1
|
Jain A, Li T, Huston DC, Kaur J, Trollip C, Wainer J, Hodda M, Linsell K, Riley IT, Toktay H, Olowu EA, Edwards J, Rodoni B, Sawbridge T. Insights from draft genomes of Heterodera species isolated from field soil samples. BMC Genomics 2025; 26:158. [PMID: 39966714 PMCID: PMC11834393 DOI: 10.1186/s12864-025-11351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The nematode phylum includes many species key to soil food webs with trophic behaviours extending from feeding on microbes to macrofauna and plant roots. Among these, the plant parasitic cyst nematodes retain their eggs in protective cysts prolonging their survival under harsh conditions. These nematodes, including those from the genus Heterodera, cause significant economic losses in agricultural systems. Understanding of nematode diversity and ecology has expanded through application of genomic research, however, for Heterodera species there are very few available whole genome sequences. Sequencing and assembling Heterodera genomes is challenging due to various technical limitations imposed by the biology of Heterodera. Overcoming these limitations is essential for comprehensive insights into Heterodera parasitic interactions with plants, population studies, and for Australian biosecurity implications. RESULTS We hereby present draft genomes of six species of which Heterodera australis, H. humuli, H. mani and H. trifolii are presently recorded in Australia and two species, H. avenae and H. filipjevi, currently absent from Australia. The draft genomes were sequenced from genomic DNA isolated from 50 cysts each using an Illumina NovaSeq short read sequencing platform. The data revealed disparity in sequencing yield between species. What was previously identified as H. avenae in Australia using morphological traits is now confirmed as H. australis and may have consequences for wheat breeding programs in Australia that are breeding for resistance to H. avenae. A multigene phylogeny placed the sequenced species into taxonomic phylogenetic perspective. Genomic comparisons within the Avenae species group revealed orthologous gene clusters within the species, emphasising the shared and unique features of the group. The data also revealed the presence of a Wolbachia species, a putative bacterial endosymbiont from Heterodera humuli short read sequencing data. CONCLUSION Genomic research holds immense significance for agriculture, for understanding pest species diversity and the development of effective management strategies. This study provides insight into Heterodera, cyst nematode genomics and the associated symbionts and this work will serve as a baseline for further genomic analyses in this economically important nematode group.
Collapse
Affiliation(s)
- Akshita Jain
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia.
| | - Tongda Li
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| | - Daniel C Huston
- Australian National Insect Collection, National Research Collection Australia, CSIRO, PO Box 1700, Canberra, ACT, 2601, Australia
| | - Jatinder Kaur
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| | - Conrad Trollip
- Forest Science, NSW Department of Primary Industries, Parramatta, NSW, 2150, Australia
| | - John Wainer
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| | - Mike Hodda
- Australian National Insect Collection, National Research Collection Australia, CSIRO, PO Box 1700, Canberra, ACT, 2601, Australia
| | - Katherine Linsell
- South Australian Research and Development Institute, Adelaide, SA, 5064, Australia
| | - Ian T Riley
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Halil Toktay
- Department of Plant Production and Technologies, Faculty of Agricultural Science and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Eniola Ajibola Olowu
- Department of Plant Production and Technologies, Faculty of Agricultural Science and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Jacqueline Edwards
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| | - Brendan Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| | - Timothy Sawbridge
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| |
Collapse
|
2
|
Shokoohi E, Masoko P. Microbiome of Xiphinema elongatum (Nematoda, Longidoridae), isolated from water berry. Sci Rep 2024; 14:29494. [PMID: 39604530 PMCID: PMC11603160 DOI: 10.1038/s41598-024-80877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
The soil microbiome is crucial for the environment and significantly impacts the ecosystem. Understanding the microbiome and its interaction with soil microorganisms is essential for improving ecological and environmental strategies. In this study, Xiphinema elongatum nematodes were collected from water berry in Sovenga Hills, Limpopo Province, South Africa, and were analyzed their associated bacterial communities using metabarcoding analysis. The findings revealed that X. elongatum forms associations with a wide range of bacterial species. Among the most abundant species identified, we found Sphingomonas sp., a bacterial species commonly found in various habitats and primarily beneficial to plants, and Candidatus Xiphinematobacter, a bacterial species commonly found in nematode species of Xiphinema as an endosymbiont. The analysis using principal component analysis (PCA) revealed that the abundance of X. elongatum in the soil is inversely correlated with clay content (r = -0.52) and soil pH levels (r = -0.98), and directly correlated with soil sand content (r = 0.88). This study provides valuable insights into the bacterial species associated with plant-parasitic nematodes in trees in South Africa. It underscores the presence of various potentially detrimental and beneficial nematode-associated bacteria. The results could potentially influence the overall quality of the soil, leading to implications for the productivity and yield of fruit crops. Additionally, the results help us understand the interaction between bacteria and X. elongatum.
