1
|
Claret JL, Di-Liegro M, Namias A, Assogba B, Makoundou P, Koffi A, Pennetier C, Weill M, Milesi P, Labbé P. Despite structural identity, ace-1 heterogenous duplication resistance alleles are quite diverse in Anopheles mosquitoes. Heredity (Edinb) 2024; 132:179-191. [PMID: 38280976 PMCID: PMC10997782 DOI: 10.1038/s41437-024-00670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/29/2024] Open
Abstract
Anopheles gambiae s.l. has been the target of intense insecticide treatment since the mid-20th century to try and control malaria. A substitution in the ace-1 locus has been rapidly selected for, allowing resistance to organophosphate and carbamate insecticides. Since then, two types of duplication of the ace-1 locus have been found in An. gambiae s.l. populations: homogeneous duplications that are composed of several resistance copies, or heterogeneous duplications that contain both resistance and susceptible copies. The substitution induces a trade-off between resistance in the presence of insecticides and disadvantages in their absence: the heterogeneous duplications allow the fixation of the intermediate heterozygote phenotype. So far, a single heterogeneous duplication has been described in An. gambiae s.l. populations (in contrast with the multiple duplicated alleles found in Culex pipiens mosquitoes). We used a new approach, combining long and short-read sequencing with Sanger sequencing to precisely identify and describe at least nine different heterogeneous duplications, in two populations of An. gambiae s.l. We show that these alleles share the same structure as the previously identified heterogeneous and homogeneous duplications, namely 203-kb tandem amplifications with conserved breakpoints. Our study sheds new light on the origin and maintenance of these alleles in An. gambiae s.l. populations, and their role in mosquito adaptation.
Collapse
Affiliation(s)
| | | | - Alice Namias
- ISEM, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Benoit Assogba
- Medical Research Council, Unit The Gambia at London School of Hygiene and Tropical Medicine, London, UK
| | | | - Alphonsine Koffi
- National Institute of Public Health/Pierre Richet Institute, Bouake, Côte d'Ivoire
| | | | - Mylène Weill
- ISEM, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237, Uppsala, Sweden
| | - Pierrick Labbé
- ISEM, Université de Montpellier, CNRS, IRD, Montpellier, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
2
|
Arich S, Assaid N, Weill M, Tmimi FZ, Taki H, Sarih M, Labbé P. Human activities and densities shape insecticide resistance distribution and dynamics in the virus-vector Culex pipiens mosquitoes from Morocco. Parasit Vectors 2024; 17:72. [PMID: 38374110 PMCID: PMC10877764 DOI: 10.1186/s13071-024-06164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Mosquitoes of the Culex pipiens complex are widely distributed vectors for several arboviruses affecting humans. Consequently, their populations have long been controlled using insecticides, in response to which different resistance mechanisms have been selected. Moreover, their ecological preferences and broad adaptability allow C. pipiens mosquitoes to breed in highly polluted water bodies where they are exposed to many residuals from anthropogenic activities. It has been observed for several mosquito species that anthropization (in particular urbanization and agricultural lands) can lead to increased exposure to insecticides and thus to increased resistance. The main objective of the present study was to investigate whether and how urbanization and/or agricultural lands had a similar impact on C. pipiens resistance to insecticides in Morocco. METHODS Breeding sites were sampled along several transects in four regions around major Moroccan cities, following gradients of decreasing anthropization. The imprint of anthropogenic activities was evaluated around each site as the percentage of areas classified in three categories: urban, agricultural and natural. We then assessed the frequencies of four known resistance alleles in these samples and followed their dynamics in five urban breeding sites over 4 years. RESULTS The distribution of resistance alleles revealed a strong impact of anthropization, in both agricultural and urbanized lands, although different between resistance mutations and between Moroccan regions; we did not find any clear trend in the dynamics of these resistance alleles during the survey. CONCLUSIONS Our study provides further evidence for the role of anthropic activities in the selection and maintenance of mutations selected for resistance to insecticides in mosquitoes. The consequences are worrying as this could decrease vector control capacities and thus result in epizootic and epidemic outbreaks. Consequently, concerted and integrated disease control strategies must be designed that include better management regarding the consequences of our activities.
