 10.1111/jfb.13833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
The absence of information on genetic variation and population structure of lampreys Lethenteron spp. in the eastern part of their distribution limits our understanding of the migration ecology and spatial population genetic structure of the species. We examined genetic variation within and among three aggregations of Lethenteron spp. larvae in the Yukon River drainage, Alaska, using microsatellite genotypes. A total of 120 larval lampreys were genotyped at eight microsatellite loci. Global FST was 0.053 (95% CI 0.021-0.086), while pairwise FST values ranged from 0.048-0.057. Model-based Bayesian clustering analyses with sample locality priors (LOCPRIOR) identified three distinct, but admixed, genetic clusters that corresponded with the three aggregations. Estimates of contemporary gene flow indicate substantial reciprocal migration among sites consistent with no or low-fidelity natal homing. These results are largely in agreement with previous reports of historic and contemporary gene flow among Lethenteron spp. in other parts of their geographic distribution.
Collapse
Affiliation(s)
- Katie G Shink
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska
| | - Trent M Sutton
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska
| | - James M Murphy
- Auke Bay Laboratories, Alaska Fisheries Science Center, NOAA Fisheries, Juneau, Alaska
| | - J Andrés López
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska
- University of Alaska Museum of the North, Fairbanks, Alaska
| |
Collapse
|
39
|
Hume JB, Recknagel H, Bean CW, Adams CE, Mable BK. RADseq and mate choice assays reveal unidirectional gene flow among three lamprey ecotypes despite weak assortative mating: Insights into the formation and stability of multiple ecotypes in sympatry. Mol Ecol 2018; 27:4572-4590. [PMID: 30252984 DOI: 10.1111/mec.14881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
Adaptive divergence with gene flow often results in complex patterns of variation within taxa exhibiting substantial ecological differences among populations. One example where this may have occurred is the parallel evolution of freshwater-resident nonparasitic lampreys from anadromous-parasitic ancestors. Previous studies have focused on transitions between these two phenotypic extremes, but here, we considered more complex evolutionary scenarios where an intermediate freshwater form that remains parasitic is found sympatrically with the other two ecotypes. Using population genomic analysis (restriction-associated DNA sequencing), we found that a freshwater-parasitic ecotype was highly distinct from an anadromous-parasitic form (Qlake-P = 96.8%, Fst = 0.154), but that a freshwater-nonparasitic form was almost completely admixed in Loch Lomond, Scotland. Demographic reconstructions indicated that both freshwater populations likely derived from a common freshwater ancestor. However, while the nonparasitic ecotype has experienced high levels of introgression from the anadromous-parasitic ecotype (Qanad-P = 37.7%), there is no evidence of introgression into the freshwater-parasitic ecotype. Paradoxically, mate choice experiments predicted high potential for gene flow: Males from all ecotypes were stimulated to spawn with freshwater-parasitic females, which released gametes in response to all ecotypes. Differentially fixed single nucleotide polymorphisms identified genes associated with growth and development, which could possibly influence the timing of metamorphosis, resulting in significant ecological differences between forms. This suggests that multiple lamprey ecotypes can persist in sympatry following shifts in adaptive peaks, due to environmental change during their repeated colonization of post-glacial regions, followed by periods of extensive gene flow among such diverging populations.
Collapse
Affiliation(s)
- John B Hume
- Department of Fisheries and Wildlife, College of Agriculture & Natural Resources, Michigan State University, East Lansing, Michigan.,Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Hans Recknagel
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Colin W Bean
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.,Scottish Natural Heritage, Clydebank, UK
| | - Colin E Adams
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
40
|
Lo E, Bonizzoni M, Hemming-Schroeder E, Ford A, Janies DA, James AA, Afrane Y, Etemesi H, Zhou G, Githeko A, Yan G. Selection and Utility of Single Nucleotide Polymorphism Markers to Reveal Fine-Scale Population Structure in Human Malaria Parasite Plasmodium falciparum. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
41
|
Kobayashi H, Haino Y, Iwasaki T, Tezuka A, Nagano AJ, Shimada S. ddRAD-seq based phylogeographic study of Sargassum thunbergii (Phaeophyceae, Heterokonta) around Japanese coast. MARINE ENVIRONMENTAL RESEARCH 2018; 140:104-113. [PMID: 29895505 DOI: 10.1016/j.marenvres.2018.05.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Using genome-wide SNP data obtained from high-throughput techniques based on double digest restriction site-associated DNA sequencing (ddRAD-seq), we elucidated the migration history and genetic diversity of the Japanese population of the ecologically important brown seaweed Sargassum thunbergii (Mertens ex Roth) Kuntze. STRUCTURE and NeighborNet analyses showed a clear genetic differentiation among populations of four geographic regions: Kyushu (POP1); Sea of Japan (POP2); Hokkaido and Tohoku (POP3); and Pacific coast from Kyushu to Kanto (POP4). Approximate Bayesian Computation (ABC) analysis indicated that POP4 diverged first, followed by the separation between POP2 (the largest effective population size) and POP3; POP1 was the last to form, shaped by the mixture of POP2 (73%) and POP4 (27%). High genetic diversity was detected in POP1 and POP2, whereas low genetic diversity was detected in POP3 and POP4. These results indicated that S. thunbergii populations of Kyushu and the Sea of Japan might have been maintained as large and stable populations gathered different lineages from China, Korea and/or Japan.
