1
|
Pagowski V, Micheli F. Mind the Gap: A Review of Disjunctions in Coastal Marine Species. Integr Comp Biol 2024; 64:203-216. [PMID: 38970364 DOI: 10.1093/icb/icae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/30/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024] Open
Abstract
Many coastal marine species have discontinuous distributions or genetic breakpoints throughout their geographical ranges. These spatial and genetic disjunctions occur in species that span limited to broad dispersal potential. Thus, the mechanisms that underlie these disjunctions remain speculative or incompletely known, particularly on small spatial scales where long-term historical processes are unlikely to be the only mechanism contributing to disjunction. Rather, ecological or oceanographic factors may be important. To identify key drivers of coastal disjunctions, we reviewed publications investigating spatial and genetic disjunctions in coastal marine species and visually summarized where and why they are thought to occur. The most frequently cited mechanisms implicated in causing disjunctions include historical processes, oceanographic features, heterogeneous habitat, species introductions, and limited larval dispersal capacities. However, the relative importance of each of these processes varies depending on the spatial scales investigated. Furthermore, locations associated with disjunctions for a suite of species are typically associated with multiple processes that maintain these disjunctions. This study provides a non-exhaustive synthesis of disjunctions in coastal marine species by visualizing where they occur, exploring underlying mechanisms, and investigating biases in how the scientific community studies this phenomenon.
Collapse
Affiliation(s)
- Veronica Pagowski
- Stanford University, Hopkins Marine Station, 120 Ocean View Blvd, Pacific Grove, CA 93950, USA
| | - Fiorenza Micheli
- Stanford University, Hopkins Marine Station, 120 Ocean View Blvd, Pacific Grove, CA 93950, USA
| |
Collapse
|
2
|
Yang MY, Kim SY, Kim MS. Verification of hotspots of genetic diversity in Korean population of Grateloupia asiatica and G. jejuensis (Rhodophyta) show low genetic diversity and similar geographic distribution. Genes Genomics 2021; 43:1463-1469. [PMID: 34697760 DOI: 10.1007/s13258-021-01168-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Understanding the genetic diversity and distribution patterns of seaweeds species is crucial for evaluating key regions of high genetic diversity. Identifying hotspots of high intraspecific diversity is an important step for developing conservation strategies. Grateloupia is a diverse genus of Rhodophyta, many of which are resource of numerous useful bioactive compounds; therefore, the genus is valuable target for conservation. OBJECTIVE The aim of this study is to examine the genetic diversity and population structure of two Grateloupia species, Grateloupia asiatica and Grateloupia jejuensis, with the understanding of the phylogeography of the Korean genetic diversity hotspot for two species. METHODS Plastid rbcL gene sequences of 134 specimens of G. asiatica and 112 specimens of G. jejuensis collected from the Korean coast were analyzed. We evaluated the number of haplotypes, genetic diversity (haplotype and nucleotide diversity), and haplotype networks of two species. Historical demographic was inferred by calculating neutrality tests and genetic differentiation was estimated using the fixation index, FST. RESULTS Our results show that both species are generally similar in geographical distribution patterns, that is, relatively homogeneous with few haplotypes derived from the most frequent haplotype. The east coast of Korea is identified as a 'hotspot' with the highest genetic diversity for both species, whereas Jeju Island is identified as a 'cold spot' with the lowest genetic diversity for G. jejuensis. Analyses across most distribution ranges of the two species in Korea reveal low genetic and haplotype diversities, which could indicate that these two Grateloupia species have either experienced a historical lack of diversity or a recent reduction in diversity due to high gene flow. CONCLUSIONS The low genetic diversity values found in the present study raise considerable concern about the conservation status of these two Grateloupia species and highlight the need to locate further hotspots of genetic diversity to strengthen their resilience against further decline.
