1
|
Yoshida N, Morinaga SI, Wakamiya T, Ishii Y, Kubota S, Hikosaka K. Does selection occur at the intermediate zone of two insufficiently isolated populations? A whole-genome analysis along an altitudinal gradient. JOURNAL OF PLANT RESEARCH 2023; 136:183-199. [PMID: 36547771 DOI: 10.1007/s10265-022-01429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Adaptive divergence occurs even between insufficiently isolated populations when there is a great difference in environments between their habitats. Individuals present in an intermediate zone of the two divergent populations are expected to have an admixed genetic structure due to gene flow. A selective pressure that acts on the genetically admixed individuals may limit the gene flow and maintain the adaptive divergence. Here, we addressed a question whether selection occurs in the genetically admixed individuals between two divergent populations. Arabidopsis halleri is a perennial montane plant, which has clear phenotypic dimorphisms between highland and lowland habitats in Mt. Ibuki, central Japan. We obtained the whole-genome sequences of Arabidopsis halleri plants along an altitudinal gradient of 359-1,317 m with a high spatial resolution (mean altitudinal interval of 20 m). We found a zone where the highland and lowland genes were mixing (intermediate subpopulation). In the intermediate subpopulation, we identified 5 and 13 genome regions, which included 3 and 8 genes, that had a high frequency of alleles that are accumulated in highland and lowland subpopulations, respectively. In addition, we also found that the frequency of highland alleles of these selected genome regions was smaller in the lowland subpopulation compared with that of the non-selected regions. These results suggest that the selection in the intermediate subpopulation might limit the gene flow and contribute to the adaptive divergence between altitudes. We also identified 7 genome regions that had low heterozygote frequencies in the intermediate subpopulation. We conclude that different types of selection in addition to gene flow occur at the intermediate altitude and shape the genetic structure across altitudes.
Collapse
Affiliation(s)
- Naofumi Yoshida
- Graduate School of Life Sciences, Tohoku University, 980-8578, Aoba, Sendai, Japan.
| | - Shin-Ichi Morinaga
- Faculty of Life and Environmental Sciences, Teikyo University of Science, 120-0045, Adachi, Tokyo, Japan
| | - Takeshi Wakamiya
- Graduate School of Integrated Sciences for Life, Hiroshima University, 739-8528, Kagamiyama, Hiroshima, Higashi, Japan
| | - Yuu Ishii
- Graduate School of Life Sciences, Tohoku University, 980-8578, Aoba, Sendai, Japan
| | | | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, 980-8578, Aoba, Sendai, Japan
| |
Collapse
|
2
|
Ng KKS, Kobayashi MJ, Fawcett JA, Hatakeyama M, Paape T, Ng CH, Ang CC, Tnah LH, Lee CT, Nishiyama T, Sese J, O'Brien MJ, Copetti D, Isa MNM, Ong RC, Putra M, Siregar IZ, Indrioko S, Kosugi Y, Izuno A, Isagi Y, Lee SL, Shimizu KK. The genome of Shorea leprosula (Dipterocarpaceae) highlights the ecological relevance of drought in aseasonal tropical rainforests. Commun Biol 2021; 4:1166. [PMID: 34620991 PMCID: PMC8497594 DOI: 10.1038/s42003-021-02682-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/17/2021] [Indexed: 02/08/2023] Open
Abstract
Hyperdiverse tropical rainforests, such as the aseasonal forests in Southeast Asia, are supported by high annual rainfall. Its canopy is dominated by the species-rich tree family of Dipterocarpaceae (Asian dipterocarps), which has both ecological (e.g., supports flora and fauna) and economical (e.g., timber production) importance. Recent ecological studies suggested that rare irregular drought events may be an environmental stress and signal for the tropical trees. We assembled the genome of a widespread but near threatened dipterocarp, Shorea leprosula, and analyzed the transcriptome sequences of ten dipterocarp species representing seven genera. Comparative genomic and molecular dating analyses suggested a whole-genome duplication close to the Cretaceous-Paleogene extinction event followed by the diversification of major dipterocarp lineages (i.e. Dipterocarpoideae). Interestingly, the retained duplicated genes were enriched for genes upregulated by no-irrigation treatment. These findings provide molecular support for the relevance of drought for tropical trees despite the lack of an annual dry season.
