1
|
Mykhailenko A, Zieliński P, Bednarz A, Schlyter F, Andersson MN, Antunes B, Borowski Z, Krokene P, Melin M, Morales-García J, Müller J, Nowak Z, Schebeck M, Stauffer C, Viiri H, Zaborowska J, Babik W, Nadachowska-Brzyska K. Complex Genomic Landscape of Inversion Polymorphism in Europe's Most Destructive Forest Pest. Genome Biol Evol 2024; 16:evae263. [PMID: 39656753 DOI: 10.1093/gbe/evae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
In many species, polymorphic genomic inversions underlie complex phenotypic polymorphisms and facilitate local adaptation in the face of gene flow. Multiple polymorphic inversions can co-occur in a genome, but the prevalence, evolutionary significance, and limits to complexity of genomic inversion landscapes remain poorly understood. Here, we examine genome-wide genetic variation in one of Europe's most destructive forest pests, the spruce bark beetle Ips typographus, scan for polymorphic inversions, and test whether inversions are associated with key traits in this species. We analyzed 240 individuals from 18 populations across the species' European range and, using a whole-genome resequencing approach, identified 27 polymorphic inversions covering ∼28% of the genome. The inversions vary in size and in levels of intra-inversion recombination, are highly polymorphic across the species range, and often overlap, forming a complex genomic architecture. We found no support for mechanisms such as directional selection, overdominance, and associative overdominance that are often invoked to explain the presence of large inversion polymorphisms in the genome. This suggests that inversions are either neutral or maintained by the combined action of multiple evolutionary forces. We also found that inversions are enriched in odorant receptor genes encoding elements of recognition pathways for host plants, mates, and symbiotic fungi. Our results indicate that the genome of this major forest pest of growing social, political, and economic importance harbors one of the most complex inversion landscapes described to date and raise questions about the limits of intraspecific genomic architecture complexity.
Collapse
Affiliation(s)
- Anastasiia Mykhailenko
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Piotr Zieliński
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Aleksandra Bednarz
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Fredrik Schlyter
- Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences Alnarp, 234 22 Lomma, Sweden
- ETM, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00 Praha, Czechia
| | | | - Bernardo Antunes
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Zbigniew Borowski
- Departament of Forest Ecology, Forest Research Institute, 05-090 Raszyn, Poland
| | - Paal Krokene
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, 1433 Ås, Norway
| | - Markus Melin
- Forest Health and Bidiversity Group, Natural Resources Institute Finland, 80100 Joensuu, Finland
| | - Julia Morales-García
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Jörg Müller
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 96181 Rauhenebrach, Germany
- Bavarian Forest National Park, 94481 Grafenau, Germany
| | - Zuzanna Nowak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Martin Schebeck
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Christian Stauffer
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Heli Viiri
- UPM Forest, UPM-Kymmene, 33100 Tampere, Finland
| | - Julia Zaborowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | | |
Collapse
|
2
|
Schebeck M, Schopf A, Ragland GJ, Stauffer C, Biedermann PHW. Evolutionary ecology of the bark beetles Ips typographus and Pityogenes chalcographus. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:1-10. [PMID: 36239260 DOI: 10.1017/s0007485321000353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ips typographus (L.) and Pityogenes chalcographus (L.) (Coleoptera: Curculionidae) are two common bark beetle species on Norway spruce in Eurasia. Multiple biotic and abiotic factors affect the life cycles of these two beetles, shaping their ecology and evolution. In this article, we provide a comprehensive and comparative summary of selected life-history traits. We highlight similarities and differences in biotic factors, like host range, interspecific competition, host colonization, reproductive behaviour and fungal symbioses. Moreover, we focus on the species' responses to abiotic factors and compare their temperature-dependent development and flight behaviour, cold adaptations and diapause strategies. Differences in biotic and abiotic traits might be the result of recent, species-specific evolutionary histories, particularly during the Pleistocene, with differences in glacial survival and postglacial recolonization. Finally, we discuss future research directions to understand ecological and evolutionary pathways of the two bark beetle species, for both basic research and applied forest management.