Collapse
Affiliation(s)
- Mi Yeon Yang
- Department of Biology and Research Institute for Basic Sciences, Jeju National University, Jeju, 63243, Korea
| | - Su Yeon Kim
- Korea Inter-University Institute of Ocean Science, Pukyong National University, Busan, 48513, Korea
| | - Myung Sook Kim
- Department of Biology and Research Institute for Basic Sciences, Jeju National University, Jeju, 63243, Korea.
| |
Collapse
|
3
|
Kamiya M, Inoue N, Suzuki C, Abe SI. Ecological, physiological, and biomechanical differences between gametophytes and sporophytes of Chondrus ocellatus (Gigartinales, Rhodophyta) 1. JOURNAL OF PHYCOLOGY 2021; 57:1590-1603. [PMID: 34164823 DOI: 10.1111/jpy.13193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Although variation among habitats in the ratio of gametophytes to sporophytes has been reported in various gigartinacean species, factors controlling the phase ratio remain poorly understood. Over 18 months, we examined the phase ratio of Chondrus ocellatus at three sites: a sheltered intertidal site, Hiruga A; an exposed intertidal site, Hiruga B; and a subtidal site, Shikimi. The mean proportion of gametophytes at Hiruga A (73.1%) was significantly higher than that at Shikimi (51.2%) and Hiruga B (44.7%). Due to a significantly higher water retention ability of the gametophytes, it was expected that the gametophytes would exhibit higher desiccation tolerance. After dehydration treatments, however, neither the photosynthetic rate of vegetative blades nor the survival rate of spores was significantly different between the phases. Measurements of blade strength indicated that the sporophytic blades were less stiff and more flexible, and a culture experiment revealed that the sporophytic germlings showed a significantly higher growth rate. Flexible blades and fast-growing germlings are considered advantageous for colonizing wave-swept intertidal habitats, so these properties may have caused the different fluctuation pattern of phase ratio among the sites. The present data demonstrate that biomechanical and physiological differences between the two phases of C. ocellatus make one phase advantageous in certain environmental conditions, and that these differences likely cause an unequal ratio of isomorphic phases.
Collapse
Affiliation(s)
- Mitsunobu Kamiya
- Faculty of Marine Bioscience, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Naoto Inoue
- Faculty of Marine Bioscience, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Chika Suzuki
- Faculty of Marine Bioscience, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Shin-Ichiro Abe
- College of Education, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki, 310-8512, Japan
| |
Collapse
|
4
|
Song X, Assis J, Zhang J, Gao X, Gao H, Duan D, Serrão EA, Hu Z. Climate-induced range shifts shaped the present and threaten the future genetic variability of a marine brown alga in the Northwest Pacific. Evol Appl 2021; 14:1867-1879. [PMID: 34295369 PMCID: PMC8288013 DOI: 10.1111/eva.13247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 11/28/2022] Open
Abstract
Glaciation-induced environmental changes during the last glacial maximum (LGM) have strongly influenced species' distributions and genetic diversity patterns in the northern high latitudes. However, these effects have seldom been assessed on sessile species in the Northwest Pacific. Herein, we chose the brown alga Sargassum thunbergii to test this hypothesis, by comparing present population genetic variability with inferred geographical range shifts from the LGM to the present, estimated with species distribution modelling (SDM). Projections for contrasting scenarios of future climate change were also developed to anticipate genetic diversity losses at regional scales. Results showed that S. thunbergii harbours strikingly rich genetic diversity and multiple divergent lineages in the centre-northern range of its distribution, in contrast with a poorer genetically distinct lineage in the southern range. SDM hindcasted refugial persistence in the southern range during the LGM as well as post-LGM expansion of 18 degrees of latitude northward. Approximate Bayesian computation (ABC) analysis further suggested that the multiple divergent lineages in the centre-northern range limit stem from post-LGM colonization from the southern survived lineage. This suggests divergence due to demographic bottlenecks during range expansion and massive genetic diversity loss during post-LGM contraction in the south. The projected future range of S. thunbergii highlights the threat to unique gene pools that might be lost under global changes.