Collapse
Affiliation(s)
- Kevin Kit Siong Ng
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Genetics Laboratory, Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia.
| | - Masaki J Kobayashi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- URPP Global Change and Biodiversity, University of Zurich, Zurich, Switzerland
- Forestry Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Jeffrey A Fawcett
- Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
- RIKEN iTHEMS, Wako, Saitama, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- URPP Global Change and Biodiversity, University of Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Timothy Paape
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- URPP Global Change and Biodiversity, University of Zurich, Zurich, Switzerland
| | - Chin Hong Ng
- Genetics Laboratory, Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia
| | - Choon Cheng Ang
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- URPP Global Change and Biodiversity, University of Zurich, Zurich, Switzerland
| | - Lee Hong Tnah
- Genetics Laboratory, Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia
| | - Chai Ting Lee
- Genetics Laboratory, Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia
| | - Tomoaki Nishiyama
- Division of Integrated Omics research, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | - Jun Sese
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- AIST-Tokyo Tech RWBC-OIL, Meguro-ku, Tokyo, Japan
- Humanome Lab Inc., Chuo-ku, Tokyo, Japan
| | - Michael J O'Brien
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- URPP Global Change and Biodiversity, University of Zurich, Zurich, Switzerland
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, c/Tulipán s/n., E-28933, Móstoles, Spain
| | - Dario Copetti
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | - Mahardika Putra
- Faculty of Forestry, Bogor Agricultural University, Bogor, Indonesia
| | | | - Sapto Indrioko
- Faculty of Forestry, Gadjah Mada University, Yogyakarta, Indonesia
| | - Yoshiko Kosugi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ayako Izuno
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Ibaraki, Japan
| | - Yuji Isagi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Soon Leong Lee
- Genetics Laboratory, Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia.
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- URPP Global Change and Biodiversity, University of Zurich, Zurich, Switzerland.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
3
|
Hinckley A, Camacho-Sanchez M, Ruedi M, Hawkins MTR, Mullon M, Cornellas A, Tuh Yit Yuh F, Leonard JA. Evolutionary history of Sundaland shrews (Eulipotyphla: Soricidae: Crocidura) with a focus on Borneo. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
The hyperdiverse shrew genus Crocidura is one of few small mammal genera distributed across Sundaland and all of its boundaries. This represents a rare opportunity to study the geological history of this region through the evolutionary history of these shrews. We generate a phylogeny of all recognized species of Sundaland Crocidura and show that most speciation events took place during the Pleistocene, prior to the inundation of the Sunda Shelf around 400 000 years ago. We find east–west differentiation within two separate lineages on Borneo, and that the current taxonomy of its two endemic species does not reflect evolutionary history, but ecophenotypic variation of plastic traits related to elevation. Sulawesi shrews are monophyletic, with a single notable exception: the black-footed shrew (C. nigripes). We show that the black-footed shrew diverged from its relatives on Borneo recently, suggesting a human-assisted breach of Wallace’s line. Overall, the number of Crocidura species, especially on Borneo, probably remains an underestimate.