Collapse
Affiliation(s)
- Ebrahim Shokoohi
- Department of Biochemistry, Microbiology, and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa.
| | - Peter Masoko
- Department of Biochemistry, Microbiology, and Biotechnology, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa
| |
Collapse
|
3
|
Eco-evolutionary implications of helminth microbiomes. J Helminthol 2023; 97:e22. [PMID: 36790127 DOI: 10.1017/s0022149x23000056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The evolution of helminth parasites has long been seen as an interplay between host resistance to infection and the parasite's capacity to bypass such resistance. However, there has recently been an increasing appreciation of the role of symbiotic microbes in the interaction of helminth parasites and their hosts. It is now clear that helminths have a different microbiome from the organisms they parasitize, and sometimes amid large variability, components of the microbiome are shared among different life stages or among populations of the parasite. Helminths have been shown to acquire microbes from their parent generations (vertical transmission) and from their surroundings (horizontal transmission). In this latter case, natural selection has been strongly linked to the fact that helminth-associated microbiota is not simply a random assemblage of the pool of microbes available from their organismal hosts or environments. Indeed, some helminth parasites and specific microbial taxa have evolved complex ecological relationships, ranging from obligate mutualism to reproductive manipulation of the helminth by associated microbes. However, our understanding is still very elementary regarding the net effect of all microbiome components in the eco-evolution of helminths and their interaction with hosts. In this non-exhaustible review, we focus on the bacterial microbiome associated with helminths (as opposed to the microbiome of their hosts) and highlight relevant concepts and key findings in bacterial transmission, ecological associations, and taxonomic and functional diversity of the bacteriome. We integrate the microbiome dimension in a discussion of the evolution of helminth parasites and identify fundamental knowledge gaps, finally suggesting research avenues for understanding the eco-evolutionary impacts of the microbiome in host-parasite interactions in light of new technological developments.
Collapse
|
4
|
Gu J, Ye W, Munawar M. Description of Xiphinema pupureum n. sp. (Nematoda: Longidoridae), a new Xiphinema americanum group species detected from the rhizosphere of Ilex purpurea from Japan. NEMATOLOGY 2022. [DOI: 10.1163/15685411-bja10208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Summary
A new species of Xiphinema americanum group was recovered in the rhizosphere of holly (Ilex purpurea) imported from Japan. It is described and illustrated in the present study as X. purpureum n. sp. The new species is characterised by moderately long females 2267 (2115-2550) μm, round lip region slightly offset from the rest of the body, 103.5 (98.5-109.0) μm long odontostyle, genital branches without discernible endosymbiotic bacteria, vulva located at 54.1 (51.6-57.1)% of the body, tail 30 (24.3-33.4) μm long with a broadly rounded terminus, male absent and four juvenile developmental stages. The polytomous codes of the new species are as follows: A4/5, B2/3, C1/2, D2/3, E3, F1, G1, H2, I1/2/3. The new species was molecularly characterised using near full length 18S, ITS1, and 28S D2-D3 regions of rRNA, and mitochondrial cytochrome c oxidase subunit I gene sequences. The phylogenetic analyses placed X. purpureum n. sp. with X. americanum group species, particularly with X. brevicolle complex species. This is the third X. americanum group species described from Japan.
Collapse
Affiliation(s)
- Jianfeng Gu
- Plant Quarantine Laboratory, Technical Centre of Ningbo Customs (Ningbo Inspection and Quarantine Science Technology Academy), No. 8 Huikang, Ningbo 315100, Zhejiang, P.R. China
| | - Weimin Ye
- Nematode Assay Section, North Carolina Department of Agriculture, Raleigh, NC, USA
| | - Maria Munawar
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
5
|
Yushin VV, Gliznutsa LA, Ryss A. Ultrastructural detection of intracellular bacterial symbionts in the wood-inhabiting nematode Bursaphelenchus mucronatus (Nematoda: Aphelenchoididae). NEMATOLOGY 2022. [DOI: 10.1163/15685411-bja10192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
Ultrastructural observations of the wood-inhabiting fungal- and plant-feeding nematode, Bursaphelenchus mucronatus, revealed intracellular bacteria in the male and female gonads. In males, bacteria were present inside the testis epithelial cells, spermatocytes, spermatids and immature spermatozoa. Spermatheca of females contained amoeboid pseudopod-bearing mature spermatozoa with bacteria closely associated with the sperm nucleus. Tissues of the females studied were free from bacteria. The gram-negative bacteria in their localisation, size, ultrastructure, and especially characteristic internal bundle of parallel filaments, were identified preliminary as related to the genus Cardinium (Bacteroidetes), which includes obligate endosymbionts of diverse arthropods and is known to be associated with several species of plant-parasitic nematodes.
Collapse
Affiliation(s)
- Vladimir V. Yushin
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Lyubov A. Gliznutsa
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Alexander Ryss
- Zoological Institute, Russian Academy of Sciences, St Petersburg 199034, Russia
| |
Collapse
|
6
|
Description of Rotylenchus zhongshanensis sp. nov. (Tylenchomorpha: Hoplolaimidae) and discovery of its endosymbiont Cardinium. J Helminthol 2022; 96:e48. [PMID: 35856258 DOI: 10.1017/s0022149x22000384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new bisexual species of Rotylenchus is described and illustrated based on morphological, morphometric and molecular characterizations. Rotylenchus zhongshanensis sp. nov. is characterized by having a conoid lip region complying with the basic pattern for Hoplolaimidae, but with pharyngeal glands slightly overlapping intestine dorsally and cuticle thickened abnormally in female tail terminus. Females have robust stylet (30.1-33.8 μm). The pharyngeal gland has short dorsal (11.2-16.8 μm) overlap on the intestine. The vulva is located at 48.0-56.5% of body length, and phasmids are pore-like, 4-6 annuli posterior to the anus. For males, phasmids are pore-like, 11-17 annuli posterior to cloaca. The spicules are ventrally arcuate (21.0-28.5 μm) with gubernaculum in 5-8 μm length. The rRNA and mitochondrial COI genes were successfully sequenced from the assembled whole-genome sequences of the new species, and were used for reconstructing the phylogenetic relationships of the new species. A new strain of cyto-endosymbiont Cardinium was also discovered from the genome sequences of R. zhongshanensis sp. nov. The 16S rRNA phylogeny analyses revealed that this new bacterial strain is closed to that from cyst and root-lesion nematodes.