Collapse
Affiliation(s)
- Xiao‐Han Song
- Key Laboratory of Experimental Marine BiologyCenter for Ocean Mega‐ScienceInstitute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jorge Assis
- CCMARUniversity of Algarve, Campus de GambelasFaroPortugal
| | - Jie Zhang
- Key Laboratory of Experimental Marine BiologyCenter for Ocean Mega‐ScienceInstitute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xu Gao
- Faculty of Biological Science and Research Institute for Basic ScienceWonkwang UniversityIksanKorea
| | - Han‐Gil Gao
- Faculty of Biological Science and Research Institute for Basic ScienceWonkwang UniversityIksanKorea
| | - De‐Lin Duan
- Key Laboratory of Experimental Marine BiologyCenter for Ocean Mega‐ScienceInstitute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | | | - Zi‐Min Hu
- Key Laboratory of Experimental Marine BiologyCenter for Ocean Mega‐ScienceInstitute of OceanologyChinese Academy of SciencesQingdaoChina
- Ocean SchoolYantai UniversityYantaiChina
| |
Collapse
|
5
|
Cheng J, Zhang N, Sha Z. Nuclear microsatellites reveal population genetic structuring and fine-scale pattern of hybridization in the Japanese mantis shrimp Oratosquilla oratoria. PeerJ 2020; 8:e10270. [PMID: 33194430 PMCID: PMC7649012 DOI: 10.7717/peerj.10270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/08/2020] [Indexed: 11/27/2022] Open
Abstract
The interplay between historical and contemporary processes can produce complex patterns of genetic differentiation in the marine realm. Recent mitochondrial and nuclear sequence analyses revealed cryptic speciation in the Japanese mantis shrimp Oratosquilla oratoria. Herein, we applied nuclear microsatellite markers to examine patterns and causes of genetic differentiation in this morphotaxon. Population structure analyses revealed two genetically divergent and geographically structured clades in O. oratoria, one dominating the temperate zone of the Northwestern (NW) Pacific and the other occurring in the subtropical and tropical waters where are influenced by the Kuroshio Current. Two sympatric zones, one around the Changjiang Estuary in China coast and the other in the northern Japan Sea, were demonstrated to be hybrid zones where introgressive hybridization occurred asymmetrically. The interaction between historical climate shifts and contemporary factors (e.g., freshwater discharge, temperature gradient and isolation by distance) may contribute to the present-day genetic architecture in the Japanese mantis shrimp. Range shift induced by climate changes and oceanographic factors may promote hybridization and gene flow between the O. oratoria complex. Our results provide insights into the interacting mechanisms that give rise to diversification and speciation of coastal species in the NW Pacific.
Collapse
Affiliation(s)
- Jiao Cheng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Nan Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zhongli Sha
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Li JJ, Liu ZY, Zhong ZH, Zhuang LC, Bi YX, Qin S. Limited Genetic Connectivity Among Sargassum horneri (Phaeophyceae) Populations in the Chinese Marginal Seas Despite Their high Dispersal Capacity. JOURNAL OF PHYCOLOGY 2020; 56:994-1005. [PMID: 32173868 DOI: 10.1111/jpy.12990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Sargassum horneri is a habitat-forming species in the Northwest Pacific and an important contributor to seaweed rafts. In this study, 131 benthic samples and 156 floating samples were collected in the Yellow Sea and East China Sea (ECS) to test the effects of seaweed rafts on population structure and connectivity. Our results revealed high levels of genetic diversity in both benthic and floating samples based on concatenated mitochondrial markers (rpl5-rps3, rnl-atp9, and cob-cox2). Phylogenetic analyses consistently supported the existence of two lineages (lineages I and II), with divergence dating to c. 0.692 Mya (95% HPD: 0.255-1.841 Mya), indicating that long-term isolation may have occurred during the mid-Pleistocene (0.126-0.781 Mya). Extended Bayesian skyline plots demonstrated a constant population size over time in lineage I and slight demographic expansion in lineage II. Both lineages were found in each marginal sea (including both benthic and floating samples), but PCoA, FST , and AMOVA analyses consistently revealed deep genetic variation between regions. Highly structured phylogeographic pattern supports limited genetic connectivity between regions. IMA analyses demonstrated that asymmetric gene flow between benthic populations in the North Yellow Sea (NYS) and ECS was extremely low (ECS→NYS, 2Nm = 0.6), implying that high dispersal capacity cannot be assumed to lead to widespread population connectivity, even without dispersal barriers. In addition, there were only a few shared haplotypes between benthic and floating samples, suggesting the existence of hidden donors for the floating masses in the Chinese marginal seas.