Collapse
Affiliation(s)
- Arlo Hinckley
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Miguel Camacho-Sanchez
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
- Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica (IFAPA) Centro Las Torres, Alcalá del Río, Spain
| | | | - Melissa T R Hawkins
- National Museum of Natural History, Department of Vertebrate Zoology, Smithsonian Institution, USA
| | | | - Anna Cornellas
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | | | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| |
Collapse
|
4
|
Hirata M, Mitsuyuki C, Moritsuka E, Chhang P, Tagane S, Toyama H, Sokh H, Rueangruea S, Suddee S, Suyama Y, Yahara T, Teshima KM, Tachida H, Kusumi J. Evaluating the genetic diversity in two tropical leguminous trees, Dalbergia cochinchinensis and D. nigrescens, in lowland forests in Cambodia and Thailand using MIG-seq. Genes Genet Syst 2021; 96:41-53. [PMID: 33731512 DOI: 10.1266/ggs.20-00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
It is vital to measure the levels of genetic diversity and differentiation between populations in a species to understand the current genetic structure and evolution of the species. Here, MIG-seq (multiplexed inter-simple sequence repeat genotyping by sequencing) was employed to assess the genetic variation in two tropical leguminous tree species, Dalbergia cochinchinensis and D. nigrescens, in Cambodia and Thailand. Sequence data for 255-618 loci, each with an approximate length of 100 bp, were obtained, and the nucleotide diversity, Tajima's D and FST were computed. The estimates calculated from the data obtained by MIG-seq were compared to those obtained by Sanger sequencing of nine nuclear coding genes in D. cochinchinensis in our previous study. The nucleotide diversity at the MIG-seq loci was slightly higher than that at silent sites in the coding loci, whereas the FST values at the MIG-seq loci were generally lower than those at the coding loci, although the differences were not significant. Moreover, nucleotide diversities within populations of the two species were similar to each other, at approximately 0.005. Three and four population clusters were genetically recognized in D. cochinchinensis and D. nigrescens, respectively. Although the populations were differentiated from each other, the levels of differentiation among them, as measured by FST, were higher in D. cochinchinensis than in D. nigrescens. This indicates higher levels of gene flow between the populations in the latter species. We recommend using MIG-seq for quick surveys of genetic variation because it is cost-effective and results in smaller variance in the estimates of population genetic parameters.
Collapse
Affiliation(s)
- Moeko Hirata
- Graduate School of Systems Life Sciences, Kyushu University
| | | | - Etsuko Moritsuka
- Department of Biology, Faculty of Science, Kyushu University.,Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University
| | - Phourin Chhang
- Institute of Forest and Wildlife Research Development, Forestry Administration
| | - Shuichiro Tagane
- Department of Biology, Faculty of Science, Kyushu University.,The Kagoshima University Museum, Kagoshima University
| | - Hironori Toyama
- Department of Biology, Faculty of Science, Kyushu University.,Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies
| | - Heng Sokh
- Institute of Forest and Wildlife Research Development, Forestry Administration
| | - Sukid Rueangruea
- The Forest Herbarium, Department of National Parks, Wildlife and Plant Conservation
| | - Somran Suddee
- The Forest Herbarium, Department of National Parks, Wildlife and Plant Conservation
| | | | | | | | | | - Junko Kusumi
- Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University
| |
Collapse
|
5
|
Wang C, Ma X, Ren M, Tang L. Genetic diversity and population structure in the endangered tree Hopea hainanensis (Dipterocarpaceae) on Hainan Island, China. PLoS One 2020; 15:e0241452. [PMID: 33253236 PMCID: PMC7703895 DOI: 10.1371/journal.pone.0241452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/15/2020] [Indexed: 11/29/2022] Open
Abstract
Hopea hainanensis Merrill & Chun (Dipterocarpaceae) is an endangered tree species restricted to Hainan Island, China and a small part of Northern Vietnam. On Hainan Island, it is an important indicator species for tropical forests. However, because of its highly valued timber, H. hainanensis has suffered from overexploitation, leading to a sharp population decline. To facilitate the conservation of this species, genetic diversity and population structure were assessed using 12 SSR markers for 10 populations sampled across Hainan Island. Compared to non-threatened Hopea species, H. hainanensis exhibited reduced overall genetic diversity and increased population differentiation (AMOVA: FST = 0.23). Bayesian model-based clustering and principal coordinate analysis consistently assigned H. hainanensis individuals into three genetic groups, which were found to be widespread and overlapping geographically. A Mantel test found no correlation between genetic and geographical distances (r = 0.040, p = 0.418). The observed genetic structure suggests that long-distance gene flow occurred among H. hainanensis populations prior to habitat fragmentation. A recent population bottleneck was revealed, which may cause rapid loss of genetic diversity and increased differentiation across populations. Based on these findings, appropriate strategies for the long-term conservation of the endangered species H. hainanensis are proposed.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Xiang Ma
