1
|
Fasani E, Zamboni A, Sorio D, Furini A, DalCorso G. Metal Interactions in the Ni Hyperaccumulating Population of Noccaea caerulescens Monte Prinzera. BIOLOGY 2023; 12:1537. [PMID: 38132363 PMCID: PMC10740792 DOI: 10.3390/biology12121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Hyperaccumulation is a fascinating trait displayed by a few plant species able to accumulate large amounts of metal ions in above-ground tissues without symptoms of toxicity. Noccaea caerulescens is a recognized model system to study metal hyperaccumulation and hypertolerance. A N. caerulescens population naturally growing on a serpentine soil in the Italian Apennine Mountains, Monte Prinzera, was chosen for the study here reported. Plants were grown hydroponically and treated with different metals, in excess or limiting concentrations. Accumulated metals were quantified in shoots and roots by means of ICP-MS. By real-time PCR analysis, the expression of metal transporters and Fe deficiency-regulated genes was compared in the shoots and roots of treated plants. N. caerulescens Monte Prinzera confirmed its ability to hypertolerate and hyperaccumulate Ni but not Zn. Moreover, excess Ni does not induce Fe deficiency as in Ni-sensitive species and instead competes with Fe translocation rather than its uptake.
Collapse
Affiliation(s)
- Elisa Fasani
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (A.Z.)
| | - Anita Zamboni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (A.Z.)
| | - Daniela Sorio
- Centro Piattaforme Tecnologiche, University of Verona, 37134 Verona, Italy;
| | - Antonella Furini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (A.Z.)
| | - Giovanni DalCorso
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (A.Z.)
| |
Collapse
|
2
|
Kanso A, Benizri E, Azoury S, Echevarria G, Sirguey C. Maximizing trace metal phytoextraction through planting methods: Role of rhizosphere fertility and microbial activities. CHEMOSPHERE 2023; 340:139833. [PMID: 37595688 DOI: 10.1016/j.chemosphere.2023.139833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Brownfields are a widespread problem in the world. The poor quality of these soils and the potential presence of contaminants can pose a significant threat to plant establishment and growth. However, it may be possible to improve their establishment with an appropriate agricultural practice. In this paper, the effects of two common planting strategies, seeding and transplanting, on the establishment and growth of the hyperaccumulator species Noccaea caerulescens and on its phytoextraction capacity were investigated. A field experiment was conducted by direct sowing of N. caerulescens seeds on a plot of contaminated Technosols in Jeandelaincourt, France. At the same time, seeds were sown on potting soil under controlled conditions. One month later, the seedlings were transplanted to the field. One year later, the results showed that transplanting improved the establishment and growth of N. caerulescens. This was due to a decrease in soil pH in the rhizosphere, which subsequently increased nutrient availability. This change in rhizosphere properties also appeared to be the key that improved microbial activities in the rhizosphere soil of transplanted plants. The observed improvement in both rhizosphere nutrient availability and microbial activities, in turn, increased auxin concentrations in the rhizosphere and consequently a more developed root system was observed in the transplanted plants. Furthermore, the Cd and Zn phytoextraction yield of transplanted plants is 2.5 and 5 times higher, respectively, than that of sown plants. In conclusion, N. caerulescens transplantation on contaminated sites seems to be an adequate strategy to improve plant growth and enhance trace metal phytoextraction.
Collapse
Affiliation(s)
- Ali Kanso
- Lebanese University, Applied Plant Biotechnology Laboratory, Hadath, Lebanon; Université de Lorraine, INRAE, LSE, F-54000, Nancy, France
| | - Emile Benizri
- Université de Lorraine, INRAE, LSE, F-54000, Nancy, France
| | - Sabine Azoury
- Lebanese University, Applied Plant Biotechnology Laboratory, Hadath, Lebanon
| | - Guillaume Echevarria
- Université de Lorraine, INRAE, LSE, F-54000, Nancy, France; Centre for Mined Land Rehabilitation, SMI, University of Queensland, St Lucia, QLD, Australia
| | | |
Collapse
|
3
|
van der Ent A, de Jonge MD, Echevarria G, Aarts MGM, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Brueckner D, Harris HH. Multimodal synchrotron X-ray fluorescence imaging reveals elemental distribution in seeds and seedlings of the Zn-Cd-Ni hyperaccumulator Noccaea caerulescens. Metallomics 2022; 14:mfac026. [PMID: 35746898 PMCID: PMC9226517 DOI: 10.1093/mtomcs/mfac026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022]
Abstract
The molecular biology and genetics of the Ni-Cd-Zn hyperaccumulator Noccaea caerulescens has been extensively studied, but no information is yet available on Ni and Zn redistribution and mobilization during seed germination. Due to the different physiological functions of these elements, and their associated transporter pathways, we expected differential tissue distribution and different modes of translocation of Ni and Zn during germination. This study used synchrotron X-ray fluorescence tomography techniques as well as planar elemental X-ray imaging to elucidate elemental (re)distribution at various stages of the germination process in contrasting accessions of N. caerulescens. The results show that Ni and Zn are both located primarily in the cotyledons of the emerging seedlings and Ni is highest in the ultramafic accessions (up to 0.15 wt%), whereas Zn is highest in the calamine accession (up to 600 μg g-1). The distribution of Ni and Zn in seeds was very similar, and neither element was translocated during germination. The Fe maps were especially useful to obtain spatial reference within the seeds, as it clearly marked the vasculature. This study shows how a multimodal combination of synchrotron techniques can be used to obtain powerful insights about the metal distribution in physically intact seeds and seedlings.