Collapse
Affiliation(s)
- Jing-Jing Li
- College of Oceanography, Institute of Marine Biology, Hohai University, No.1 Xikang Road, Nanjing, 210098, China
| | - Zheng-Yi Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| | - Zhi-Hai Zhong
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| | - Long-Chuan Zhuang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| | - Yuan-Xin Bi
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, 316021, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai, 264003, China
| |
Collapse
|
7
|
Lee B, Park MG. Distribution and genetic diversity of the toxic benthic dinoflagellate genus Ostreopsis in Korea. HARMFUL ALGAE 2020; 96:101820. [PMID: 32560838 DOI: 10.1016/j.hal.2020.101820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Species belonging to the toxic dinoflagellate genus Ostreopsis are widespread, occurring from tropical to temperate waters. As mainly benthic/epiphytic species, they would be expected to show distinct geographical patterns. In this study, ribosomal DNA (rDNA) sequences from partial nuclear LSU D8-D10, 5.8S, and ITS regions were determined for 169 isolates of Ostreopsis species collected from three coastal sites (i.e., Jeju Island, Chuja Island, and Pohang) within Korea. The phylogenetic tree inferred from the LSU rDNA D8-D10 sequences showed that Korean Ostreopsis species corresponded to either Ostreopsis sp. 1 or sp. 6, with Ostreopsis sp. 1 being relatively predominant regarding their distribution. While Ostreopsis sp. 1 occurred throughout all the three sampling sites within Korea, Ostreopsis sp. 6 was confined to the northern part of Jeju Island. When further investigated, the genetic diversity of Ostreopsis sp. 1 in Korea based on ITS sequences showed a total of 21 haplotypes. The presumed ancestral haplotype H3, was also present in the Japanese and Russian populations of Ostreopsis sp. 1. Although the overall demographic history of all the Korean populations of Ostreopsis sp. 1 could not be clearly identified, probably due to a mixture of different regional demographic patterns within Korea, each Ostreopsis sp. 1 population showed a characteristic demographic pattern at a regional scale. While the Jeju Island Ostreopsis sp. 1 population showed a signal in agreement with population equilibrium, the Chuja Island and Pohang Ostreopsis sp. 1 populations showed distribution patterns that are expected in a sudden population expansion model. The results from this study provide a basis for a better understanding of the distribution and genetic structure of the Asian Ostreopsis sp. 1 populations.
Collapse
Affiliation(s)
- Bora Lee
- LOHABE, Department of Oceanography, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Myung Gil Park
- LOHABE, Department of Oceanography, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
8
|
Zhang J, Yao J, Hu Z, Jueterbock A, Yotsukura N, Krupnova TN, Nagasato C, Duan D. Phylogeographic diversification and postglacial range dynamics shed light on the conservation of the kelp Saccharina japonica. Evol Appl 2019; 12:791-803. [PMID: 30976310 PMCID: PMC6439492 DOI: 10.1111/eva.12756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/22/2018] [Accepted: 12/09/2018] [Indexed: 01/04/2023] Open
Abstract
Studies of postglacial range shifts could enhance our understanding of seaweed species' responses to climate change and hence facilitate the conservation of natural resources. However, the distribution dynamics and phylogeographic diversification of the commercially and ecologically important kelp Saccharina japonica in the Northwest Pacific (NWP) are still poorly surveyed. In this study, we analyzed the evolutionary history of S. japonica using two mitochondrial markers and 24 nuclear microsatellites. A STRUCTURE analysis revealed two partially isolated lineages: lineage H, which is scattered along the coast of Japan; and lineage P, which occurs along the west coast of the Japan Sea. Ecological niche modeling projections to the Last Glacial Maximum (LGM) revealed that the southern coasts of the Japan Sea and the Pacific side of the Oshima and Honshu Peninsulas provided the most suitable habitats for S. japonica, implying that these regions served as ancient refugia during the LGM. Ancient isolation in different refugia may explain the observed divergence between lineages P and H. An approximate Bayesian computation analysis indicated that the two lineages experienced post-LGM range expansion and that postglacial secondary contact occurred in Sakhalin. Model projections into the year 2,100 predicted that S. japonica will shift northwards and lose its genetic diversity center on the Oshima Peninsula in Hokkaido and Shimokita Peninsula in Honshu. The range shifts and evolutionary history of S. japonica improve our understanding of how climate change impacted the distribution range and diversity of this species and provide useful information for the conservation of natural resources under ongoing environmental change in the NWP.