Collapse
Affiliation(s)
- Martin Schebeck
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, BOKU, Vienna, Austria
| | - Axel Schopf
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, BOKU, Vienna, Austria
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado - Denver, Denver, CO, USA
| | - Christian Stauffer
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, BOKU, Vienna, Austria
| | - Peter H W Biedermann
- Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Sathyan R, Engelbrecht A, Couldridge VC. Phylogeographic investigation of the bladder grasshopper Bullacris unicolor (Orthoptera Pneumoroidea) in South Africa. ETHOL ECOL EVOL 2023. [DOI: 10.1080/03949370.2022.2157892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Rekha Sathyan
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| | - Adriaan Engelbrecht
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| | - Vanessa C.K. Couldridge
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
4
|
Ellerstrand SJ, Choudhury S, Svensson K, Andersson MN, Kirkeby C, Powell D, Schlyter F, Jönsson AM, Brydegaard M, Hansson B, Runemark A. Weak population genetic structure in Eurasian spruce bark beetle over large regional scales in Sweden. Ecol Evol 2022; 12:e9078. [PMID: 35822111 PMCID: PMC9260063 DOI: 10.1002/ece3.9078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 01/05/2023] Open
Abstract
The Eurasian spruce bark beetle, Ips typographus, is a major pest, capable of killing spruce forests during large population outbreaks. Recorded dispersal distances of individual beetles are typically within hundreds of meters or a few kilometers. However, the connectivity between populations at larger distances and longer time spans and how this is affected by the habitat is less studied, despite its importance for understanding at which distances local outbreaks may spread. Previous population genetic studies in I. typographus typically used low resolution markers. Here, we use genome-wide data to assess population structure and connectivity of I. typographus in Sweden. We used 152 individuals from 19 population samples, distributed over 830 km from Strömsund (63° 46' 8″ N) in the north to Nyteboda (56° 8' 50″ N) in the south, to capture processes at a large regional scale, and a transect sampling design adjacent to a recent outbreak to capture processes at a smaller scale (76 km). Using restriction site-associated DNA sequencing (RADseq) markers capturing 1409-1997 SNPs throughout the genome, we document a weak genetic structure over the large scale, potentially indicative of high connectivity with extensive gene flow. No differentiation was detected at the smaller scale. We find indications of isolation-by-distance both for relative (F ST) and absolute divergence (Dxy). The two northernmost populations are most differentiated from the remaining populations, and diverge in parallel to the southern populations for a set of outlier loci. In conclusion, the population structure of I. typographus in Sweden is weak, suggesting a high capacity to disperse and establish outbreak populations in new territories.
Collapse
Affiliation(s)
| | - Shruti Choudhury
- Department of BiologyLund UniversityLundSweden
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science CentreSwedish University of Agricultural SciencesUmeåSweden
| | | | | | - Carsten Kirkeby
- Excellent Team for Mitigation, Faculty of Forestry & Wood SciencesCzech University of Life Sciences PragueSuchdolCzech Republic
| | - Daniel Powell
- Animal Welfare and Disease ControlCopenhagen UniversityFrederiksberg CDenmark
| | - Fredrik Schlyter
- Global Change Ecology Research GroupUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
- Department of Plant Protection BiologySwedish University of Agricultural SciencesLommaSweden
| | - Anna Maria Jönsson
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundSweden
| | | | | | | |
Collapse
|
5
|
Kajtoch Ł, Gronowska M, Plewa R, Kadej M, Smolis A, Jaworski T, Gutowski JM. A review of saproxylic beetle intra- and interspecific genetics: current state of the knowledge and perspectives. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2048717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ł. Kajtoch
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - M. Gronowska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - R. Plewa
- Department of Forest Protection, Forest Research Institute, Raszyn, Poland
| | - M. Kadej
- Department of Invertebrate Biology, Evolution and Conservation, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - A. Smolis
- Department of Invertebrate Biology, Evolution and Conservation, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - T. Jaworski
- Department of Forest Protection, Forest Research Institute, Raszyn, Poland
| | - J. M. Gutowski
- Department of Natural Forests, Forest Research Institute, Białowieża, Poland
| |
Collapse
|
6
|
Insights into the Divergence of Chinese Ips Bark Beetles during Evolutionary Adaptation. BIOLOGY 2022; 11:biology11030384. [PMID: 35336758 PMCID: PMC8945085 DOI: 10.3390/biology11030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Bark beetle species of the genus Ips are among the major pests of Chinese conifer forests. Based on mitochondrial genome and SNP, we investigated the phylogenetic relationships and evolutionary trends of 19 populations of six Ips species that had serious outbreaks in recent years. Our results demonstrated the relationships between Ips evolution and host plants, pheromones, and altitudinal differences, and provided new insights into the mechanism of adaptive evolution of Ips bark beetles. Abstract Many bark beetles of the genus Ips are economically important insect pests that cause severe damage to conifer forests worldwide. In this study, sequencing the mitochondrial genome and restriction site-associated DNA of Ips bark beetles helps us understand their phylogenetic relationships, biogeographic history, and evolution of ecological traits (e.g., pheromones and host plants). Our results show that the same topology in phylogenetic trees constructed in different ways (ML/MP/BI) and with different data (mtDNA/SNP) helps us to clarify the phylogenetic relationships between Chinese Ips bark beetle populations and Euramerican species and their higher order clades; Ips bark beetles are polyphyletic. The structure of the mitochondrial genome of Ips bark beetles is similar and conserved to some extent, especially in the sibling species Ips typographus and Ips nitidus. Genetic differences among Ips species are mainly related to their geographic distribution and different hosts. The evolutionary pattern of aggregation pheromones of Ips species reflects their adaptations to the environment and differences among hosts in their evolutionary process. The evolution of Ips species is closely related to the uplift of the Qinghai-Tibet Plateau and host switching. Our study addresses the evolutionary trend and phylogenetic relationships of Ips bark beetles in China, and also provides a new perspective on the evolution of bark beetles and their relationships with host plants and pheromones.