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Mingxun Ren
- College of Ecology and Environment, Hainan University, Haikou, China
| | - Liang Tang
- College of Ecology and Environment, Hainan University, Haikou, China
- * E-mail:
| |
Collapse
|
6
|
Ng CH, Lee SL, Tnah LH, Ng KKS, Lee CT, Diway B, Khoo E. Genetic Diversity and Demographic History of an Upper Hill Dipterocarp (Shorea platyclados): Implications for Conservation. J Hered 2020; 110:844-856. [PMID: 31554011 DOI: 10.1093/jhered/esz052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/14/2019] [Indexed: 11/14/2022] Open
Abstract
Southeast Asian rainforests at upper hill elevations are increasingly vulnerable to degradation because most lowland forest areas have been converted to different land uses. As such, understanding the genetics of upper hill species is becoming more crucial for their future management and conservation. Shorea platyclados is an important, widespread upper hill dipterocarp in Malaysia. To elucidate the genetic structure of S. platyclados and ultimately provide guidelines for a conservation strategy for this species, we carried out a comprehensive study of the genetic diversity and demographic history of S. platyclados. Twenty-seven populations of S. platyclados across its range in Malaysia were genotyped at 15 polymorphic microsatellite loci and sequenced at seven noncoding chloroplast DNA (cpDNA) regions. A total of 303 alleles were derived from the microsatellite loci, and 29 haplotypes were identified based on 2892 bp of concatenated cpDNA sequences. The populations showed moderately high genetic diversity (mean HE = 0.680 for microsatellite gene diversity and HT = 0.650 for total haplotype diversity) and low genetic differentiation (FST = 0.060). Bayesian clustering divided the studied populations into two groups corresponding to western and eastern Malaysia. Bottleneck analysis did not detect any recent bottleneck events. Extended Bayesian skyline analyses showed a model of constant size for the past population history of this species. Based on our findings, priority areas for in situ and ex situ conservation and a minimum population size are recommended for the sustainable utilization of S. platyclados.
Collapse
Affiliation(s)
- Chin-Hong Ng
- Division of Forestry Biotechnology, Forest Research Institute Malaysia, Kepong, Selangor, Malaysia
| | - Soon-Leong Lee
- Division of Forestry Biotechnology, Forest Research Institute Malaysia, Kepong, Selangor, Malaysia
| | - Lee-Hong Tnah
- Division of Forestry Biotechnology, Forest Research Institute Malaysia, Kepong, Selangor, Malaysia
| | - Kevin K S Ng
- Division of Forestry Biotechnology, Forest Research Institute Malaysia, Kepong, Selangor, Malaysia
| | - Chai-Ting Lee
- Division of Forestry Biotechnology, Forest Research Institute Malaysia, Kepong, Selangor, Malaysia
| | - Bibian Diway
- The Sarawak Forestry Corporation, Kuching, Sarawak, Malaysia
| | - Eyen Khoo
- The Forest Research Centre, Sandakan, Sabah, Malaysia
| |
Collapse
|
7
|
Potential of Genome-Wide Association Studies and Genomic Selection to Improve Productivity and Quality of Commercial Timber Species in Tropical Rainforest, a Case Study of Shorea platyclados. FORESTS 2020. [DOI: 10.3390/f11020239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Shorea platyclados (Dark Red Meranti) is a commercially important timber tree species in Southeast Asia. However, its stocks have dramatically declined due, inter alia, to excessive logging, insufficient natural regeneration and a slow recovery rate. Thus, there is a need to promote enrichment planting and develop effective technique to support its rehabilitation and improve timber production through implementation of Genome-Wide Association Studies (GWAS) and Genomic Selection (GS). To assist such efforts, plant materials were collected from a half-sib progeny population in Sari Bumi Kusuma forest concession, Kalimantan, Indonesia. Using 5900 markers in sequences obtained from 356 individuals, we detected high linkage disequilibrium (LD) extending up to >145 kb, suggesting that associations between phenotypic traits and markers in LD can be more easily and feasibly detected with GWAS than with analysis of quantitative trait loci (QTLs). However, the detection power of GWAS seems low, since few single nucleotide polymorphisms linked to any focal traits were detected with a stringent false discovery rate, indicating that the species’ phenotypic traits are mostly under polygenic quantitative control. Furthermore, Machine Learning provided higher prediction accuracies than Bayesian methods. We also found that stem diameter, branch diameter ratio and wood density were more predictable than height, clear bole, branch angle and wood stiffness traits. Our study suggests that GS has potential for improving the productivity and quality of S. platyclados, and our genomic heritability estimates may improve the selection of traits to target in future breeding of this species.