Collapse
Affiliation(s)
- Jie Zhang
- Key Lab of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Jianting Yao
- Key Lab of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Zi‐Min Hu
- Key Lab of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | | | | | | | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern BiosphereHokkaido UniversityMuroranJapan
| | - Delin Duan
- Key Lab of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| |
Collapse
|
9
|
Li JJ, Hu ZM, Sun ZM, Yao JT, Liu FL, Fresia P, Duan DL. Historical isolation and contemporary gene flow drive population diversity of the brown alga Sargassum thunbergii along the coast of China. BMC Evol Biol 2017; 17:246. [PMID: 29216823 PMCID: PMC5721624 DOI: 10.1186/s12862-017-1089-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long-term survival in isolated marginal seas of the China coast during the late Pleistocene ice ages is widely believed to be an important historical factor contributing to population genetic structure in coastal marine species. Whether or not contemporary factors (e.g. long-distance dispersal via coastal currents) continue to shape diversity gradients in marine organisms with high dispersal capability remains poorly understood. Our aim was to explore how historical and contemporary factors influenced the genetic diversity and distribution of the brown alga Sargassum thunbergii, which can drift on surface water, leading to long-distance dispersal. RESULTS We used 11 microsatellites and the plastid RuBisCo spacer to evaluate the genetic diversity of 22 Sargassum thunbergii populations sampled along the China coast. Population structure and differentiation was inferred based on genotype clustering and pairwise F ST and allele-frequency analyses. Integrated genetic analyses revealed two genetic clusters in S. thunbergii that dominated in the Yellow-Bohai Sea (YBS) and East China Sea (ECS) respectively. Higher levels of genetic diversity and variation were detected among populations in the YBS than in the ECS. Bayesian coalescent theory was used to estimate contemporary and historical gene flow. High levels of contemporary gene flow were detected from the YBS (north) to the ECS (south), whereas low levels of historical gene flow occurred between the two regions. CONCLUSIONS Our results suggest that the deep genetic divergence in S. thunbergii along the China coast may result from long-term geographic isolation during glacial periods. The dispersal of S. thunbergii driven by coastal currents may facilitate the admixture between southern and northern regimes. Our findings exemplify how both historical and contemporary forces are needed to understand phylogeographical patterns in coastal marine species with long-distance dispersal.
Collapse
Affiliation(s)
- Jing-Jing Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098 China
| | - Zi-Min Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
| | - Zhong-Min Sun
- Laboratory of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Jian-Ting Yao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
| | - Fu-Li Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071 China
| | - Pablo Fresia
- Unidad de Bioinform atica, Institut Pasteur de Montevideo, Mataojo, 2020 Montevideo, Uruguay
| | - De-Lin Duan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
| |
Collapse
|
10
|
Hu ZM, Li JJ, Sun ZM, Gao X, Yao JT, Choi HG, Endo H, Duan DL. Hidden diversity and phylogeographic history provide conservation insights for the edible seaweed Sargassum fusiforme in the Northwest Pacific. Evol Appl 2017; 10:366-378. [PMID: 28352296 PMCID: PMC5367075 DOI: 10.1111/eva.12455] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/13/2016] [Indexed: 02/03/2023] Open
Abstract
Understanding the evolutionary processes that have created diversity and the genetic potential of species to adapt to environmental change is an important premise for biodiversity conservation. Herein, we used mitochondrial trnW‐L and cox3 and plastid rbcL‐S data sets to analyze population genetic variation and phylogeographic history of the brown alga Sargassum fusiforme, whose natural resource has been largely exterminated in the Asia–Northwest Pacific in the past decades. Phylogenetic trees and network analysis consistently revealed three major haplotype groups (A, B, and C) in S. fusiforme, with A and B distributed in the Japan‐Pacific coast. Group C consisted of three subgroups (C1, C2, and C3) which were distributed in the Sea of Japan, the Yellow–Bohai Sea, and East China Sea, respectively. Isolation‐with‐migration (IMa) analysis revealed that the three groups diverged approximately during the mid‐Pleistocene (c. 756–1,224 ka). Extended Bayesian skyline plots (EBSP) showed that groups A and B underwent relatively long‐term stable population size despite a subsequent rapid demographic expansion, while subgroups C2 and C3 underwent a sudden expansion at c. 260 ka. FST and AMOVA detected low population‐level genetic variation and high degrees of divergence between groups. The cryptic diversity and phylogeographic patterns found in S. fusiforme not only are essential to understand how environmental shifts and evolutionary processes shaped diversity and distribution of coastal seaweeds but also provide additional insights for conserving and managing seaweed resources and facilitate predictions of their responses to future climate change and habitat loss.