Collapse
|
7
|
Weyandt N, Aghdam SA, Brown AMV. Discovery of Early-Branching Wolbachia Reveals Functional Enrichment on Horizontally Transferred Genes. Front Microbiol 2022; 13:867392. [PMID: 35547116 PMCID: PMC9084900 DOI: 10.3389/fmicb.2022.867392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Wolbachia is a widespread endosymbiont of insects and filarial nematodes that profoundly influences host biology. Wolbachia has also been reported in rhizosphere hosts, where its diversity and function remain poorly characterized. The discovery that plant-parasitic nematodes (PPNs) host Wolbachia strains with unknown roles is of interest evolutionarily, ecologically, and for agriculture as a potential target for developing new biological controls. The goal of this study was to screen communities for PPN endosymbionts and analyze genes and genomic patterns that might indicate their role. Genome assemblies revealed 1 out of 16 sampled sites had nematode communities hosting a Wolbachia strain, designated wTex, that has highly diverged as one of the early supergroup L strains. Genome features, gene repertoires, and absence of known genes for cytoplasmic incompatibility, riboflavin, biotin, and other biosynthetic functions placed wTex between mutualist C + D strains and reproductive parasite A + B strains. Functional terms enriched in group L included protoporphyrinogen IX, thiamine, lysine, fatty acid, and cellular amino acid biosynthesis, while dN/dS analysis suggested the strongest purifying selection on arginine and lysine metabolism, and vitamin B6, heme, and zinc ion binding, suggesting these as candidate roles in PPN Wolbachia. Higher dN/dS pathways between group L, wPni from aphids, wFol from springtails, and wCfeT from cat fleas suggested distinct functional changes characterizing these early Wolbachia host transitions. PPN Wolbachia had several putative horizontally transferred genes, including a lysine biosynthesis operon like that of the mitochondrial symbiont Midichloria, a spirochete-like thiamine synthesis operon shared only with wCfeT, an ATP/ADP carrier important in Rickettsia, and a eukaryote-like gene that may mediate plant systemic acquired resistance through the lysine-to-pipecolic acid system. The Discovery of group L-like variants from global rhizosphere databases suggests diverse PPN Wolbachia strains remain to be discovered. These findings support the hypothesis of plant-specialization as key to shaping early Wolbachia evolution and present new functional hypotheses, demonstrating promise for future genomics-based rhizosphere screens.
Collapse
Affiliation(s)
- Nicholas Weyandt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Shiva A Aghdam
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
8
|
Observations on a Novel Bacterial Pathogen of Root-Knot Nematodes ( Meloidogyne spp.). Pathogens 2021; 10:pathogens10101226. [PMID: 34684175 PMCID: PMC8540249 DOI: 10.3390/pathogens10101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-negative pathogenic bacterium (BN) was discovered in second-stage juveniles (J2) of root-knot nematodes (RKN, Meloidogyne spp.). Mature bacteria showed a peculiar rod morphology characterized by four cells sequentially joined at septa. Mature rods measured 4–5 × 0.5–0.6 μm and were characterized by the emptying and tapering of both apical cells. The data showed an electron-dense external matrix forming a coating capsule involved in host attachment. The rods were not motile and packed in parallel inside the J2 body. After J2 penetration by adhering, germinating cells, the bacterium proliferated until the host body content was completely digested, producing a lethal disease. Parasitized hosts were recognized using light microscopy by a pale creamy-brown color assumed at parasitism completion. At death, the whole nematode body was filled with cells and only a few sclerotized esophageal structures (i.e., stylet, median bulb) remained visible. The BN cells were quickly released at host body rupture, suggesting that J2 infection occurs through passive adhesion of cells dispersed in soil. The bacterium appeared fastidious, as attempts to obtain pure cultures on common nutritive media failed.
Collapse
|
9
|
Palomares-Rius JE, Gutiérrez-Gutiérrez C, Mota M, Bert W, Claeys M, Yushin VV, Suzina NE, Ariskina EV, Evtushenko LI, Subbotin SA, Castillo P. ' Candidatus Xiphinematincola pachtaicus' gen. nov., sp. nov., an endosymbiotic bacterium associated with nematode species of the genus Xiphinema (Nematoda, Longidoridae). Int J Syst Evol Microbiol 2021; 71:004888. [PMID: 34287117 PMCID: PMC8489844 DOI: 10.1099/ijsem.0.004888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
An intracellular bacterium, strain IAST, was observed to infect several species of the plant-parasitic nematode genus Xiphinema (Xiphinema astaregiense, Xiphinema incertum, Xiphinema madeirense, Xiphinema pachtaicum, Xiphinema parapachydermum and Xiphinema vallense). The bacterium could not be recovered on axenic medium. The 16S rRNA gene sequence of IAST was found to be new, being related to the family Burkholderiaceae, class Betaproteobacteria. Fungal endosymbionts Mycoavidus cysteinexigens B1-EBT (92.9 % sequence identity) and 'Candidatus Glomeribacter gigasporarum' BEG34 (89.8 % identity) are the closest taxa and form a separate phylogenetic clade inside Burkholderiaceae. Other genes (atpD, lepA and recA) also separated this species from its closest relatives using a multilocus sequence analysis approach. These genes were obtained using a partial genome of this bacterium. The localization of the bacterium (via light and fluorescence in situ hybridization microscopy) is in the X. pachtaicum females clustered around the developing oocytes, primarily found embedded inside the epithelial wall cells of the ovaries, from where they are dispersed in the intestine. Transmission electron microscopy (TEM) observations supported the presence of bacteria inside the nematode body, where they occupy ovaries and occur inside the intestinal epithelium. Ultrastructural analysis of the bacterium showed cells that appear as mostly irregular, slightly curved rods with rounded ends, 0.8-1.2 µm wide and 2.5-6.0 µm long, possessing a typical Gram-negative cell wall. The peptidoglycan layer is, however, evident only occasionally and not detectable by TEM in most cells. Another irregularly occurring shell surrounding the endosymbiont cells or the cell clusters was also revealed, probably originating from the host cell membrane. Flagella or spore-like cells do not occur and the nucleoid is diffusely distributed throughout the cell. This endosymbiont is transmitted vertically through nematode generations. These results support the proposal of IAST as a new species, although its obligate intracellular and obligate endosymbiont nature prevented isolation of a definitive type strain. Strain IAST is therefore proposed as representing 'Candidatus Xiphinematincola pachtaicus' gen. nov., sp. nov.