Collapse
Affiliation(s)
- Honoka Kobayashi
- Faculty of Core Research, Natural Science Division, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo, 112-8610, Japan
| | - Yuka Haino
- Faculty of Core Research, Natural Science Division, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo, 112-8610, Japan
| | - Takaya Iwasaki
- Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka, Kanagawa, 259-1293, Japan
| | - Ayumi Tezuka
- Faculty of Agriculture, Ryukoku University, Yokotani 1-5, Seta Ohe-cho, Otsu, Shiga, 520-2194, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Yokotani 1-5, Seta Ohe-cho, Otsu, Shiga, 520-2194, Japan
| | - Satoshi Shimada
- Faculty of Core Research, Natural Science Division, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo, 112-8610, Japan.
| |
Collapse
|
42
|
Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S. Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol Appl 2018; 11:1035-1052. [PMID: 30026796 PMCID: PMC6050180 DOI: 10.1111/eva.12569] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022] Open
Abstract
Identifying and monitoring locally adaptive genetic variation can have direct utility for conserving species at risk, especially when management may include actions such as translocations for restoration, genetic rescue, or assisted gene flow. However, genomic studies of local adaptation require careful planning to be successful, and in some cases may not be a worthwhile use of resources. Here, we offer an adaptive management framework to help conservation biologists and managers decide when genomics is likely to be effective in detecting local adaptation, and how to plan assessment and monitoring of adaptive variation to address conservation objectives. Studies of adaptive variation using genomic tools will inform conservation actions in many cases, including applications such as assisted gene flow and identifying conservation units. In others, assessing genetic diversity, inbreeding, and demographics using selectively neutral genetic markers may be most useful. And in some cases, local adaptation may be assessed more efficiently using alternative approaches such as common garden experiments. Here, we identify key considerations of genomics studies of locally adaptive variation, provide a road map for successful collaborations with genomics experts including key issues for study design and data analysis, and offer guidelines for interpreting and using results from genomic assessments to inform monitoring programs and conservation actions.
Collapse
Affiliation(s)
- Sarah P. Flanagan
- National Institute for Mathematical and Biological SynthesisUniversity of TennesseeKnoxvilleTNUSA
| | - Brenna R. Forester
- Duke University, Nicholas School of the EnvironmentDurhamNCUSA
- Present address:
Department of BiologyColorado State UniversityFort CollinsCOUSA
| | - Emily K. Latch
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWIUSA
| | - Sally N. Aitken
- Faculty of ForestryUniversity of British ColumbiaVancouverBCCanada
| | | |
Collapse
|
43
|
Li YL, Xue DX, Zhang BD, Liu JX. An optimized approach for local de novo assembly of overlapping paired-end RAD reads from multiple individuals. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171589. [PMID: 29515871 PMCID: PMC5830760 DOI: 10.1098/rsos.171589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/19/2018] [Indexed: 06/15/2023]
Abstract
Restriction site-associated DNA (RAD) sequencing is revolutionizing studies in ecological, evolutionary and conservation genomics. However, the assembly of paired-end RAD reads with random-sheared ends is still challenging, especially for non-model species with high genetic variance. Here, we present an efficient optimized approach with a pipeline software, RADassembler, which makes full use of paired-end RAD reads with random-sheared ends from multiple individuals to assemble RAD contigs. RADassembler integrates the algorithms for choosing the optimal number of mismatches within and across individuals at the clustering stage, and then uses a two-step assembly approach at the assembly stage. RADassembler also uses data reduction and parallelization strategies to promote efficiency. Compared to other tools, both the assembly results based on simulation and real RAD datasets demonstrated that RADassembler could always assemble the appropriate number of contigs with high qualities, and more read pairs were properly mapped to the assembled contigs. This approach provides an optimal tool for dealing with the complexity in the assembly of paired-end RAD reads with random-sheared ends for non-model species in ecological, evolutionary and conservation studies. RADassembler is available at https://github.com/lyl8086/RADscripts.