Collapse
Affiliation(s)
- Zi-Min Hu
- Key Laboratory of Experimental Marine Biology Institute of Oceanology Chinese Academy of Sciences Qingdao China; Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
| | - Jing-Jing Li
- Key Laboratory of Experimental Marine Biology Institute of Oceanology Chinese Academy of Sciences Qingdao China; Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China; College of Earth Science University of Chinese Academy of Sciences Beijing China; Present address: Institute of Marine Biology College of Oceanography Hohai University Nanjing 210098 China
| | - Zhong-Min Sun
- Laboratory of Marine Organism Taxonomy & Phylogeny Institute of Oceanology Chinese Academy of Sciences Qingdao China
| | - Xu Gao
- Research Centre for Inland Seas Kobe University Rokkodai Kobe Japan
| | - Jian-Ting Yao
- Key Laboratory of Experimental Marine Biology Institute of Oceanology Chinese Academy of Sciences Qingdao China; Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
| | - Han-Gil Choi
- Faculty of Biological Science and Research Institute for Basic Science Wonkwang University Iksan Korea
| | - Hikaru Endo
- Faculty of Fisheries Kagoshima University Kagoshima Japan
| | - De-Lin Duan
- Key Laboratory of Experimental Marine Biology Institute of Oceanology Chinese Academy of Sciences Qingdao China; Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
11
|
Zhang J, Yao JT, Sun ZM, Fu G, Galanin DA, Nagasato C, Motomura T, Hu ZM, Duan DL. Phylogeographic data revealed shallow genetic structure in the kelp Saccharina japonica (Laminariales, Phaeophyta). BMC Evol Biol 2015; 15:237. [PMID: 26525408 PMCID: PMC4630829 DOI: 10.1186/s12862-015-0517-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/21/2015] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Population structure and genetic diversity of marine organisms in the Northwestern Pacific Ocean exhibited complex patterns. Saccharina japonica is a commercially and ecologically important kelp species widely distributed along the coast of Japan Sea. However, it is still poorly known about population genetics and phylogeographic patterns of wild S. japonica populations on a large geographic scale, which is an important contribution to breeding and conservation of this marine crop. RESULTS We collected 612 mitochondrial COI and trnW-trnL sequences. Diversity indices suggested that S. japonica populations along the coast of Hokkaido exhibited the highest genetic diversity. Bayesian Analysis of Population Structure (BAPS) revealed four clusters in the kelp species (cluster 1: Hokkaido and South Korea; cluster 2: northwestern Hokkaido; cluster 3: Far Eastern Russia; cluster 4: China). The network inferred from concatenated data exhibited two shallow genealogies corresponding to two BAPS groups (cluster 2 and cluster 3). We did not detect gene flow between the two shallow genealogies, but populations within genealogy have asymmetric gene exchange. Bayesian skyline plots and neutrality tests suggested that S. japonica experienced postglacial expansion around 10.45 ka. CONCLUSIONS The coast of Hokkaido might be the origin and diversification center of S. japonica. Gene exchange among S. japonica populations could be caused by anthropogenic interference and oceanographic regimes. Postglacial expansions and gene exchange apparently led to more shared haplotypes and less differentiation that in turn led to the present shallow phylogeographical patterns in S. japonica.
Collapse
Affiliation(s)
- Jie Zhang
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Ting Yao
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Zhong-Min Sun
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Gang Fu
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Hokkaido, Japan.
| | - Dmitry A Galanin
- Sakhalin Scientific Research Institute of Fisheries and Oceanology, Yuzhno-Sakhalinsk, 693023, Russia.
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Hokkaido, Japan.
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran, 051-0013, Hokkaido, Japan.
| | - Zi-Min Hu
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - De-Lin Duan
- Key Lab of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|