Collapse
Affiliation(s)
- Juan E. Palomares-Rius
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Avenida Menéndez Pidal s/n, 14004 Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Carlos Gutiérrez-Gutiérrez
- NemaLab, MED – Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Manuel Mota
- NemaLab, MED – Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Myriam Claeys
- Nematology Research Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Vladimir V. Yushin
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Natalia E. Suzina
- All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Elena V. Ariskina
- All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Lyudmila I. Evtushenko
- All-Russian Collection of Microorganisms (VKM), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Sergei A. Subbotin
- California Department of Food and Agriculture, Plant Pest Diagnostic Center, Sacramento, CA 95832, USA
- Center of Parasitology of A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninskii Prospect 33, Moscow 117071, Russia
| | - Pablo Castillo
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Avenida Menéndez Pidal s/n, 14004 Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| |
Collapse
|
10
|
Arcos SC, Lira F, Robertson L, González MR, Carballeda-Sangiao N, Sánchez-Alonso I, Zamorano L, Careche M, Jiménez-Ruíz Y, Ramos R, Llorens C, González-Muñoz M, Oliver A, Martínez JL, Navas A. Metagenomics Analysis Reveals an Extraordinary Inner Bacterial Diversity in Anisakids (Nematoda: Anisakidae) L3 Larvae. Microorganisms 2021; 9:1088. [PMID: 34069371 PMCID: PMC8158776 DOI: 10.3390/microorganisms9051088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
L3 larvae of anisakid nematodes are an important problem for the fisheries industry and pose a potential risk for human health by acting as infectious agents causing allergies and as potential vectors of pathogens and microrganisms. In spite of the close bacteria-nematode relationship very little is known of the anisakids microbiota. Fresh fish could be contaminated by bacteria vectored in the cuticle or in the intestine of anisakids when the L3 larvae migrate through the muscles. As a consequence, the bacterial inoculum will be spread, with potential effects on the quality of the fish, and possible clinical effects cannot be discarded. A total of 2,689,113 16S rRNA gene sequences from a total of 113 L3 individuals obtained from fish captured along the FAO 27 fishing area were studied. Bacteria were taxonomically characterized through 1803 representative operational taxonomic units (OTUs) sequences. Fourteen phyla, 31 classes, 52 orders, 129 families and 187 genera were unambiguously identified. We have found as part of microbiome an average of 123 OTUs per L3 individual. Diversity indices (Shannon and Simpson) indicate an extraordinary diversity of bacteria at an OTU level. There are clusters of anisakids individuals (samples) defined by the associated bacteria which, however, are not significantly related to fish hosts or anisakid taxa. This suggests that association or relationship among bacteria in anisakids, exists without the influence of fishes or nematodes. The lack of relationships with hosts of anisakids taxa has to be expressed by the association among bacterial OTUs or other taxonomical levels which range from OTUs to the phylum level. There are significant biological structural associations of microbiota in anisakid nematodes which manifest in clusters of bacteria ranging from phylum to genus level, which could also be an indicator of fish contamination or the geographic zone of fish capture. Actinobacteria, Aquificae, Firmicutes, and Proteobacteria are the phyla whose abundance value discriminate for defining such structures.
Collapse
Affiliation(s)
- Susana C. Arcos
- Museo Nacional de Ciencias Naturales, Dpto Biodiversidad y Biología Evolutiva, CSIC, 28006 Madrid, Spain; (S.C.A.); (L.R.); (M.R.G.); (Y.J.-R.)
| | - Felipe Lira
- Centro Nacional de Biotecnología, Departamento de Biotecnología Microbiana, CSIC, 28049 Madrid, Spain; (F.L.); (J.L.M.)
| | - Lee Robertson
- Museo Nacional de Ciencias Naturales, Dpto Biodiversidad y Biología Evolutiva, CSIC, 28006 Madrid, Spain; (S.C.A.); (L.R.); (M.R.G.); (Y.J.-R.)
- Departamento de Protección Vegetal, INIA, 28040 Madrid, Spain
| | - María Rosa González
- Museo Nacional de Ciencias Naturales, Dpto Biodiversidad y Biología Evolutiva, CSIC, 28006 Madrid, Spain; (S.C.A.); (L.R.); (M.R.G.); (Y.J.-R.)
| | | | - Isabel Sánchez-Alonso
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, CSIC, 28040 Madrid, Spain; (I.S.-A.); (M.C.)
| | - Laura Zamorano
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, (IdISPa), 07120 Palma de Mallorca, Spain; (L.Z.); (A.O.)
| | - Mercedes Careche
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, CSIC, 28040 Madrid, Spain; (I.S.-A.); (M.C.)
| | - Yolanda Jiménez-Ruíz
- Museo Nacional de Ciencias Naturales, Dpto Biodiversidad y Biología Evolutiva, CSIC, 28006 Madrid, Spain; (S.C.A.); (L.R.); (M.R.G.); (Y.J.-R.)
| | - Ricardo Ramos
- Unidad de Genómica, “Scientific Park of Madrid”, Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Carlos Llorens
- Biotechvana, “Scientific Park”, University of Valencia, 46980 Valencia, Spain;
| | - Miguel González-Muñoz
- Servicio de Immunología, Hospital Universitario La Paz, 28046 Madrid, Spain; (N.C.-S.); (M.G.-M.)