Collapse
Affiliation(s)
- Soukaina Arich
- Institut des Sciences de l'Évolution de Montpellier, UMR 5554, CNRS-UM-IRD- EPHE), Université de Montpellier, Cedex 5, Montpellier, France
- Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, URAC34, Hassan II University of Casablanca, Casablanca, Morocco
- Laboratoire des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Najlaa Assaid
- Laboratoire des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Mylène Weill
- Institut des Sciences de l'Évolution de Montpellier, UMR 5554, CNRS-UM-IRD- EPHE), Université de Montpellier, Cedex 5, Montpellier, France
| | - Fatim-Zohra Tmimi
- Laboratoire des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hassan Taki
- Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, URAC34, Hassan II University of Casablanca, Casablanca, Morocco
| | - M'hammed Sarih
- Laboratoire des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Pierrick Labbé
- Institut des Sciences de l'Évolution de Montpellier, UMR 5554, CNRS-UM-IRD- EPHE), Université de Montpellier, Cedex 5, Montpellier, France.
- Institut Universitaire de France, 1 rue Descartes, 75231, Cedex 05 Paris, France.
| |
Collapse
|
3
|
Milesi P, Claret JL, Unal S, Weill M, Labbé P. Evolutionary trade-offs associated with copy number variations in resistance alleles in Culex pipiens mosquitoes. Parasit Vectors 2022; 15:484. [PMID: 36550589 PMCID: PMC9783466 DOI: 10.1186/s13071-022-05599-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Organophosphate and carbamate insecticides have largely been used worldwide to control mosquito populations. As a response, the same amino acid substitution in the ace-1 gene (G119S), conferring resistance to both insecticides, has been selected independently in many mosquito species. In Anopheles gambiae, it has recently been shown that the G119S mutation is actually part of homogeneous duplications that associate multiple resistance copies of the ace-1 gene. In this study, we showed that duplications of resistance copies of the ace-1 gene also exist in the Culex pipiens species complex. The number of copies is variable, and different numbers of copies are associated with different phenotypic trade-offs: we used a combination of bioassays and competition in population cages to show that having more resistance copies conferred higher resistance levels, but was also associated with higher selective disadvantage (or cost) in the absence of insecticide. These results further show the versatility of the genetic architecture of resistance to organophosphate and carbamate insecticides around the ace-1 locus and its role in fine-tuned adaptation to insecticide treatment variations.
Collapse
Affiliation(s)
- Pascal Milesi
- grid.8993.b0000 0004 1936 9457Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen, 18D, SE-752 36, Uppsala, Sweden ,grid.452834.c0000 0004 5911 2402Science for Life Laboratory (SciLifeLab), Uppsala, Sweden
| | - Jean-Loup Claret
- grid.121334.60000 0001 2097 0141Institut Des Sciences de L’Évolution de Montpellier (UMR 5554, CNRS-UM-IRD- EPHE), Université de Montpellier, Cedex 05, Montpellier, France
| | - Sandra Unal
- grid.121334.60000 0001 2097 0141Institut Des Sciences de L’Évolution de Montpellier (UMR 5554, CNRS-UM-IRD- EPHE), Université de Montpellier, Cedex 05, Montpellier, France
| | - Mylène Weill
- grid.121334.60000 0001 2097 0141Institut Des Sciences de L’Évolution de Montpellier (UMR 5554, CNRS-UM-IRD- EPHE), Université de Montpellier, Cedex 05, Montpellier, France
| | - Pierrick Labbé
- grid.121334.60000 0001 2097 0141Institut Des Sciences de L’Évolution de Montpellier (UMR 5554, CNRS-UM-IRD- EPHE), Université de Montpellier, Cedex 05, Montpellier, France ,grid.440891.00000 0001 1931 4817Institut Universitaire de France, 1 Rue Descartes Cedex 05, 75231 Paris, France
| |
Collapse
|
4
|
Fritz ML. Utility and challenges of using whole-genome resequencing to detect emerging insect and mite resistance in agroecosystems. Evol Appl 2022; 15:1505-1520. [PMID: 36330307 PMCID: PMC9624086 DOI: 10.1111/eva.13484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Arthropods that invade agricultural ecosystems systematically evolve resistance to the control measures used against them, and this remains a significant and ongoing challenge for sustainable food production systems. Early detection of resistance evolution could prompt remedial action to slow the spread of resistance alleles in the landscape. Historical approaches used to detect emerging resistance included phenotypic monitoring of agricultural pest populations, as well as monitoring of allele frequency changes at one or a few candidate pesticide resistance genes. In this article, I discuss the successes and limitations of these traditional monitoring approaches and then consider whether whole-genome scanning could be applied to samples collected from agroecosystems over time for resistance monitoring. I examine the qualities of agroecosystems that could impact application of this approach to pesticide resistance monitoring and describe a recent retrospective analysis where genome scanning successfully detected an oligogenic response to selection by pesticides years prior to pest management failure. I conclude by considering areas of further study that will shed light on the feasibility of applying whole-genome scanning for resistance risk monitoring in agricultural pest species.