Collapse
|
7
|
Müller M, Niesar M, Berens I, Gailing O. Genotyping by sequencing reveals lack of local genetic structure between two German Ips typographus L. populations. FORESTRY RESEARCH 2022; 2:1. [PMID: 39525416 PMCID: PMC11524269 DOI: 10.48130/fr-2022-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2024]
Abstract
The European spruce bark beetle (Ips typographus L.) is a serious pest in Norway spruce stands. While usually attacking freshly fallen trees or trees with a reduced defense system, also healthy trees can be infested during massive outbreaks of I. typographus that can occur after catastrophic events such as drought periods or storms. Knowledge of the genetic structure of this species, especially on local scales is still ambiguous. While local population structure was reported in some studies, others did not detect any differentiation among I. typographus populations. Here, we used genotyping by sequencing to infer the genetic structure of two I. typographus populations in western Germany, which had a distance of approx. 58 km from each other. Based on 16,830 SNPs we detected high genetic diversity, but very low genetic differentiation between the populations (FST: 0.001) and a lack of population structure. These results suggest a high dispersal ability of I. typographus.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073 Göttingen, Germany
| | - Mathias Niesar
- Landesbetrieb Wald und Holz NRW, Team Forest and Climate Protection, Steinmüllerallee 13, 51643 Gummersbach, Germany
| | - Ignaz Berens
- Landesbetrieb Wald und Holz NRW, Nationalparkforstamt Eifel, Urftseestraße 34, 53937 Schleiden
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073 Göttingen, Germany
| |
Collapse
|
8
|
Martinez-Sañudo I, Perin C, Cavaletto G, Ortis G, Fontana P, Mazzon L. Studying genetic population structure to shed light on the demographic explosion of the rare species Barbitistes vicetinus (Orthoptera, Tettigoniidae). PLoS One 2021; 16:e0250507. [PMID: 33956844 PMCID: PMC8101909 DOI: 10.1371/journal.pone.0250507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/07/2021] [Indexed: 11/19/2022] Open
Abstract
Insect outbreaks usually involve important ecological and economic consequences for agriculture and forestry. The short-winged bush-cricket Barbitistes vicetinus Galvagni & Fontana, 1993 is a recently described species that was considered rare until ten years ago, when unexpected population outbreaks causing severe defoliations across forests and crops were observed in north-eastern Italy. A genetic approach was used to analyse the origin of outbreak populations. The analysis of two mitochondrial regions (Cytochrome Oxidase I and II and 12S rRNA-Control Region) of 130 samples from the two disjunct ranges (Euganean and Berici Hills) showed high values of haplotype diversity and revealed a high geographical structure among populations of the two ranges. The high genetic variability observed supports the native origin of this species. In addition, results suggest that unexpected outbreaks are not a consequence of a single or few pestiferous haplotypes but rather the source of outbreaks are local populations which have experienced an increase in each area. The recent outbreaks have probably appeared independently of the genetic haplotypes whereas environmental conditions could have affected the outbreak populations. These findings contribute to a growing understanding of the status and evolutionary history of the pest that would be useful for developing and implementing biological control strategies for example by maximizing efforts to locate native natural enemies.
Collapse
Affiliation(s)
- Isabel Martinez-Sañudo
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, PD, Italy
| | - Corrado Perin
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, PD, Italy
| | - Giacomo Cavaletto
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, PD, Italy
| | - Giacomo Ortis
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, PD, Italy
| | - Paolo Fontana
- Istituto Agrario San Michele all’Adige (IASMA) Research and Innovation Centre, Foundation Edmund Mach (FEM), San Michele all’ Adige, Trento, TN, Italy
| | - Luca Mazzon
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, PD, Italy
| |
Collapse
|
9
|
Goczał J, Oleksa A, Rossa R, Chybicki I, Meyza K, Plewa R, Landvik M, Gobbi M, Hoch G, Tamutis V, Balalaikins M, Telnov D, Dascălu MM, Tofilski A. Climatic oscillations in Quaternary have shaped the co-evolutionary patterns between the Norway spruce and its host-associated herbivore. Sci Rep 2020; 10:16524. [PMID: 33020511 PMCID: PMC7536422 DOI: 10.1038/s41598-020-73272-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
During the Last Glacial Maximum in the Northern Hemisphere, expanding ice sheets forced a large number of plants, including trees, to retreat from their primary distribution areas. Many host-associated herbivores migrated along with their host plants. Long-lasting geographic isolation between glacial refugia could have been led to the allopatric speciation in separated populations. Here, we have studied whether the migration history of the Norway spruce Picea abies in Quaternary has affected its host-associated herbivorous beetle—Monochamus sartor. By using microsatellite markers accompanied by the geometric morphometrics analysis of wing venation, we have revealed the clear geographic structure of M. sartor in Eurasia, encompassing two main clusters: southern (Alpine–Carpathian) and eastern (including northeastern Europe and Asia), which reflects the northern and southern ecotypes of its host. The two beetles’ lineages probably diverged during the Pleniglacial (57,000—15,000 BC) when their host tree species was undergoing significant range fragmentation and experienced secondary contact during post-glacial recolonization of spruce in the Holocene. A secondary contact of divergent lineages of M. sartor has resulted in the formation of the hybrid zone in northeastern Europe. Our findings suggest that the climatic oscillations during the Pleistocene have driven an insect-plant co-evolutionary process, and have contributed to the formation of the unique biodiversity of Europe.