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, (IdISPa), 07120 Palma de Mallorca, Spain; (L.Z.); (A.O.)
| | - José L. Martínez
- Centro Nacional de Biotecnología, Departamento de Biotecnología Microbiana, CSIC, 28049 Madrid, Spain; (F.L.); (J.L.M.)
| | - Alfonso Navas
- Museo Nacional de Ciencias Naturales, Dpto Biodiversidad y Biología Evolutiva, CSIC, 28006 Madrid, Spain; (S.C.A.); (L.R.); (M.R.G.); (Y.J.-R.)
| |
Collapse
|
11
|
Myers KN, Conn D, Brown AMV. Essential Amino Acid Enrichment and Positive Selection Highlight Endosymbiont's Role in a Global Virus-Vectoring Pest. mSystems 2021; 6:e01048-20. [PMID: 33531407 PMCID: PMC7857533 DOI: 10.1128/msystems.01048-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022] Open
Abstract
Host-associated microbes display remarkable convergence in genome repertoire resulting from selection to supplement missing host functions. Nutritional supplementation has been proposed in the verrucomicrobial endosymbiont Xiphinematobacter sp., which lives within a globally widespread group of plant-parasitic nematodes that vector damaging nepoviruses to plants. Only one genome sequence has been published from this symbiont, leaving unanswered questions about its diversity, host range, role, and selective pressures within its hosts. Because its hosts are exceptionally resistant to culturing, this symbiont is best studied through advanced genomic approaches. To analyze the role of Xiphinematobacter sp. in its host, sequencing was performed on nematode communities, and then genomes were extracted for comparative genomics, gene ontology enrichment tests, polymorphism analysis, de Bruijn-based genome-wide association studies, and tests of pathway- and site-specific selection on genes predicted play a role in the symbiosis. Results showed a closely clustered set of Xiphinematobacter isolates with reduced genomes of ∼917 kbp, for which a new species was proposed. Symbionts shared only 2.3% of genes with outgroup Verrucomicrobia, but comparative analyses showed high conservation of all 10 essential amino acid (EAA) biosynthesis pathways plus several vitamin pathways. These findings were supported by gene ontology enrichment tests and high polymorphisms in these pathways compared with background. Genome-wide association analysis confirmed high between-species fixation of alleles with significant functional enrichment for EAA and thiamine synthesis. Strong positive selection was detected on sites within these pathways, despite several being under increased purifying selection. Together, these results suggest that supplementation of EAAs missing in the host diet may drive this widespread symbiosis.IMPORTANCE Xiphinematobacter spp. are distinctly evolved intracellular symbionts in the phylum Verrucomicrobia, which includes the important human gut-associated microbe Akkermansia muciniphila and many highly abundant free-living soil microbes. Like Akkermansia sp., Xiphinematobacter sp. is obligately associated with the gut of its hosts, which in this case consists of a group of plant-parasitic nematodes that are among the top 10 most destructive species to global agriculture, by vectoring plant viruses. This study examined the hypothesis that the key to this symbiont's stable evolutionary association with its host is through provisioning nutrients that its host cannot make that may be lacking in the nematode's plant phloem diet, such as essential amino acids and several vitamins. The significance of our research is in demonstrating, using population genomics, the signatures of selective pressure on these hypothesized roles to ultimately learn how this independently evolved symbiont functionally mirrors symbionts of phloem-feeding insects.
Collapse
Affiliation(s)
- Kaitlyn N Myers
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Daniel Conn
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
12
|
Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens. Proc Natl Acad Sci U S A 2020; 117:31979-31986. [PMID: 33257562 DOI: 10.1073/pnas.2000860117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Obligate symbioses involving intracellular bacteria have transformed eukaryotic life, from providing aerobic respiration and photosynthesis to enabling colonization of previously inaccessible niches, such as feeding on xylem and phloem, and surviving in deep-sea hydrothermal vents. A major challenge in the study of obligate symbioses is to understand how they arise. Because the best studied obligate symbioses are ancient, it is especially challenging to identify early or intermediate stages. Here we report the discovery of a nascent obligate symbiosis in Howardula aoronymphium, a well-studied nematode parasite of Drosophila flies. We have found that H aoronymphium and its sister species harbor a maternally inherited intracellular bacterial symbiont. We never find the symbiont in nematode-free flies, and virtually all nematodes in the field and the laboratory are infected. Treating nematodes with antibiotics causes a severe reduction in fly infection success. The association is recent, as more distantly related insect-parasitic tylenchid nematodes do not host these endosymbionts. We also report that the Howardula nematode symbiont is a member of a widespread monophyletic group of invertebrate host-associated microbes that has independently given rise to at least four obligate symbioses, one in nematodes and three in insects, and that is sister to Pectobacterium, a lineage of plant pathogenic bacteria. Comparative genomic analysis of this group, which we name Candidatus Symbiopectobacterium, shows signatures of genome erosion characteristic of early stages of symbiosis, with the Howardula symbiont's genome containing over a thousand predicted pseudogenes, comprising a third of its genome.