Collapse
Affiliation(s)
- Megan L. Fritz
- Department of EntomologyUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
5
|
Cattel J, Haberkorn C, Laporte F, Gaude T, Cumer T, Renaud J, Sutherland IW, Hertz JC, Bonneville J, Arnaud V, Fustec B, Boyer S, Marcombe S, David J. A genomic amplification affecting a carboxylesterase gene cluster confers organophosphate resistance in the mosquito Aedes aegypti: From genomic characterization to high-throughput field detection. Evol Appl 2021; 14:1009-1022. [PMID: 33897817 PMCID: PMC8061265 DOI: 10.1111/eva.13177] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023] Open
Abstract
By altering gene expression and creating paralogs, genomic amplifications represent a key component of short-term adaptive processes. In insects, the use of insecticides can select gene amplifications causing an increased expression of detoxification enzymes, supporting the usefulness of these DNA markers for monitoring the dynamics of resistance alleles in the field. In this context, the present study aims to characterize a genomic amplification event associated with resistance to organophosphate insecticides in the mosquito Aedes aegypti and to develop a molecular assay to monitor the associated resistance alleles in the field. An experimental evolution experiment using a composite population from Laos supported the association between the over-transcription of multiple contiguous carboxylesterase genes on chromosome 2 and resistance to multiple organophosphate insecticides. Combining whole genome sequencing and qPCR on specific genes confirmed the presence of a ~100-Kb amplification spanning at least five carboxylesterase genes at this locus with the co-existence of multiple structural duplication haplotypes. Field data confirmed their circulation in South-East Asia and revealed high copy number polymorphism among and within populations suggesting a trade-off between this resistance mechanism and associated fitness costs. A dual-color multiplex TaqMan assay allowing the rapid detection and copy number quantification of this amplification event in Ae. aegypti was developed and validated on field populations. The routine use of this novel assay will improve the tracking of resistance alleles in this major arbovirus vector.
Collapse
Affiliation(s)
- Julien Cattel
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
- Present address:
Symbiosis Technologies for Insect Control (SymbioTIC)Plateforme de Recherche CyroiSte ClotildeFrance
| | - Chloé Haberkorn
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Fréderic Laporte
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Thierry Gaude
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Tristan Cumer
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Julien Renaud
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Ian W. Sutherland
- United States Navy Entomology. Center of ExcellenceNAS JacksonvilleJacksonvilleFLUSA
| | | | - Jean‐Marc Bonneville
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Victor Arnaud
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Bénédicte Fustec
- Department of MicrobiologyKhon Kaen UniversityKhon KaenThailand
- Institut de Recherche pour le DéveloppementUMR IRD 224‐CNRS 5290‐Université MontpellierMontpellier Cedex 5France
| | - Sébastien Boyer
- Medical and Veterinary EntomologyInstitut Pasteur du CambodgePhnom PenhCambodia
| | - Sébastien Marcombe
- Medical Entomology and Vector‐Borne Disease LaboratoryInstitut Pasteur du LaosVientianeLaos
| | - Jean‐Philippe David
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| |
Collapse
|
6
|
Arich S, Assaid N, Taki H, Weill M, Labbé P, Sarih M. Distribution of insecticide resistance and molecular mechanisms involved in the West Nile vector Culex pipiens in Morocco. PEST MANAGEMENT SCIENCE 2021; 77:1178-1186. [PMID: 33009878 DOI: 10.1002/ps.6127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/03/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Mosquitoes of the Culex pipiens complex are the vectors of several arboviruses and are thus subjected to insecticide control worldwide. However, overuse of insecticides selects for resistance. While assessing the resistance status of the vectors is required for effective and sustainable disease control, resistance has so far only been sparsely studied in Morocco. In this study, we establish a first countrywide assessment of the levels of resistance to various insecticides and the potential responsible mechanisms involved. Cx. pipiens larvae were collected from natural populations of five regions of Morocco, and their taxonomic status was determined (molecular forms). The level of their susceptibility to insecticides was assessed by single-diagnostic-dose bioassays. Molecular identification of known resistance alleles was investigated to determine the frequency of target-site mutations. RESULTS This study confirms that Moroccan populations are an interbreeding mix of pipiens and molestus forms, with large gene flow for the resistance alleles. We also found that Cx. pipiens mosquitoes are resistant to all insecticide families, all over Morocco: resistance is high for insecticides used in mosquito control, but also present for other pesticides. Resistance alleles are similarly more frequent for mosquito control insecticides. However, their distribution is heterogeneous in the five regions, with significant genetic differentiation between populations, revealing the crucial role of local insecticide treatment practices. CONCLUSION This study provides reference countrywide data that highlight the need for further research to refine the distribution of resistance in Morocco and to understand the role of agriculture/urban residuals in its spread. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Soukaina Arich
- Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, URAC 34, Hassan II University-Casablanca, Casablanca, Morocco
- Laboratoire des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Najlaa Assaid
- Laboratoire des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hassan Taki
- Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, URAC 34, Hassan II University-Casablanca, Casablanca, Morocco
| | - Mylène Weill
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Montpellier, CEDEX 5, France
| | - Pierrick Labbé
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM-IRD-EPHE), Université de Montpellier, Montpellier, CEDEX 5, France
| | - M'hammed Sarih
- Laboratoire des Maladies Vectorielles (LMV), Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
7
|
Atyame CM, Alout H, Mousson L, Vazeille M, Diallo M, Weill M, Failloux AB. Insecticide resistance genes affect Culex quinquefasciatus vector competence for West Nile virus. Proc Biol Sci 2020; 286:20182273. [PMID: 30963855 DOI: 10.1098/rspb.2018.2273] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insecticide resistance has been reported to impact the interactions between mosquitoes and the pathogens they transmit. However, the effect on vector competence for arboviruses still remained to be investigated. We examined the influence of two insecticide resistance mechanisms on vector competence of the mosquito Culex quinquefasciatus for two arboviruses, Rift Valley Fever virus (RVFV) and West Nile virus (WNV). Three Cx. quinquefasciatus lines sharing a common genetic background were used: two insecticide-resistant lines, one homozygous for amplification of the Ester2 locus (SA2), the other homozygous for the acetylcholinesterase ace-1 G119S mutation (SR) and the insecticide-susceptible reference line Slab. Statistical analyses revealed no significant effect of insecticide-resistant mechanisms on vector competence for RVFV. However, both insecticide resistance mechanisms significantly influenced the outcome of WNV infections by increasing the dissemination of WNV in the mosquito body, therefore leading to an increase in transmission efficiency by resistant mosquitoes. These results showed that insecticide resistance mechanisms enhanced vector competence for WNV and may have a significant impact on transmission dynamics of arboviruses. Our findings highlight the importance of understanding the impacts of insecticide resistance on the vectorial capacity parameters to assess the overall consequence on transmission.
Collapse
Affiliation(s)
- Célestine M Atyame
- 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France.,2 Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical) CNRS-INSERM-IRD-Université de La Réunion , île de La Réunion , France
| | - Haoues Alout
- 3 INRA, UMR 1309 ASTRE, INRA-CIRAD , 34598 Montpellier , France.,4 Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier , Montpellier , France
| | - Laurence Mousson
- 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France
| | - Marie Vazeille
- 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France
| | - Mawlouth Diallo
- 5 Institut Pasteur de Dakar, Unité d'Entomologie médicale , Dakar , Sénégal
| | - Mylène Weill
- 4 Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR CNRS-IRD-EPHE-Université de Montpellier , Montpellier , France
| | - Anna-Bella Failloux
- 1 Department of Virology, Institut Pasteur, Arboviruses and Insect Vectors , Paris , France
| |
Collapse
|
8
|
Loria A, Cristescu ME, Gonzalez A. Mixed evidence for adaptation to environmental pollution. Evol Appl 2019; 12:1259-1273. [PMID: 31417613 PMCID: PMC6691217 DOI: 10.1111/eva.12782] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/12/2019] [Indexed: 12/25/2022] Open
Abstract
Adaptation to pollution has been studied since the first observations of heavy metal tolerance in plants decades ago. To document micro-evolutionary responses to pollution, researchers have used phenotypic, molecular genetics, and demographic approaches. We reviewed 258 articles and evaluated the evidence for adaptive responses following exposure to a wide range of pollutants, across multiple taxonomic groups. We also conducted a meta-analysis to calculate the magnitude of phenotypic change in invertebrates in response to metal pollution. The majority of studies that reported differences in responses to pollution were focused on phenotypic responses at the individual level. Most of the studies that used demographic assays in their investigations found that negative effects induced by pollution often worsened over multiple generations. Our meta-analysis did not reveal a significant relationship between metal pollution intensity and changes in the traits studied, and this was probably due to differences in coping responses among different species, the broad array of abiotic and biotic factors, and the weak statistical power of the analysis. We found it difficult to make broad statements about how likely or how common adaptation is in the presence of environmental contamination. Ecological and evolutionary responses to contamination are complex, and difficult to interpret in the context of taxonomic, and methodological biases, and the inconsistent set of approaches that have been used to study adaptation to pollution in the laboratory and in the field. This review emphasizes the need for: (a) long-term monitoring programs on exposed populations that link demography to phenotypic, genetic, and selection assays; (b) the use of standardized protocols across studies especially for similar taxa. Approaches that combine field and laboratory studies offer the greatest opportunity to reveal the complex eco-evolutionary feedback that can occur under selection imposed by pollution.