Collapse
Affiliation(s)
- Jakub Goczał
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46, 31-425, Kraków, Poland.
| | - Andrzej Oleksa
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Powstańców Wielkopolskich 10, 85-090, Bydgoszcz, Poland.
| | - Robert Rossa
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46, 31-425, Kraków, Poland
| | - Igor Chybicki
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Powstańców Wielkopolskich 10, 85-090, Bydgoszcz, Poland
| | - Katarzyna Meyza
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Powstańców Wielkopolskich 10, 85-090, Bydgoszcz, Poland
| | - Radosław Plewa
- Department of Forest Protection, Forest Research Institute, Sękocin Stary, Sękocin Stary, Braci Leśnej 3, 05-090, Raszyn, Poland
| | | | - Mauro Gobbi
- Section of Invertebrate Zoology and Hydrobiology, MUSE-Science Museum, Corso del Lavoro e della Scienza 3, 38122, Trento, Italy
| | - Gernot Hoch
- BFW - Austrian Research Centre for Forests, Seckendorff-Gudent-Weg 8, 1131, Vienna, Austria
| | - Vytautas Tamutis
- Kaunas Botanical Garden, Vytautas Magnus University, Ž.E. Žilibero Str. 6, 46324, Kaunas, Lithuania
| | - Maksims Balalaikins
- Institute of Life Sciences and Technology, Daugavpils University, Vienibas 13, Daugavpils, 5400, Latvia
| | - Dmitry Telnov
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK.,Institute of Biology, University of Latvia, Miera iela 3, Salaspils, Latvia
| | - Maria-Magdalena Dascălu
- Research Group in Invertebrate Diversity and Phylogenetics, Faculty of Biology, Alexandru Ioan Cuza University, Bd. Carol I, nr. 11, 700506, Iasi, Romania
| | - Adam Tofilski
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Adama Mickiewicza 24/28, 30-059, Kraków, Poland
| |
Collapse
|
10
|
Schebeck M, Schuler H, Einramhof B, Avtzis DN, Dowle EJ, Faccoli M, Battisti A, Ragland GJ, Stauffer C, Bertheau C. The Apennines as a cryptic Pleistocene refugium of the bark beetle Pityogenes chalcographus (Coleoptera: Curculionidae). Biol J Linn Soc Lond 2019; 127:24-33. [PMID: 31186586 PMCID: PMC6557710 DOI: 10.1093/biolinnean/blz012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Apennine Mountains in Italy are an important biogeographical region and of particular interest in phylogeographical research, because they have been a refugium during Pleistocene glaciation events for numerous European species. We performed a genetic study on the Eurasian bark beetle Pityogenes chalcographus (Linnaeus, 1760), focusing on two Apennine (Italian) and two Central European (Austrian) locations to assess the influence of the Apennines in the evolutionary history of the beetle, particularly during the Pleistocene. We analysed a part of the mitochondrial COI gene and a set of 5470 informative genome-wide markers to understand its biogeography. We found 75 distinct mitochondrial haplotypes, which are structured in three main clades. In general, the Apennine locations harbour a higher number of mitochondrial clades than Central European sites, with one specific clade exclusively detected in the Apennines. Analysis of our genome-wide, multi-locus dataset reveals a clustering of P. chalcographus by geography, with Italian individuals clearly separated from Austrian samples. Our data highlight the significance of the Apennines for the genetic diversity of P. chalcographus and support the hypothesis that this area was an important refugium during unfavourable conditions in the Pleistocene. We discuss additional life-history traits and processes that shaped the evolution of this widespread beetle.