Collapse
|
13
|
Mobasseri M, Hutchinson MC, Afshar FJ, Pedram M. New evidence of nematode-endosymbiont bacteria coevolution based on one new and one known dagger nematode species of Xiphinema americanum-group (Nematoda, Longidoridae). PLoS One 2019; 14:e0217506. [PMID: 31242223 PMCID: PMC6594591 DOI: 10.1371/journal.pone.0217506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/12/2019] [Indexed: 11/18/2022] Open
Abstract
Three populations of Xiphinema primum n. sp. and two populations of X. pachtaicum were recovered from natural forests and cultural regions of northern Iran. Both species belong to the X. americanum-group and were characterized by their morphological, morphometric and molecular data. The new species, which was recovered in three locations, belongs to the X. brevicolle-complex and is characterized by 2124–2981 μm long females with a widely rounded lip region separated from the rest of the body by a depression, 103–125 μm long odontostyle, two equally developed genital branches with endosymbiont bacteria inside the ovary, which are visible under light microscope (LM), vulva located at 51.8–58.0%, the tail is 26–37 μm long with a bluntly rounded end and four juvenile developmental stages. It was morphologically compared with nine similar species viz. X. brevicolle, X. diffusum, X. incognitum, X. himalayense, X. luci, X. parabrevicolle, X. paramonovi, X. parataylori and X. taylori. The second species, X. pachtaicum, was recovered in two geographically distant points close to city of Amol. Molecular phylogenetic studies of the new species were performed using partial sequences of the D2-D3 expansion segments of the large subunit ribosomal RNA gene (LSU rDNA D2-D3), the internal-transcribed spacer rDNA (ITS = ITS1+5.8S+ITS2), and the mitochondrial cytochrome c oxidase I gene (COI mtDNA) regions. The Iranian population of X. pachtaicum was also phylogenetically studied based upon its LSU rDNA D2-D3 sequences. Both species were also inspected for their putative endosymbiont bacteria. Candidatus Xiphinematobacter sp. was detected from two examined populations of the new species, whereas the second endosymbiont bacterium, detected from three examined isolates of X. pachtaicum, was related to the plant and fungal endosymbionts of the family Burkholderiaceae. The phylogenetic analyses of the two endosymbiont bacteria were performed using partial sequences of 16S rDNA. In cophylogenetic analyses, significant levels of cophylogenetic signal were observed using both LSU rDNA D2-D3 and COI mtDNA markers of the host nematodes and 16S rDNA marker of the endosymbiont bacteria.
Collapse
Affiliation(s)
- Mahyar Mobasseri
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Matthew C. Hutchinson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Farahnaz Jahanshahi Afshar
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Majid Pedram
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- * E-mail:
| |
Collapse
|
14
|
Fouladvand ZM, Pourjam E, Castillo P, Pedram M. Genetic diversity, and description of a new dagger nematode, Xiphinema afratakhtehnsis sp. nov., (Dorylaimida: Longidoridae) in natural forests of southeastern Gorgan, northern Iran. PLoS One 2019; 14:e0214147. [PMID: 31042773 PMCID: PMC6493718 DOI: 10.1371/journal.pone.0214147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/06/2019] [Indexed: 11/29/2022] Open
Abstract
The most prevalent dagger nematode recovered from rhizospheric soil samples of forest trees in the Afrātakhteh region of Golestan province (Iran) was Xiphinema afratakhtehnsis sp. nov. and it is described and illustrated with integrative approaches using both morphological and molecular criteria. It belongs to the morphospecies group 6 of the intragenic historical grouping of Xiphinema non-americanum species. The new species is characterized by females with 3.3–4.9 mm sized body, lip region separated from the rest of body by a depression, anteriorly expanded, 16–18 μm wide, vulva located at 47.2–58.5%, odontostyle 155–173 μm and odontophore 89–107 μm long, female genital system composed of two equally developed branches, the tubular part of each having spines, short symmetrically rounded female tail to symmetrically rounded with a small mucro-like projection at the end in a few females, rare males (n = 1 out of 74 females) with 83 μm long dorylaimoid spicules and four juvenile developmental stages. The third-stage juveniles (J3) have a characteristic tail shape (short, symmetrically conical with a club-shaped long mucro) demarcating the species, and being typologically useful for its separation from closely similar species (except X. cohni, with currently no data on its juvenile stages) viz. X. adenohystherum, X. iranicum, X. mazandaranense, X. nuragicum, X. pyrenaicum, X. robbinsi, X. sphaerocephalum and X. zagrosense. Molecular phylogenetic studies using genomic (partial large subunit and internal transcribed spacer 1 ribosomal RNA genes: D2-D3 and ITS1 rDNA) and mitochondrial cytochrome c oxidase subunit I gene (COI mtDNA) revealed the new species forming a unique lineage in all reconstructed trees using Bayesian inference (BI) and maximum likelihood (ML) methods. The sequenced isolates of the new species formed a monophyletic group in the D2-D3 tree. The sequenced isolates of the new species for their COI mtDNA formed four subclades in COI mtDNA phylogeny, and four haplotypes in corresponding analysis.