Collapse
|
9
|
Sherpa S, Rioux D, Goindin D, Fouque F, François O, Després L. At the Origin of a Worldwide Invasion: Unraveling the Genetic Makeup of the Caribbean Bridgehead Populations of the Dengue Vector Aedes aegypti. Genome Biol Evol 2018; 10:56-71. [PMID: 29267872 PMCID: PMC5758905 DOI: 10.1093/gbe/evx267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2017] [Indexed: 12/21/2022] Open
Abstract
Human-driven global environmental changes have considerably increased the risk of biological invasions, especially the spread of human parasites and their vectors. Among exotic species that have major impacts on public health, the dengue fever mosquito Aedes aegypti originating from Africa has spread worldwide during the last three centuries. Although considerable progress has been recently made in understanding the history of this invasion, the respective roles of human and abiotic factors in shaping patterns of genetic diversity remain largely unexplored. Using a genome-wide sample of genetic variants (3,530 ddRAD SNPs), we analyzed the genetic structure of Ae. aegypti populations in the Caribbean, the first introduced territories in the Americas. Fourteen populations were sampled in Guyane and in four islands of the Antilles that differ in climatic conditions, intensity of urbanization, and vector control history. The genetic diversity in the Caribbean was low (He = 0.14–0.17), as compared with a single African collection from Benin (He = 0.26) and site-frequency spectrum analysis detected an ancient bottleneck dating back ∼300 years ago, supporting a founder event during the introduction of Ae. aegypti. Evidence for a more recent bottleneck may be related to the eradication program undertaken on the American continent in the 1950s. Among 12 loci detected as FST-outliers, two were located in candidate genes for insecticide resistance (cytochrome P450 and voltage-gated sodium channel). Genome–environment association tests identified additional loci associated with human density and/or deltamethrin resistance. Our results highlight the high impact of human pressures on the demographic history and genetic variation of Ae. aegypti Caribbean populations.