Collapse
Affiliation(s)
- Martin Schebeck
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, BOKU, Vienna, Austria
| | - Hannes Schuler
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
| | - Birgit Einramhof
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, BOKU, Vienna, Austria
| | - Dimitrios N Avtzis
- Forest Research Institute, Hellenic Agricultural Organization Demeter, Thessaloniki, Greece
| | - Eddy J Dowle
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA.,Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Massimo Faccoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Andrea Battisti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | - Christian Stauffer
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, BOKU, Vienna, Austria
| | - Coralie Bertheau
- Laboratoire Chrono-Environnement, Université de Bourgogne Franche-Comté, Pôle Universitaire du Pays de Montbéliard, Montbéliard, France
| |
Collapse
|
11
|
Shallow Genetic Structure among the European Populations of the Six-Toothed Bark Beetle Ips sexdentatus (Coleoptera, Curculionidae, Scolytinae). FORESTS 2019. [DOI: 10.3390/f10020136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The six-toothed bark beetle, Ips sexdentatus, is one of the most abundant scolytid species of the central and southern European countries. It mostly feeds on Pinus sp., whereas during population outbreaks it can also attack Picea sp. In spite of its broad distribution, its phylogeography has never been studied before. To do that, we employed an mtDNA marker on 489 individuals that covered most of its native range in Europe. Geographic distribution of the 86 haplotypes showed that at least three glacial refugia have played a significant role in shaping the currently observed pattern of genetic divergence in Europe, without excluding the contribution of minor refugial areas that acted in a similar manner. The revealed shallow structure can be considered an artifact of factors that reduced intraspecific diversity, at the same time favoring gene flow. As such, biological traits of the species itself (flying ability and host preference) and even human-mediated transport of wood seem to be the most prevailing and probable reasons that gave rise to the observed pattern.
Collapse
|
12
|
Gradish A, Keyghobadi N, Sperling F, Otis G. Population genetic structure and assessment of allochronic divergence in the Macoun’s Arctic (Oeneis macounii) butterfly. CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Patterns in the genetic variation of species can be used to infer their specific demographic and evolutionary history and provide insight into the general mechanisms underlying population divergence and speciation. The Macoun’s Arctic (Oeneis macounii (W.H. Edwards, 1885); MA) butterfly occurs across Canada and parts of the northern United States in association with jack pine (Pinus banksiana Lamb.) and lodgepole pine (Pinus contorta Douglas ex Loudon). MA’s current distribution is highly fragmented, and the extent of reproductive isolation among allopatric populations is unknown. Furthermore, although MA is biennial, adults emerge every year in some populations. These populations presumably consist of two alternate-year cohorts, providing the opportunity for sympatric divergence via allochronic isolation. Using mitochondrial DNA (mtDNA) and amplified fragment length polymorphism (AFLP) markers, we analyzed MA’s genetic structure to determine the current and historical role of allopatric and allochronic isolation in MA population divergence. Both markers revealed high diversity and a low, but significant, degree of spatial structure and pattern of isolation by distance. Phylogeographic structure was generally absent, with low divergence among mtDNA haplotypes. MA likely exhibits low dispersal and gene flow among most allopatric populations; however, there was no evidence of differentiation resulting from allochronic isolation for sympatric cohorts.
Collapse
Affiliation(s)
- A.E. Gradish
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - N. Keyghobadi
- Department of Biology, Western University, London, ON N6A 3K7, Canada
| | - F.A.H. Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - G.W. Otis
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
13
|
Pleistocene climate cycling and host plant association shaped the demographic history of the bark beetle Pityogenes chalcographus. Sci Rep 2018; 8:14207. [PMID: 30242185 PMCID: PMC6155062 DOI: 10.1038/s41598-018-32617-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/12/2018] [Indexed: 11/16/2022] Open
Abstract
Historical climatic oscillations and co-evolutionary dependencies were key evolutionary drivers shaping the current population structure of numerous organisms. Here, we present a genome-wide study on the biogeography of the bark beetle Pityogenes chalcographus, a common and widespread insect in Eurasia. Using Restriction Associated DNA Sequencing, we studied the population structure of this beetle across a wide part of its western Palaearctic range with the goal of elucidating the role of Pleistocene glacial-interglacial cycling and its close relationship to its main host plant Norway spruce. Genetic distance among geographic sites was generally low, but clustering analysis revealed three genetically distinct groups, that is, southern, central/south-eastern, and north-eastern locations. Thus, three key P. chalcographus glacial refugia were identified: in the Italian-Dinaric region, the Carpathians, and the Russian plain, shared with its main host. The current phylogeographic signal was affected by genetic divergence among geographically isolated refugia during glacial periods and postglacial re-establishment of genetic exchange through secondary contact, reflected by admixture among genetic groups. Additionally, certain life history traits, like the beetle’s dispersal and reproductive behaviour, considerably influenced its demographic history. Our results will help to understand the biogeography of other scolytine beetles, especially species with similar life history traits.