Collapse
Affiliation(s)
| | - Ebrahim Pourjam
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Pablo Castillo
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Majid Pedram
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- * E-mail:
| |
Collapse
|
15
|
Tayyrov A, Stanley CE, Azevedo S, Künzler M. Combining microfluidics and RNA-sequencing to assess the inducible defensome of a mushroom against nematodes. BMC Genomics 2019; 20:243. [PMID: 30909884 PMCID: PMC6434838 DOI: 10.1186/s12864-019-5607-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Fungi are an attractive source of nutrients for predators. As part of their defense, some fungi are able to induce the production of anti-predator protein toxins in response to predation. A previous study on the interaction of the model mushroom Coprinopsis cinerea by the fungivorous nematode Aphelenchus avenae on agar plates has shown that the this fungal defense response is most pronounced in the part of the mycelium that is in direct contact with the nematode. Hence, we hypothesized that, for a comprehensive characterization of this defense response, an experimental setup that maximizes the zone of direct interaction between the fungal mycelium and the nematode, was needed. RESULTS In this study, we conducted a transcriptome analysis of C. cinerea vegetative mycelium upon challenge with A. avenae using a tailor-made microfluidic device. The device was designed such that the interaction between the fungus and the nematode was confined to a specific area and that the mycelium could be retrieved from this area for analysis. We took samples from the confrontation area after different time periods and extracted and sequenced the poly(A)+ RNA thereof. The identification of 1229 differentially expressed genes (DEGs) shows that this setup profoundly improved sensitivity over co-cultivation on agar plates where only 37 DEGs had been identified. The product of one of the most highly upregulated genes shows structural homology to bacterial pore-forming toxins, and revealed strong toxicity to various bacterivorous nematodes. In addition, bacteria associated with the fungivorous nematode A. avenae were profiled with 16S rRNA deep sequencing. Similar to the bacterivorous and plant-feeding nematodes, Proteobacteria and Bacteroidetes were the most dominant phyla in A. avenae. CONCLUSIONS The use of a novel experimental setup for the investigation of the defense response of a fungal mycelium to predation by fungivorous nematodes resulted in the identification of a comprehensive set of DEGs and the discovery of a novel type of fungal defense protein against nematodes. The bacteria found to be associated with the fungivorous nematode are a possible explanation for the induction of some antibacterial defense proteins upon nematode challenge.
Collapse
Affiliation(s)
- Annageldi Tayyrov
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Claire E. Stanley
- Agroecology and Environment Research Division, Agroscope, Reckenholzstrasse 191, CH-8046 Zürich, Switzerland
| | - Sophie Azevedo
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Markus Künzler
- Institute of Microbiology, Department of Biology, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| |
Collapse
|
16
|
Takashima Y, Seto K, Degawa Y, Guo Y, Nishizawa T, Ohta H, Narisawa K. Prevalence and Intra-Family Phylogenetic Divergence of Burkholderiaceae-Related Endobacteria Associated with Species of Mortierella. Microbes Environ 2018; 33:417-427. [PMID: 30531154 PMCID: PMC6307997 DOI: 10.1264/jsme2.me18081] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Endofungal bacteria are widespread within the phylum Mucoromycota, and these include Burkholderiaceae-related endobacteria (BRE). However, the prevalence of BRE in Mortierellomycotinan fungi and their phylogenetic divergence remain unclear. Therefore, we examined the prevalence of BRE in diverse species of Mortierella. We surveyed 238 isolates of Mortierella spp. mainly obtained in Japan that were phylogenetically classified into 59 species. BRE were found in 53 isolates consisting of 22 species of Mortierella. Among them, 20 species of Mortierella were newly reported as the fungal hosts of BRE. BRE in a Glomeribacter-Mycoavidus clade in the family Burkholderiaceae were separated phylogenetically into three groups. These groups consisted of a group containing Mycoavidus cysteinexigens, which is known to be associated with M. elongata, and two other newly distinguishable groups. Our results demonstrated that BRE were harbored by many species of Mortierella and those that associated with isolates of Mortierella spp. were more phylogenetically divergent than previously reported.
Collapse
Affiliation(s)
- Yusuke Takashima
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Ibaraki University College of Agriculture
| | - Kensuke Seto
- Mountain Science Center Sugadaira Research Station, University of Tsukuba
| | - Yousuke Degawa
- Mountain Science Center Sugadaira Research Station, University of Tsukuba
| | - Yong Guo
- Ibaraki University College of Agriculture
| | - Tomoyasu Nishizawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Ibaraki University College of Agriculture
| | - Hiroyuki Ohta
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Ibaraki University College of Agriculture
| | - Kazuhiko Narisawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Ibaraki University College of Agriculture
| |
Collapse
|
17
|
Brown AMV, Wasala SK, Howe DK, Peetz AB, Zasada IA, Denver DR. Comparative Genomics of Wolbachia- Cardinium Dual Endosymbiosis in a Plant-Parasitic Nematode. Front Microbiol 2018; 9:2482. [PMID: 30459726 PMCID: PMC6232779 DOI: 10.3389/fmicb.2018.02482] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
Wolbachia and Cardinium are among the most important and widespread of all endosymbionts, occurring in nematodes and more than half of insect and arachnid species, sometimes as coinfections. These symbionts are of significant interest as potential biocontrol agents due to their abilities to cause major effects on host biology and reproduction through cytoplasmic incompatibility, sex ratio distortion, or obligate mutualism. The ecological and metabolic effects of coinfections are not well understood. This study examined a Wolbachia-Cardinium coinfection in the plant-parasitic nematode (PPN), Pratylenchus penetrans, producing the first detailed study of such a coinfection using fluorescence in situ hybridization (FISH), polymerase chain reaction (PCR), and comparative genomic analysis. Results from FISH and single-nematode PCR showed 123/127 individuals in a focal population carried Cardinium (denoted strain cPpe), and 48% were coinfected with Wolbachia strain wPpe. Both endosymbionts showed dispersed tissue distribution with highest densities in the anterior intestinal walls and gonads. Phylogenomic analyses confirmed an early place of cPpe and long distance from a sister strain in another PPN, Heterodera glycines, supporting a long history of both Cardinium and Wolbachia in PPNs. The genome of cPpe was 1.36 Mbp with 35.8% GC content, 1,131 predicted genes, 41% having no known function, and missing biotin and lipoate synthetic capacity and a plasmid present in other strains, despite having a slightly larger genome compared to other sequenced Cardinium. The larger genome revealed expansions of gene families likely involved in host-cellular interactions. More than 2% of the genes of cPpe and wPpe were identified as candidate horizontally transferred genes, with some of these from eukaryotes, including nematodes. A model of the possible Wolbachia-Cardinium interaction is proposed with possible complementation in function for pathways such as methionine and fatty acid biosynthesis and biotin transport.