Collapse
Affiliation(s)
- Stéphanie Sherpa
- Laboratoire d'Ecologie Alpine, CNRS UMR 5553, Université Grenoble Alpes, Grenoble, France
| | - Delphine Rioux
- Laboratoire d'Ecologie Alpine, CNRS UMR 5553, Université Grenoble Alpes, Grenoble, France
| | - Daniella Goindin
- Laboratoire d'Entomologie Médicale, Institut Pasteur de Guadeloupe, Les Abymes, France
| | - Florence Fouque
- Special Programme for Research and Training in Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Olivier François
- Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité, CNRS UMR 5525, Université Grenoble Alpes, Grenoble, France
| | - Laurence Després
- Laboratoire d'Ecologie Alpine, CNRS UMR 5553, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
10
|
Assogba BS, Alout H, Koffi A, Penetier C, Djogbénou LS, Makoundou P, Weill M, Labbé P. Adaptive deletion in resistance gene duplications in the malaria vector Anopheles gambiae. Evol Appl 2018; 11:1245-1256. [PMID: 30151037 PMCID: PMC6099818 DOI: 10.1111/eva.12619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/15/2018] [Indexed: 12/11/2022] Open
Abstract
While gene copy-number variations play major roles in long-term evolution, their early dynamics remains largely unknown. However, examples of their role in short-term adaptation are accumulating: identical repetitions of a locus (homogeneous duplications) can provide a quantitative advantage, while the association of differing alleles (heterogeneous duplications) allows carrying two functions simultaneously. Such duplications often result from rearrangements of sometimes relatively large chromosome fragments, and even when adaptive, they can be associated with deleterious side effects that should, however, be reduced by subsequent evolution. Here, we took advantage of the unique model provided by the malaria mosquito Anopheles gambiae s.l. to investigate the early evolution of several duplications, heterogeneous and homogeneous, segregating in natural populations from West Africa. These duplications encompass ~200 kb and 11 genes, including the adaptive insecticide resistance ace-1 locus. Through the survey of several populations from three countries over 3-4 years, we showed that an internal deletion of all coamplified genes except ace-1 is currently spreading in West Africa and introgressing from An. gambiae s.s. to An. coluzzii. Both observations provide evidences of its selection, most likely due to reducing the gene-dosage disturbances caused by the excessive copies of the nonadaptive genes. Our study thus provides a unique example of the early adaptive trajectory of duplications and underlines the role of the environmental conditions (insecticide treatment practices and species ecology). It also emphasizes the striking diversity of adaptive responses in these mosquitoes and reveals a worrisome process of resistance/cost trade-off evolution that could impact the control of malaria vectors in Africa.
Collapse
Affiliation(s)
- Benoît S. Assogba
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐UM‐IRD‐EPHE)Université de MontpellierMontpellierFrance
- Disease Control and Elimination DepartmentMedical Research Council, Unit The GambiaBanjulThe Gambia
- Institut Régional de Santé PubliqueUniversité d'Abomey CalaviCotonouBenin
- Faculté des Sciences et TechniquesLaboratoire de Biologie et de Typage Moléculaire en MicrobiologieUniversité d'Abomey CalaviCotonouBénin
| | - Haoues Alout
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐UM‐IRD‐EPHE)Université de MontpellierMontpellierFrance
| | - Alphonsine Koffi
- Institut Pierre Richet (IPR)/Institut National de Santé Publique (INSP)BouakéCôte d'Ivoire
| | - Cédric Penetier
- Institut de Recherche pour le Développement (IRD)UMR MIVEGECMontpellierFrance
| | - Luc S. Djogbénou
- Institut Régional de Santé PubliqueUniversité d'Abomey CalaviCotonouBenin
- Faculté des Sciences et TechniquesLaboratoire de Biologie et de Typage Moléculaire en MicrobiologieUniversité d'Abomey CalaviCotonouBénin
| | - Patrick Makoundou
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐UM‐IRD‐EPHE)Université de MontpellierMontpellierFrance
| | - Mylène Weill
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐UM‐IRD‐EPHE)Université de MontpellierMontpellierFrance
| | - Pierrick Labbé
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS‐UM‐IRD‐EPHE)Université de MontpellierMontpellierFrance
| |
Collapse
|
11
|
Harmand N, Gallet R, Martin G, Lenormand T. Evolution of bacteria specialization along an antibiotic dose gradient. Evol Lett 2018; 2:221-232. [PMID: 30283678 PMCID: PMC6121860 DOI: 10.1002/evl3.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Antibiotic and pesticide resistance of pathogens are major and pressing worldwide issues. Resistance evolution is often considered in simplified ecological contexts: treated versus nontreated environments. In contrast, antibiotic usually present important dose gradients: from ecosystems to hospitals to polluted soils, in treated patients across tissues. However, we do not know whether adaptation to low or high doses involves different phenotypic traits, and whether these traits trade‐off with each other. In this study, we investigated the occurrence of such fitness trade‐offs along a dose gradient by evolving experimentally resistant lines of Escherichia coli at different antibiotic concentrations for ∼400 generations. Our results reveal fast evolution toward specialization following the first mutational step toward resistance, along with pervasive trade‐offs among different evolution doses. We found clear and regular fitness patterns of specialization, which converged rapidly from different initial starting points. These findings are consistent with a simple fitness peak shift model as described by the classical evolutionary ecology theory of adaptation across environmental gradients. We also found that the fitness costs of resistance tend to be compensated through time at low doses whereas they increase through time at higher doses. This cost evolution follows a linear trend with the log‐dose of antibiotic along the gradient. These results suggest a general explanation for the variability of the fitness costs of resistance and their evolution. Overall, these findings call for more realistic models of resistance management incorporating dose‐specialization.