Collapse
|
14
|
Ophiostomatoid fungi associated with the spruce bark beetle Ips typographus, including 11 new species from China. Persoonia - Molecular Phylogeny and Evolution of Fungi 2018; 42:50-74. [PMID: 31551614 PMCID: PMC6712535 DOI: 10.3767/persoonia.2019.42.03] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/31/2018] [Indexed: 11/25/2022]
Abstract
Ips typographus (Coleoptera, Scolytinae) is a spruce-infesting bark beetle that occurs throughout Europe and Asia. The beetle can cause considerable damage, especially when colonized trees are stressed and beetle populations increase. Although some studies have shown that populations of I. typographus in Europe, China and Japan are genetically distinct, these populations are biologically similar, including a strong association with ophiostomatoid fungi. To date, only two Leptographium spp. have been reported from the beetle in China, while 40 species have been reported from Europe and 13 from Japan. The aims of this study were to identify the ophiostomatoid fungal associates of I. typographus in north-eastern China, and to determine whether the fungal assemblages reflect the different geographical populations of the beetle. Field surveys in Jilin and Heilongjiang provinces yielded a total of 1 046 fungal isolates from 145 beetles and 178 galleries. Isolates were grouped based on morphology and representatives of each group were identified using DNA sequences of the ribosomal LSU, ITS, β-tubulin, calmodulin and elongation factor 1-α gene regions. A total of 23 species of ophiostomatoid fungi were identified, including 12 previously described species and 11 novel species, all of which are described here. The dominant species were Ophiostoma bicolor, Leptographium taigense and Grosmannia piceiperda D, representing 40.5 %, 27.8 % and 17.8 % of the isolates, respectively. Comparisons of species from China, Europe and Japan are complicated by the fact that some of the European and all the Japanese species were identified based only on morphology. However, assuming that those identifications are correct, five species were shared between Europe, Japan and China, two species were shared between China and Japan, five between Europe and China, and two between Europe and Japan. Consequently, Ips typographus populations in these different geographic areas have different fungal assemblages, suggesting that the majority of these beetle-associations are promiscuous. The results also suggested that the symbionts of the bark beetle do not reflect the population structures of the beetle. The use of fungal symbiont assemblages to infer population structures and invasion history of its vectors should thus be interpreted with circumspection.
Collapse
|
15
|
Schebeck M, Feldkirchner L, Marín B, Krumböck S, Schuler H, Stauffer C. Reproductive Manipulators in the Bark Beetle Pityogenes chalcographus (Coleoptera: Curculionidae)-The Role of Cardinium, Rickettsia, Spiroplasma, and Wolbachia. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:4996250. [PMID: 29771340 PMCID: PMC5952938 DOI: 10.1093/jisesa/iey044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 06/08/2023]
Abstract
Heritable bacterial endosymbionts can alter the biology of numerous arthropods. They can influence the reproductive outcome of infected hosts, thus affecting the ecology and evolution of various arthropod species. The spruce bark beetle Pityogenes chalcographus (L.) (Coleoptera: Curculionidae: Scolytinae) was reported to express partial, unidirectional crossing incompatibilities among certain European populations. Knowledge on the background of these findings is lacking; however, bacterial endosymbionts have been assumed to manipulate the reproduction of this beetle. Previous work reported low-density and low-frequency Wolbachia infections of P. chalcographus but found it unlikely that this infection results in reproductive alterations. The aim of this study was to test the hypothesis of an endosymbiont-driven incompatibility, other than Wolbachia, reflected by an infection pattern on a wide geographic scale. We performed a polymerase chain reaction (PCR) screening of 226 individuals from 18 European populations for the presence of the endosymbionts Cardinium, Rickettsia, and Spiroplasma, and additionally screened these individuals for Wolbachia. Positive PCR products were sequenced to characterize these bacteria. Our study shows a low prevalence of these four endosymbionts in P. chalcographus. We detected a yet undescribed Spiroplasma strain in a single individual from Greece. This is the first time that this endosymbiont has been found in a bark beetle. Further, Wolbachia was detected in three beetles from two Scandinavian populations and two new Wolbachia strains were described. None of the individuals analyzed were infected with Cardinium and Rickettsia. The low prevalence of bacteria found here does not support the hypothesis of an endosymbiont-driven reproductive incompatibility in P. chalcographus.
Collapse
Affiliation(s)
- Martin Schebeck
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, BOKU, Peter-Jordan-Straße, Vienna, Austria
| | - Lukas Feldkirchner
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, BOKU, Peter-Jordan-Straße, Vienna, Austria
| | - Belen Marín
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, BOKU, Peter-Jordan-Straße, Vienna, Austria
| | - Susanne Krumböck
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, BOKU, Peter-Jordan-Straße, Vienna, Austria
| | - Hannes Schuler
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, BOKU, Peter-Jordan-Straße, Vienna, Austria
| | - Christian Stauffer
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, BOKU, Peter-Jordan-Straße, Vienna, Austria
| |
Collapse
|
16
|
Lesieur V, Martin JF, Weaver DK, Hoelmer KA, Smith DR, Morrill WL, Kadiri N, Peairs FB, Cockrell DM, Randolph TL, Waters DK, Bon MC. Phylogeography of the Wheat Stem Sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae): Implications for Pest Management. PLoS One 2016; 11:e0168370. [PMID: 27959958 PMCID: PMC5154603 DOI: 10.1371/journal.pone.0168370] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/30/2016] [Indexed: 12/23/2022] Open
Abstract
The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a key pest of wheat in the northern Great Plains of North America, and damage resulting from this species has recently expanded southward. Current pest management practices are inadequate and uncertainty regarding geographic origin, as well as limited data on population structure and dynamics across North America impede progress towards more informed management. We examined the genetic divergence between samples collected in North America and northeastern Asia, the assumed native range of C. cinctus using two mitochondrial regions (COI and 16S). Subsequently, we characterized the structure of genetic diversity in the main wheat producing areas in North America using a combination of mtDNA marker and microsatellites in samples collected both in wheat fields and in grasses in wildlands. The strong genetic divergence observed between North American samples and Asian congeners, in particular the synonimized C. hyalinatus, did not support the hypothesis of a recent American colonization by C. cinctus. Furthermore, the relatively high genetic diversity both with mtDNA and microsatellite markers offered additional evidence in favor of the native American origin of this pest. The genetic diversity of North American populations is structured into three genetic clusters and these are highly correlated with geography. Regarding the recent southern outbreaks in North America, the results tend to exclude the hypothesis of recent movement of damaging wheat stem sawfly populations from the northern area. The shift in host plant use by local populations appears to be the most likely scenario. Finally, the significance of these findings is discussed in the context of pest management.