Collapse
Affiliation(s)
- Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Sulochana K Wasala
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Dana K Howe
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Amy B Peetz
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, United States
| | - Inga A Zasada
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, United States
| | - Dee R Denver
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
18
|
Abstract
Some of the most agriculturally important plant-parasitic nematodes (PPNs) harbor endosymbionts. Extensive work in other systems has shown that endosymbionts can have major effects on host virulence and biology. This review highlights the discovery, development, and diversity of PPN endosymbionts, incorporating inferences from genomic data. Cardinium, reported from five PPN hosts to date, is characterized by its presence in the esophageal glands and other tissues, with a discontinuous distribution across populations, and genomic data suggestive of horizontal gene exchange. Xiphinematobacter occurs in at least 27 species of dagger nematode in the ovaries and gut epithelial cells, where genomic data suggest it may serve in nutritional supplementation. Wolbachia, reported in just three PPNs, appears to have an ancient history in the Pratylenchidae and displays broad tissue distribution and genomic features intermediate between parasitic and reproductive groups. Finally, a model is described that integrates these insights to explain patterns of endosymbiont replacement.
Collapse
Affiliation(s)
- Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79410, USA;
| |
Collapse
|
19
|
Ma WJ, Schwander T. Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis. J Evol Biol 2017; 30:868-888. [PMID: 28299861 DOI: 10.1111/jeb.13069] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/05/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
Abstract
Female-producing parthenogenesis can be induced by endosymbionts that increase their transmission by manipulating host reproduction. Our literature survey indicates that such endosymbiont-induced parthenogenesis is known or suspected in 124 host species from seven different arthropod taxa, with Wolbachia as the most frequent endosymbiont (in 56-75% of host species). Most host species (81%, 100 out of 124) are characterized by haplo-diploid sex determination, but a strong ascertainment bias likely underestimates the frequency of endosymbiont-induced parthenogenesis in hosts with other sex determination systems. In at least one taxon, hymenopterans, endosymbionts are a significant driver of transitions from sexual to parthenogenetic reproduction, with one-third of lineages being parthenogenetic as a consequence of endosymbiont infection. Endosymbiont-induced parthenogenesis appears to facilitate the maintenance of reproductive polymorphism: at least 50% of species comprise both sexual (uninfected) and parthenogenetic (infected) strains. These strains feature distribution differences similar to the ones documented for lineages with genetically determined parthenogenesis, with endosymbiont-induced parthenogens occurring at higher latitudes than their sexual relatives. Finally, although gamete duplication is often considered as the main mechanism for endosymbiont-induced parthenogenesis, it underlies parthenogenesis in only half of the host species studied thus far. We point out caveats in the methods used to test for endosymbiont-induced parthenogenesis and suggest specific approaches that allow for firm conclusions about the involvement of endosymbionts in the origin of parthenogenesis.
Collapse
Affiliation(s)
- W-J Ma
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - T Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Archidona-Yuste A, Navas-Cortés JA, Cantalapiedra-Navarrete C, Palomares-Rius JE, Castillo P. Remarkable Diversity and Prevalence of Dagger Nematodes of the Genus Xiphinema Cobb, 1913 (Nematoda: Longidoridae) in Olives Revealed by Integrative Approaches. PLoS One 2016; 11:e0165412. [PMID: 27829048 PMCID: PMC5102458 DOI: 10.1371/journal.pone.0165412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
The genus Xiphinema includes a remarkable group of invertebrates of the phylum Nematoda comprising ectoparasitic animals of many wild and cultivated plants. Damage is caused by direct feeding on root cells and by vectoring nepoviruses that cause diseases on several crops. Precise identification of Xiphinema species is critical for launching appropriate control measures. We make available the first detailed information on the diversity and distribution of Xiphinema species infesting wild and cultivated olive in a wide-region in southern Spain that included 211 locations from which 453 sampling sites were analyzed. The present study identified thirty-two Xiphinema spp. in the rhizosphere of olive trees, ten species belonging to Xiphinema americanum-group, whereas twenty-two were attributed to Xiphinema non-americanum-group. These results increase our current knowledge on the biodiversity of Xiphinema species identified in olives and include the description of four new species (Xiphinema andalusiense sp. nov., Xiphinema celtiense sp. nov., Xiphinema iznajarense sp. nov., and Xiphinema mengibarense sp. nov.), and two new records for cultivate olives (X. cadavalense and X. conurum). We also found evidence of remarkable prevalence of Xiphinema spp. in olive trees, viz. 85.0% (385 out of 453 sampling sites), and they were widely distributed in both wild and cultivated olives, with 26 and 17 Xiphinema spp., respectively. Diversity indexes (Richness, Hill´s diversity, Hill´s reciprocal of D and Hill´s evenness) were significantly affected by olive type. We also developed a comparative morphological and morphometrical study together with molecular data from three nuclear ribosomal RNA genes (D2-D3 expansion segments of 28S, ITS1, and partial 18S). Molecular characterization and phylogenetic analyses allowed the delimitation and discrimination of four new species of the genus described herein and three known species. Phylogenetic analyses of Xiphinema spp. resulted in a general consensus of these species groups. This study is the most complete phylogenetic analysis for Xiphinema non-americanum-group species to date.
Collapse
Affiliation(s)
- Antonio Archidona-Yuste
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Juan A. Navas-Cortés
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Carolina Cantalapiedra-Navarrete
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Juan E. Palomares-Rius
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Pablo Castillo
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|