Collapse
Affiliation(s)
- Noémie Harmand
- CEFE, CNRS, Univ Montpellier Univ Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
| | - Romain Gallet
- UMR BGPI, INRA, Montpellier SupAgro Univ. Montpellier, Cirad, TA A-54/K Montpellier Cedex 5 France
| | - Guillaume Martin
- Institut des Sciences de l'Evolution de Montpellier UMR CNRS-UM II 5554, Université Montpellier II 34 095 Montpellier cedex 5 France
| | - Thomas Lenormand
- CEFE, CNRS, Univ Montpellier Univ Paul Valéry Montpellier 3, EPHE, IRD Montpellier France
| |
Collapse
|
12
|
Bonnet T, Postma E. Fluctuating selection and its (elusive) evolutionary consequences in a wild rodent population. J Evol Biol 2018; 31:572-586. [PMID: 29380455 DOI: 10.1111/jeb.13246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 01/19/2023]
Abstract
Temporal fluctuations in the strength and direction of selection are often proposed as a mechanism that slows down evolution, both over geological and contemporary timescales. Both the prevalence of fluctuating selection and its relevance for evolutionary dynamics remain poorly understood however, especially on contemporary timescales: unbiased empirical estimates of variation in selection are scarce, and the question of how much of the variation in selection translates into variation in genetic change has largely been ignored. Using long-term individual-based data for a wild rodent population, we quantify the magnitude of fluctuating selection on body size. Subsequently, we estimate the evolutionary dynamics of size and test for a link between fluctuating selection and evolution. We show that, over the past 11 years, phenotypic selection on body size has fluctuated significantly. However, the strength and direction of genetic change have remained largely constant over the study period; that is, the rate of genetic change was similar in years where selection favoured heavier vs. lighter individuals. This result suggests that over shorter timescales, fluctuating selection does not necessarily translate into fluctuating evolution. Importantly however, individual-based simulations show that the correlation between fluctuating selection and fluctuating evolution can be obscured by the effect of drift, and that substantially more data are required for a precise and accurate estimate of this correlation. We identify new challenges in measuring the coupling between selection and evolution, and provide methods and guidelines to overcome them.
Collapse
Affiliation(s)
- T Bonnet
- Research School of Biology, ANU College of Science, The Australian National University, Acton, ACT, Australia.,Department of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Zurich, Switzerland
| | - E Postma
- Department of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Zurich, Switzerland.,Centre for Ecology and Conservation, University of Exeter, College of Life and Environmental Sciences, Penryn, Cornwall, UK
| |
Collapse
|
13
|
Miller NJ, Sappington TW. Role of dispersal in resistance evolution and spread. CURRENT OPINION IN INSECT SCIENCE 2017; 21:68-74. [PMID: 28822491 DOI: 10.1016/j.cois.2017.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Gene flow via immigration affects rate of evolution of resistance to a pest management tactic, while emigration from a resistant population can spread resistance alleles spatially. Whether resistance detected across the landscape reflects ongoing de novo evolution in different hotspots or spread from a single focal population can determine the most effective mitigation strategy. Pest dispersal dynamics determine the spatio-temporal scale at which mitigation tactics must be applied to contain or reverse resistance in an area. Independent evolution of resistance in different populations appears common but not universal. Conversely, spatial spread appears to be almost inevitable. However, rate and scale of spread depends largely on dispersal dynamics and interplay with factors such as fitness costs, spatially variable selection pressure and whether resistance alleles are spreading through an established population or being carried by populations colonizing new territory.