Collapse
|
8
|
Matsuoka S, Iwasaki T, Sugiyama Y, Kawaguchi E, Doi H, Osono T. Biogeographic Patterns of Ectomycorrhizal Fungal Communities Associated With Castanopsis sieboldii Across the Japanese Archipelago. Front Microbiol 2019; 10:2656. [PMID: 31798567 PMCID: PMC6868053 DOI: 10.3389/fmicb.2019.02656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/31/2019] [Indexed: 11/13/2022] Open
Abstract
Biogeographic patterns in ectomycorrhizal (ECM) fungal communities and their drivers have been elucidated, including effects of host tree species and abiotic (climatic and edaphic) conditions. At these geographic scales, genotypic diversity and composition of single host tree species change with spatial and environmental gradients, reflecting their historical dispersal events. However, whether the host genotypes can be associated with the biogeographic patterns of ECM communities remains unclear. We investigated the biogeographic pattern of ECM fungal community associated with the single host species Castanopsis sieboldii (Fagaceae), whose genotypic diversity and composition across the Japanese archipelago has already been evaluated. ECM communities were investigated in 12 mature Castanopsis-dominated forests covering almost the entire distribution range of C. sieboldii, and we quantified the effect of host genotypes on the biogeographic pattern of ECM fungal communities. Richness and community composition of ECM fungi changed with latitude and longitude; these biogeographic changes of ECM community were significantly correlated with host genotypic variables. Quantitative analyses showed a higher relative explanatory power of climatic and spatial variables than that of host genotypic variables for the biogeographic patterns in the ECM community. Our results suggest historical events of host dispersal can affect the biogeographic patterns of the ECM fungal community, while their explanation power was lower than that for climatic filtering and/or fungal dispersal.
Collapse
Affiliation(s)
- Shunsuke Matsuoka
- Graduate School of Simulation Studies, University of Hyogo, Kobe, Japan
| | - Takaya Iwasaki
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Japan
| | - Yoriko Sugiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Eri Kawaguchi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hideyuki Doi
- Graduate School of Simulation Studies, University of Hyogo, Kobe, Japan
| | - Takashi Osono
- Department of Environmental Systems Science, Faculty of Science and Engineering, Doshisha University, Kyoto, Japan
| |
Collapse
|
9
|
Hartvig I, So T, Changtragoon S, Tran HT, Bouamanivong S, Theilade I, Kjær ED, Nielsen LR. Population genetic structure of the endemic rosewoods Dalbergia cochinchinensis and D. oliveri at a regional scale reflects the Indochinese landscape and life-history traits. Ecol Evol 2017; 8:530-545. [PMID: 29321891 PMCID: PMC5756888 DOI: 10.1002/ece3.3626] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 11/12/2022] Open
Abstract
Indochina is a biodiversity hot spot and harbors a high number of endemic species, most of which are poorly studied. This study explores the genetic structure and reproductive system of the threatened endemic timber species Dalbergia cochinchinensis and Dalbergia oliveri using microsatellite data from populations across Indochina and relates it to landscape characteristics and life‐history traits. We found that the major water bodies in the region, Mekong and Tonle Sap, represented barriers to gene flow and that higher levels of genetic diversity were found in populations in the center of the distribution area, particularly in Cambodia. We suggest that this pattern is ancient, reflecting the demographic history of the species and possible location of refugia during earlier time periods with limited forest cover, which was supported by signs of old genetic bottlenecks. The D. oliveri populations had generally high levels of genetic diversity (mean He = 0.73), but also strong genetic differentiation among populations (global GST = 0.13), while D. cochinchinensis had a moderate level of genetic diversity (mean He = 0.55), and an even stronger level of differentiation (global GST = 0.25). These differences in genetic structure can be accounted for by a higher level of gene flow in D. oliveri due to a higher dispersal capacity, but also by the broader distribution area for D. oliveri, and the pioneer characteristics of D. cochinchinensis. This study represents the first detailed analysis of landscape genetics for tree species in Indochina, and the found patterns might be common for other species with similar ecology.