Collapse
Affiliation(s)
- Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| | - Dong-Xiu Xue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| | - Bai-Dong Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| |
Collapse
|
44
|
Lee SR, Jo YS, Park CH, Friedman JM, Olson MS. Population genomic analysis suggests strong influence of river network on spatial distribution of genetic variation in invasive saltcedar across the southwestern United States. Mol Ecol 2018; 27:636-646. [PMID: 29274176 DOI: 10.1111/mec.14468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 11/22/2017] [Accepted: 12/04/2017] [Indexed: 01/19/2023]
Abstract
Understanding the complex influences of landscape and anthropogenic elements that shape the population genetic structure of invasive species provides insight into patterns of colonization and spread. The application of landscape genomics techniques to these questions may offer detailed, previously undocumented insights into factors influencing species invasions. We investigated the spatial pattern of genetic variation and the influences of landscape factors on population similarity in an invasive riparian shrub, saltcedar (Tamarix L.) by analysing 1,997 genomewide SNP markers for 259 individuals from 25 populations collected throughout the southwestern United States. Our results revealed a broad-scale spatial genetic differentiation of saltcedar populations between the Colorado and Rio Grande river basins and identified potential barriers to population similarity along both river systems. River pathways most strongly contributed to population similarity. In contrast, low temperature and dams likely served as barriers to population similarity. We hypothesize that large-scale geographic patterns in genetic diversity resulted from a combination of early introductions from distinct populations, the subsequent influence of natural selection, dispersal barriers and founder effects during range expansion.
Collapse
Affiliation(s)
- Soo-Rang Lee
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Yeong-Seok Jo
- National Institute of Biological Resources, Seo-gu, Incheon, Korea
| | - Chan-Ho Park
- National Institute of Biological Resources, Seo-gu, Incheon, Korea
| | | | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
45
|
Hohenlohe PA, Hand BK, Andrews KR, Luikart G. Population Genomics Provides Key Insights in Ecology and Evolution. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_20] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Adaptation Without Boundaries: Population Genomics in Marine Systems. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Donaldson ME, Rico Y, Hueffer K, Rando HM, Kukekova AV, Kyle CJ. Development of a genotype-by-sequencing immunogenetic assay as exemplified by screening for variation in red fox with and without endemic rabies exposure. Ecol Evol 2017; 8:572-583. [PMID: 29321894 PMCID: PMC5756825 DOI: 10.1002/ece3.3583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/30/2022] Open
Abstract
Pathogens are recognized as major drivers of local adaptation in wildlife systems. By determining which gene variants are favored in local interactions among populations with and without disease, spatially explicit adaptive responses to pathogens can be elucidated. Much of our current understanding of host responses to disease comes from a small number of genes associated with an immune response. High‐throughput sequencing (HTS) technologies, such as genotype‐by‐sequencing (GBS), facilitate expanded explorations of genomic variation among populations. Hybridization‐based GBS techniques can be leveraged in systems not well characterized for specific variants associated with disease outcome to “capture” specific genes and regulatory regions known to influence expression and disease outcome. We developed a multiplexed, sequence capture assay for red foxes to simultaneously assess ~300‐kbp of genomic sequence from 116 adaptive, intrinsic, and innate immunity genes of predicted adaptive significance and their putative upstream regulatory regions along with 23 neutral microsatellite regions to control for demographic effects. The assay was applied to 45 fox DNA samples from Alaska, where three arctic rabies strains are geographically restricted and endemic to coastal tundra regions, yet absent from the boreal interior. The assay provided 61.5% on‐target enrichment with relatively even sequence coverage across all targeted loci and samples (mean = 50×), which allowed us to elucidate genetic variation across introns, exons, and potential regulatory regions (4,819 SNPs). Challenges remained in accurately describing microsatellite variation using this technique; however, longer‐read HTS technologies should overcome these issues. We used these data to conduct preliminary analyses and detected genetic structure in a subset of red fox immune‐related genes between regions with and without endemic arctic rabies. This assay provides a template to assess immunogenetic variation in wildlife disease systems.
Collapse
Affiliation(s)
- Michael E Donaldson
- Environmental and Life Sciences Graduate Program Trent University Peterborough ON Canada
| | - Yessica Rico
- CONACYT Instituto de Ecología A.C.Centro Regional del Bajio Pátzcuaro Michoacán Mexico
| | - Karsten Hueffer
- Department of Veterinary Medicine University of Alaska Fairbanks Fairbanks AK USA
| | - Halie M Rando
- Department of Animal Sciences College of ACES University of Illinois at Urbana-Champaign Urbana IL USA
| | - Anna V Kukekova
- Department of Animal Sciences College of ACES University of Illinois at Urbana-Champaign Urbana IL USA
| | - Christopher J Kyle
- Environmental and Life Sciences Graduate Program Trent University Peterborough ON Canada.,Forensic Science Department Trent University Peterborough ON Canada
| |
Collapse
|
48
|
Rodriguez-Ezpeleta N, Álvarez P, Irigoien X. Genetic Diversity and Connectivity in Maurolicus muelleri in the Bay of Biscay Inferred from Thousands of SNP Markers. Front Genet 2017; 8:195. [PMID: 29234350 PMCID: PMC5712365 DOI: 10.3389/fgene.2017.00195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/16/2017] [Indexed: 12/30/2022] Open
Abstract
Mesopelagic fish are largely abundant poorly studied fish that are still intact, but which, due to their potentially great added value, will be imminently exploited by humans. Therefore, studies that provide information to anticipate the anthropogenic impact on this important resource are urgently needed. In particular, knowledge about their connectivity, potential adaptation and resilience are needed. This information can be obtained through the analysis of genome-wide markers which are now relatively easily and cost-efficiently discovered thanks to high-throughput sequencing technologies. Here, we have generated thousands of SNP markers in Maurolicus muelleri, based on the restriction-site associated DNA sequencing method, and preformed population connectivity and genetic diversity analyses in a subset of samples collected from the Bay of Biscay. Our study proves the method valid for obtaining genome-wide markers in this species and provides the first insights into the population genomics of M. muelleri. Importantly, the genomic resources developed here are made available for future studies and set the basics for additional endeavors on this issue.