Collapse
Affiliation(s)
- Nicholas J Miller
- Department of Biology, Illinois Institute of Technology, 298 Life Science Building, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Thomas W Sappington
- USDA, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
14
|
Grigoraki L, Pipini D, Labbé P, Chaskopoulou A, Weill M, Vontas J. Carboxylesterase gene amplifications associated with insecticide resistance in Aedes albopictus: Geographical distribution and evolutionary origin. PLoS Negl Trop Dis 2017; 11:e0005533. [PMID: 28394886 PMCID: PMC5398709 DOI: 10.1371/journal.pntd.0005533] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/20/2017] [Accepted: 03/28/2017] [Indexed: 02/06/2023] Open
Abstract
Background Aedes albopictus is one of the most invasive human disease vectors. Its control has been largely based on insecticides, such as the larvicide temephos. Temephos resistance has been associated with the up-regulation, through gene amplification, of two carboxylesterase (CCE) genes closely linked on the genome, capable of sequestering and metabolizing temephos oxon, the activated form of temephos. Principal findings Here, we investigated the occurrence, geographical distribution and origin of the CCE amplicon in Ae. albopictus populations from several geographical regions worldwide. The haplotypic diversity at the CCEae3a locus revealed high polymorphism, while phylogenetic analysis showed an absence of correlation between haplotype similarity and geographic origin. Two types of esterase amplifications were found, in two locations only (Athens and Florida): one, previously described, results in the amplification of both CCEae3a and CCEae6a; the second is being described for the first time and results in the amplification of CCEae3a only. The two amplification events are independent, as confirmed by sequence analysis. All individuals from Athens and Florida carrying the CCEae3a-CCEae6a co-amplicon share a common haplotype, indicating a single amplification event, which spread between the two countries. Significance The importance of passive transportation of disease vectors, including individuals carrying resistance mechanisms, is discussed in the light of efficient and sustainable vector control strategies. Control of mosquito borne diseases is being seriously challenged by the ongoing development of insecticide resistance. Resistance of Aedes albopictus, a major arbovirus vector, to the organophosphate larvicide temephos was recently associated with the up-regulation, through gene amplification, of two carboxylesterases; CCEae3a and CCEae6a. Here we investigated the worldwide distribution and origin of the amplified esterases, which is of great value for designing and implementing efficient vector control programs. Individuals with amplification of both esterases were found in Greece and Florida (U.S.A), representing a single amplification event that spread between the two countries, highlighting the importance of passive transportation of disease vectors carrying resistance mechanisms, which is mainly facilitated by human activities. In addition, individuals with amplification of the CCEae3a only, but not the CCEae6a, representing a second and independent amplification event were found in Florida. The worldwide haplotypic diversity obtained for CCEae3a is consistent with the highly invasive nature of the Aedes albopictus.
Collapse
Affiliation(s)
- Linda Grigoraki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Dimitra Pipini
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Pierrick Labbé
- Institut des sciences de l’évolution, CNRS–IRD–Université de Montpellier-EPHE, Montpellier, France
| | | | - Mylene Weill
- Institut des sciences de l’évolution, CNRS–IRD–Université de Montpellier-EPHE, Montpellier, France
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
15
|
Chatonnet A, Lenfant N, Marchot P, Selkirk ME. Natural genomic amplification of cholinesterase genes in animals. J Neurochem 2017; 142 Suppl 2:73-81. [PMID: 28382676 DOI: 10.1111/jnc.13990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 12/31/2022]
Abstract
Tight control of the concentration of acetylcholine at cholinergic synapses requires precise regulation of the number and state of the acetylcholine receptors, and of the synthesis and degradation of the neurotransmitter. In particular, the cholinesterase activity has to be controlled exquisitely. In the genome of the first experimental models used (man, mouse, zebrafish and drosophila), there are only one or two genes coding for cholinesterases, whereas there are more genes for their closest relatives the carboxylesterases. Natural amplification of cholinesterase genes was first found to occur in some cancer cells and in insect species subjected to evolutionary pressure by insecticides. Analysis of the complete genome sequences of numerous representatives of the various metazoan phyla show that moderate amplification of cholinesterase genes is not uncommon in molluscs, echinoderms, hemichordates, prochordates or lepidosauria. Amplification of acetylcholinesterase genes is also a feature of parasitic nematodes or ticks. In these parasites, over-production of cholinesterase-like proteins in secreted products and the saliva are presumed to have effector roles related to host infection. These amplification events raise questions about the role of the amplified gene products, and the adaptation processes necessary to preserve efficient cholinergic transmission. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Arnaud Chatonnet
- Dynamique Musculaire et Métabolisme, INRA, Université Montpellier, Place Viala, Montpellier France
| | - Nicolas Lenfant
- Dynamique Musculaire et Métabolisme, INRA, Université Montpellier, Place Viala, Montpellier France.,Aix-Marseille Université / Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques laboratory, Marseille, France
| | - Pascale Marchot
- Aix-Marseille Université / Centre National de la Recherche Scientifique, Architecture et Fonction des Macromolécules Biologiques laboratory, Marseille, France
| | - Murray E Selkirk
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|