Collapse
Affiliation(s)
- Ida Hartvig
- Department of Geosciences and Natural Resource Management University of Copenhagen Frederiksberg C Denmark
| | - Thea So
- Institute of Forest and Wildlife Research and Development, Forestry Administration Ministry of Agriculture, Forestry and Fisheries Phnom Penh Cambodia
| | - Suchitra Changtragoon
- Forest and Plant Conservation Research Office Department of National Parks, Wildlife and Plant Conservation Ministry of Natural Resources and Environment Chatuchak, Bangkok Thailand
| | - Hoa Thi Tran
- Forest Genetics and Conservation Center for Biodiversity and Biosafety Institute of Agricultural Genetics Vietnam Academy of Agricultural Sciences Hanoi Vietnam
| | - Somsanith Bouamanivong
- National Herbarium of Laos Biotechnology and Ecology Institute Ministry of Science and Technology Vientiane Laos
| | - Ida Theilade
- Department of Food and Resource Economics University of Copenhagen Frederiksberg C Denmark
| | - Erik Dahl Kjær
- Department of Geosciences and Natural Resource Management University of Copenhagen Frederiksberg C Denmark
| | - Lene Rostgaard Nielsen
- Department of Geosciences and Natural Resource Management University of Copenhagen Frederiksberg C Denmark
| |
Collapse
|
10
|
Karin BR, Das I, Jackman TR, Bauer AM. Ancient divergence time estimates in Eutropis rugifera support the existence of Pleistocene barriers on the exposed Sunda Shelf. PeerJ 2017; 5:e3762. [PMID: 29093993 PMCID: PMC5661453 DOI: 10.7717/peerj.3762] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/15/2017] [Indexed: 01/30/2023] Open
Abstract
Episodic sea level changes that repeatedly exposed and inundated the Sunda Shelf characterize the Pleistocene. Available evidence points to a more xeric central Sunda Shelf during periods of low sea levels, and despite the broad land connections that persisted during this time, some organisms are assumed to have faced barriers to dispersal between land-masses on the Sunda Shelf. Eutropis rugifera is a secretive, forest adapted scincid lizard that ranges across the Sunda Shelf. In this study, we sequenced one mitochondrial (ND2) and four nuclear (BRCA1, BRCA2, RAG1, and MC1R) markers and generated a time-calibrated phylogeny in BEAST to test whether divergence times between Sundaic populations of E. rugifera occurred during Pleistocene sea-level changes, or if they predate the Pleistocene. We find that E. rugifera shows pre-Pleistocene divergences between populations on different Sundaic land-masses. The earliest divergence within E. rugifera separates the Philippine samples from the Sundaic samples approximately 16 Ma; the Philippine populations thus cannot be considered conspecific with Sundaic congeners. Sundaic populations diverged approximately 6 Ma, and populations within Borneo from Sabah and Sarawak separated approximately 4.5 Ma in the early Pliocene, followed by further cladogenesis in Sarawak through the Pleistocene. Divergence of peninsular Malaysian populations from the Mentawai Archipelago occurred approximately 5 Ma. Separation among island populations from the Mentawai Archipelago likely dates to the Pliocene/Pleistocene boundary approximately 3.5 Ma, and our samples from peninsular Malaysia appear to coalesce in the middle Pleistocene, about 1 Ma. Coupled with the monophyly of these populations, these divergence times suggest that despite consistent land-connections between these regions throughout the Pleistocene E. rugifera still faced barriers to dispersal, which may be a result of environmental shifts that accompanied the sea-level changes.