Collapse
Affiliation(s)
- Vincent Lesieur
- USDA ARS, European Biological Control Laboratory, 810, Avenue du Campus Agropolis, Montferrier sur Lez, France
- Montpellier-SupAgro, UMR CBGP, 755 avenue du Campus Agropolis, Montferrier sur Lez, France
| | - Jean-François Martin
- Montpellier-SupAgro, UMR CBGP, 755 avenue du Campus Agropolis, Montferrier sur Lez, France
| | - David K. Weaver
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, United States of America
| | - Kim A. Hoelmer
- USDA ARS, Beneficial Insects Introduction Research Unit, Newark, DE, United States of America
| | - David R. Smith
- Systematic Entomology Laboratory, USDA ARS, c/o National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Wendell L. Morrill
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, United States of America
| | - Nassera Kadiri
- Département Biologie-Ecologie-Environnement, Laboratoire de Zoogéographie, UMR 5175 CEFE, Université Paul-Valéry Montpellier 3, Route de Mende, Montpellier cedex 5, France
| | - Frank B. Peairs
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States of America
| | - Darren M. Cockrell
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States of America
| | - Terri L. Randolph
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, United States of America
| | - Debra K. Waters
- Northern Plains Agricultural Research Laboratory, USDA ARS, Sidney, MT, United States of America
| | - Marie-Claude Bon
- USDA ARS, European Biological Control Laboratory, 810, Avenue du Campus Agropolis, Montferrier sur Lez, France
| |
Collapse
|
17
|
Hoareau TB. Late Glacial Demographic Expansion Motivates a Clock Overhaul for Population Genetics. Syst Biol 2015; 65:449-64. [PMID: 26683588 DOI: 10.1093/sysbio/syv120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/10/2015] [Indexed: 12/18/2022] Open
Abstract
The molecular clock hypothesis is fundamental in evolutionary biology as by assuming constancy of the molecular rate it provides a timeframe for evolution. However, increasing evidence shows time dependence of inferred molecular rates with inflated values obtained using recent calibrations. As recent demographic calibrations are virtually non-existent in most species, older phylogenetic calibration points (>1 Ma) are commonly used, which overestimate demographic parameters. To obtain more reliable rates of molecular evolution for population studies, I propose the calibration of demographic transition (CDT) method, which uses the timing of climatic changes over the late glacial warming period to calibrate expansions in various species. Simulation approaches and empirical data sets from a diversity of species (from mollusk to humans) confirm that, when compared with other genealogy-based calibration methods, the CDT provides a robust and broadly applicable clock for population genetics. The resulting CDT rates of molecular evolution also confirm rate heterogeneity over time and among taxa. Comparisons of expansion dates with ecological evidence confirm the inaccuracy of phylogenetically derived divergence rates when dating population-level events. The CDT method opens opportunities for addressing issues such as demographic responses to past climate change and the origin of rate heterogeneity related to taxa, genes, time, and genetic information content.
Collapse
Affiliation(s)
- Thierry B Hoareau
- Molecular Ecology and Evolution Programme, Department of Genetics, University of Pretoria, Private bag X20, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
18
|
Korsch K, Bataka A, Kodona M, Sioulas S, Tsiakiris R, Michaelakis A, Avtzis DN. Genetic diversity of Thaumetopoea pityocampa in Greece: the role of Quaternary changes in Aegean Sea. Open Life Sci 2015. [DOI: 10.1515/biol-2015-0038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractThaumetopoea pityocampa, the winter pine
processionary moth, is one of the most important pests
of pine trees in the Mediterranean region. To learn more
about the refugial areas within the greater refugium
of Greece, samples from 15 local populations were
collected. Analysis of the Cytochrome Oxidase I region
identified 15 haplotypes. One strongly supported clade
was found, separating the Aegean island of Lesvos from
the mainland populations. Mdiv analysis showed that
this clade diverged from the general clade 155,000 y.a.,
suggesting the sea level changes during the Quaternary
Period as a possible reason for its seclusion. Additionally,
comparisons with similar studies in this region revealed
a possible colonization of the eastern Aegean islands
from the Turkish mainland rather than from Greece.