Collapse
|
49
|
Cure K, Thomas L, Hobbs JPA, Fairclough DV, Kennington WJ. Genomic signatures of local adaptation reveal source-sink dynamics in a high gene flow fish species. Sci Rep 2017; 7:8618. [PMID: 28819230 PMCID: PMC5561064 DOI: 10.1038/s41598-017-09224-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 07/25/2017] [Indexed: 11/21/2022] Open
Abstract
Understanding source-sink dynamics is important for conservation management, particularly when climatic events alter species’ distributions. Following a 2011 ‘marine heatwave’ in Western Australia, we observed high recruitment of the endemic fisheries target species Choerodon rubescens, towards the cooler (southern) end of its distribution. Here, we use a genome wide set of 14 559 single-nucleotide polymorphisms (SNPs) to identify the likely source population for this recruitment event. Most loci (76%) showed low genetic divergence across the species’ range, indicating high levels of gene flow and confirming previous findings using neutral microsatellite markers. However, a small proportion of loci showed strong patterns of differentiation and exhibited patterns of population structure consistent with local adaptation. Clustering analyses based on these outlier loci indicated that recruits at the southern end of C. rubescens’ range originated 400 km to the north, at the centre of the species’ range, where average temperatures are up to 3 °C warmer. Survival of these recruits may be low because they carry alleles adapted to an environment different to the one they now reside in, but their survival is key to establishing locally adapted populations at and beyond the range edge as water temperatures increase with climate change.
Collapse
Affiliation(s)
- Katherine Cure
- UWA Oceans Institute & School of Plant Biology, The University of Western Australia, Crawley, 6009, WA, Australia. .,Australian Institute of Marine Science, Crawley, 6009, WA, Australia.
| | - Luke Thomas
- UWA Oceans Institute & School of Plant Biology, The University of Western Australia, Crawley, 6009, WA, Australia.,Hopkins Marine Station, Stanford University, California, 93950, USA
| | - Jean-Paul A Hobbs
- Department of Environment and Agriculture, Curtin University, Bentley, 6102, WA, Australia
| | - David V Fairclough
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, P.O. Box 20, North Beach, 6920, WA, Australia
| | - W Jason Kennington
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Crawley, 6009, WA, Australia
| |
Collapse
|
50
|
Benestan L, Moore JS, Sutherland BJG, Le Luyer J, Maaroufi H, Rougeux C, Normandeau E, Rycroft N, Atema J, Harris LN, Tallman RF, Greenwood SJ, Clark FK, Bernatchez L. Sex matters in massive parallel sequencing: Evidence for biases in genetic parameter estimation and investigation of sex determination systems. Mol Ecol 2017; 26:6767-6783. [DOI: 10.1111/mec.14217] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Laura Benestan
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Jean-Sébastien Moore
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Ben J. G. Sutherland
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Jérémy Le Luyer
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Halim Maaroufi
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Clément Rougeux
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Eric Normandeau
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | | | - Jelle Atema
- Department of Biology; Boston University; Boston MA USA
| | - Les N. Harris
- Fisheries and Oceans Canada; Freshwater Institute; Winnipeg MB Canada
| | - Ross F. Tallman
- Fisheries and Oceans Canada; Freshwater Institute; Winnipeg MB Canada
| | - Spencer J. Greenwood
- Department of Biomedical Sciences & AVC Lobster Science Centre; Atlantic Veterinary College; University of Prince Edward Island; Charlottetown PE Canada
| | - Fraser K. Clark
- Department of Biomedical Sciences & AVC Lobster Science Centre; Atlantic Veterinary College; University of Prince Edward Island; Charlottetown PE Canada
| | - Louis Bernatchez
- Département de Biologie; Université Laval; Québec QC Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| |
Collapse
|