Collapse
Affiliation(s)
- Benjamin R Karin
- Department of Biology, Villanova University, Villanova, PA, United States of America.,Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, United States of America
| | - Indraneil Das
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Todd R Jackman
- Department of Biology, Villanova University, Villanova, PA, United States of America
| | - Aaron M Bauer
- Department of Biology, Villanova University, Villanova, PA, United States of America
| |
Collapse
|
11
|
Manawatthana S, Laosinchai P, Onparn N, Brockelman WY, Round PD. Phylogeography of bulbuls in the genus Iole (Aves: Pycnonotidae). Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
12
|
Cytoplasmic DNA disclose high nucleotide diversity and different phylogenetic pattern in Taihangia rupestris Yu et Li. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Fiala B, Slik F, Weising K, Maschwitz U, Mohamed M, Jamsari, Guicking D. Phylogeography of three closely related myrmecophytic pioneer tree species in SE Asia: implications for species delimitation. ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0254-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Guo YY, Luo YB, Liu ZJ, Wang XQ. Reticulate evolution and sea-level fluctuations together drove species diversification of slipper orchids (Paphiopedilum) in South-East Asia. Mol Ecol 2015; 24:2838-55. [PMID: 25847454 DOI: 10.1111/mec.13189] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 03/29/2015] [Accepted: 03/31/2015] [Indexed: 01/19/2023]
Abstract
South-East Asia covers four of the world's biodiversity hotspots, showing high species diversity and endemism. Owing to the successive expansion and contraction of distribution and the fragmentation by geographical barriers, the tropical flora greatly diversified in this region during the Tertiary, but the evolutionary tempo and mode of species diversity remain poorly investigated. Paphiopedilum, the largest genus of slipper orchids comprising nearly 100 species, is mainly distributed in South-East Asia, providing an ideal system for exploring how plant species diversity was shaped in this region. Here, we investigated the evolutionary history of this genus with eight cpDNA regions and four low-copy nuclear genes. Discordance between gene trees and network analysis indicates that reticulate evolution occurred in the genus. Ancestral area reconstruction suggests that vicariance and long-distance dispersal together led to its current distribution. Diversification rate variation was detected and strongly correlated with the species diversity in subg. Paphiopedilum (~80 species). The shift of speciation rate in subg. Paphiopedilum was coincident with sea-level fluctuations in the late Cenozoic, which could have provided ecological opportunities for speciation and created bridges or barriers for gene flow. Moreover, some other factors (e.g. sympatric distribution, incomplete reproductive barriers and clonal propagation) might also be advantageous for the formation and reproduction of hybrid species. In conclusion, our study suggests that the interplay of reticulate evolution and sea-level fluctuations has promoted the diversification of the genus Paphiopedilum and sheds light into the evolution of Orchidaceae and the historical processes of plant species diversification in South-East Asia.