However, no strong isolation-by-distance events were
detected among the mainland populations, which could
be attributed to the joint effect of regular gene flow and
the lack of insurmountable geographic barriers. Finally,
regarding population structure, Bayesian analysis as well
as neutrality tests pointed towards an ongoing population
expansion which verifies the potential invasiveness of
this pest species, something that will have to be dealt with
under the influence of climate change.
Collapse
Affiliation(s)
- Katrin Korsch
- 1Faculty of Forest and Environment, Eberswalde University for Sustainable Development, Eberswalde, Germany
- 2Forest Research Institute, Hellenic Agricultural Organization Demeter, Vassilika, Thessaloniki, Greece
| | - Alkmini Bataka
- 2Forest Research Institute, Hellenic Agricultural Organization Demeter, Vassilika, Thessaloniki, Greece
| | | | | | | | | | - Dimitrios N. Avtzis
- 2Forest Research Institute, Hellenic Agricultural Organization Demeter, Vassilika, Thessaloniki, Greece
| |
Collapse
|
19
|
Mayer F, Piel FB, Cassel-Lundhagen A, Kirichenko N, Grumiau L, Økland B, Bertheau C, Grégoire JC, Mardulyn P. Comparative multilocus phylogeography of two Palaearctic spruce bark beetles: influence of contrasting ecological strategies on genetic variation. Mol Ecol 2015; 24:1292-310. [PMID: 25655781 DOI: 10.1111/mec.13104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 12/01/2022]
Abstract
While phylogeographic patterns of organisms are often interpreted through past environmental disturbances, mediated by climate changes, and geographic barriers, they may also be strongly influenced by species-specific traits. To investigate the impact of such traits, we focused on two Eurasian spruce bark beetles that share a similar geographic distribution, but differ in their ecology and reproduction. Ips typographus is an aggressive tree-killing species characterized by strong dispersal, whereas Dendroctonus micans is a discrete inbreeding species (sib mating is the rule), parasite of living trees and a poor disperser. We compared genetic variation between the two species over both beetles' entire range in Eurasia with five independent gene fragments, to evaluate whether their intrinsic differences could have an influence over their phylogeographic patterns. We highlighted widely divergent patterns of genetic variation for the two species and argue that the difference is indeed largely compatible with their contrasting dispersal strategies and modes of reproduction. In addition, genetic structure in I. typographus divides European populations in a northern and a southern group, as was previously observed for its host plant, and suggests past allopatric divergence. A long divergence time was estimated between East Asian and other populations of both species, indicating their long-standing presence in Eurasia, prior to the last glacial maximum. Finally, the strong population structure observed in D. micans for the mitochondrial locus provides insights into the recent colonization history of this species, from its native European range to regions where it was recently introduced.
Collapse
Affiliation(s)
- François Mayer
- Lutte Biologique et Ecologie Spatiale, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Holmes I. Temporal population genetic instability in range-edge western toads, Anaxyrus boreas. J Hered 2014; 106:45-56. [PMID: 25433082 DOI: 10.1093/jhered/esu068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this article, we address the temporal stability of population genetic structure in a range-edge population that is undergoing continual, short-distance colonization events. We sampled western toad, Anaxyrus boreas, breeding populations over 2 seasons near their northern range limit in southeast Alaska. We sampled 20 ponds each during the summers of 2008 and 2009, with 14 ponds sampled in both summers. We found considerable turnover in the population genetic relationships among ponds in those 2 seasons, as well as biologically meaningful genetic differentiation between years within some ponds. We found relatively consistent relationships between major population centers, whereas the relationships between the central ponds and smaller, outlying populations differed year to year. This finding indicates that multiple years of genetic sampling may be important for understanding the genetic landscape of some populations.
Collapse
Affiliation(s)
- Iris Holmes
- From the University of Michigan Museum of Natural History, Ruthven Museums Building, 1109 Geddes Avenue, Ann Arbor, MI 48109-1097.
| |
Collapse
|
21
|
Mayer F, Björklund N, Wallén J, Långström B, Cassel‐Lundhagen A. Mitochondrial
DNA
haplotypes indicate two postglacial re‐colonization routes of the spruce bark beetle
I
ps typographus
through northern Europe to Scandinavia. J ZOOL SYST EVOL RES 2014. [DOI: 10.1111/jzs.12063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- François Mayer
- Biological Control and Spatial Ecology Laboratory Université Libre de Bruxelles Brussels Belgium
| | - Niklas Björklund
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Johan Wallén
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Bo Långström
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | | |
Collapse
|