Collapse
Affiliation(s)
- Yan-Yan Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China.,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, No. 889, Wangtong Road, Shenzhen, 518114, China.,Center for Biotechnology and BioMedicine, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Yi-Bo Luo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Zhong-Jian Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, No. 889, Wangtong Road, Shenzhen, 518114, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| |
Collapse
|
15
|
Veron G, Patou ML, Debruyne R, Couloux A, Fernandez DAP, Wong ST, Fuchs J, Jennings AP. Systematics of the Southeast Asian mongooses (Herpestidae, Carnivora): solving the mystery of the elusive collared mongoose and Palawan mongoose. Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Géraldine Veron
- UMR 7205 ISYEB; CNRS MNHN UPMC EPHE; Institut de Systématique; Evolution, Biodiversité, Muséum National d'Histoire Naturelle; CP 51, 57 rue Cuvier, 75231 Paris Cedex 05 France
| | - Marie-Lilith Patou
- UMR 7205 ISYEB; CNRS MNHN UPMC EPHE; Institut de Systématique; Evolution, Biodiversité, Muséum National d'Histoire Naturelle; CP 51, 57 rue Cuvier, 75231 Paris Cedex 05 France
| | - Regis Debruyne
- UMS CNRS MNHN 2700; Outils et Méthodes de la Systématique Intégrative; Département Systématique & Evolution; Muséum National d'Histoire Naturelle; CP 26, 57 Rue Cuvier 75231 Paris Cedex 05 France
| | - Arnaud Couloux
- Genoscope; Centre National de Séquençage; 2 rue Gaston Crémieux, CP 5706, 91057 Evry Cedex France
| | | | - Siew Te Wong
- Bornean Sun Bear Conservation Center; PPM 219, Elopura 90000 Sandakan Sabah Malaysia
| | - Jérome Fuchs
- UMR 7205 ISYEB; CNRS MNHN UPMC EPHE; Institut de Systématique; Evolution, Biodiversité, Muséum National d'Histoire Naturelle; CP 51, 57 rue Cuvier, 75231 Paris Cedex 05 France
| | - Andrew P. Jennings
- UMR 7205 ISYEB; CNRS MNHN UPMC EPHE; Institut de Systématique; Evolution, Biodiversité, Muséum National d'Histoire Naturelle; CP 51, 57 rue Cuvier, 75231 Paris Cedex 05 France
| |
Collapse
|
16
|
Zarowiecki M, Linton YM, Post RJ, Bangs MJ, Htun PT, Hlaing T, Seng CM, Baimai V, Ding TH, Sochantha T, Walton C. Repeated landmass reformation limits diversification in the widespread littoral zone mosquito Anopheles sundaicus sensu lato in the Indo-Oriental Region. Mol Ecol 2014; 23:2573-89. [PMID: 24750501 DOI: 10.1111/mec.12761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 11/29/2022]
Abstract
Southeast Asia harbours abundant biodiversity, hypothesized to have been generated by Pliocene and Pleistocene climatic and environmental change. Vicariance between the island of Borneo, the remaining Indonesian archipelago and mainland Southeast Asia caused by elevated sea levels during interglacial periods has been proposed to lead to diversification in the littoral zone mosquito Anopheles (Cellia) sundaicus (Rodenwaldt) sensu lato. To test this biogeographical hypothesis, we inferred the population history and assessed gene flow of A. sundaicus s.l. sampled from 18 populations across its pan-Asian species range, using sequences from mitochondrial cytochrome c oxidase subunit 1 (CO1), the internal transcribed spacer 2 (ITS2) and the mannose phosphate isomerase (Mpi) gene. A hypothesis of ecological speciation for A. sundaicus involving divergent adaptation to brackish and freshwater larval habitats was also previously proposed, based on a deficiency of heterozygotes for Mpi allozyme alleles in sympatry. This hypothesis was not supported by Mpi sequence data, which exhibited no fixed differences between brackish and freshwater larval habitats. Mpi and CO1 supported the presence of up to eight genetically distinct population groupings. Counter to the hypothesis of three allopatric species, divergence was often no greater between Borneo, Sumatra/Java and the Southeast Asian mainland than it was between genetic groupings within these landmasses. An isolation-with-migration (IM) model indicates recurrent gene flow between the current major landmasses. Such gene flow would have been possible during glacial periods when the current landmasses merged, presenting opportunities for dispersal along expanding and contracting coastlines. Consequently, Pleistocene climatic variation has proved a homogenizing, rather than diversifying, force for A. sundaicus diversity.
Collapse
Affiliation(s)
- Magdalena Zarowiecki
- Parasite Genomics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|