Collapse
Affiliation(s)
- Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia 4072, Australia
| | | | - Guillaume Echevarria
- Laboratoire Sols et Environnement, Université de Lorraine-INRAE, Vandœuvre-lés-Nancy, UMR 1120, France
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, The Netherlands
| | | | - Wojciech J Przybyłowicz
- Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa
- AGH University of Science and Technology, Faculty of Physics & Applied Computer Science, 30-059 Kraków, Poland
| | - Dennis Brueckner
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, 20355 Hamburg, Germany
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
4
|
Guo R, Zhang YH, Zhang HJ, Landis JB, Zhang X, Wang HC, Yao XH. Molecular phylogeography and species distribution modelling evidence of 'oceanic' adaptation for Actinidia eriantha with a refugium along the oceanic-continental gradient in a biodiversity hotspot. BMC PLANT BIOLOGY 2022; 22:89. [PMID: 35227218 PMCID: PMC8883688 DOI: 10.1186/s12870-022-03464-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Refugia is considered to be critical for maintaining biodiversity; while discerning the type and pattern of refugia is pivotal for our understanding of evolutionary processes in the context of conservation. Interglacial and glacial refugia have been studied throughout subtropical China. However, studies on refugia along the oceanic-continental gradient have largely been ignored. We used a liana Actinidia eriantha, which occurs across the eastern moist evergreen broad-leaved forests of subtropical China, as a case study to test hypotheses of refugia along the oceanic-continental gradient and 'oceanic' adaptation. RESULTS The phylogeographic pattern of A. eriantha was explored using a combination of three cpDNA markers and 38 nuclear microsatellite loci, Species distribution modelling and dispersal corridors analysis. Our data showed intermediate levels of genetic diversity [haplotype diversity (hT) = 0.498; unbiased expected heterozygosity (UHE) = 0.510] both at the species and population level. Microsatellite loci revealed five clusters largely corresponding to geographic regions. Coalescent time of cpDNA lineages was dated to the middle Pliocene (ca. 4.03 Ma). Both geographic distance and climate difference have important roles for intraspecific divergence of the species. The Zhejiang-Fujian Hilly Region was demonstrated to be a refugium along the oceanic-continental gradient of the species and fit the 'refugia in refugia' pattern. Species distribution modelling analysis indicated that Precipitation of Coldest Quarter (importance of 44%), Temperature Seasonality (29%) and Mean Temperature of Wettest Quarter (25%) contributed the most to model development. By checking the isolines in the three climate layers, we found that A. eriantha prefer higher precipitation during the coldest quarter, lower seasonal temperature difference and lower mean temperature during the wettest quarter, which correspond to 'oceanic' adaptation. Actinidia eriantha expanded to its western distribution range along the dispersal corridor repeatedly during the glacial periods. CONCLUSIONS Overall, our results provide integrated evidence demonstrating that the Zhejiang-Fujian Hilly Region is a refugium along the oceanic-continental gradient of Actinidia eriantha in subtropical China and that speciation is attributed to 'oceanic' adaptation. This study gives a deeper understanding of the refugia in subtropical China and will contribute to the conservation and utilization of kiwifruit wild resources in the context of climate change.
Collapse
Affiliation(s)
- Rui Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| | - Yong-Hua Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Hua-Jie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, 14853, USA
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Xu Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng-Chang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Xiao-Hong Yao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
- Center of Conservation Biology, Core Botanical Gardens, The Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
5
|
Dietrich CC, Tandy S, Murawska-Wlodarczyk K, Banaś A, Korzeniak U, Seget B, Babst-Kostecka A. Phytoextraction efficiency of Arabidopsis halleri is driven by the plant and not by soil metal concentration. CHEMOSPHERE 2021; 285:131437. [PMID: 34265706 PMCID: PMC8551008 DOI: 10.1016/j.chemosphere.2021.131437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 05/14/2023]
Abstract
The hyperaccumulation trait allows some plant species to allocate remarkable amounts of trace metal elements (TME) to their foliage without suffering from toxicity. Utilizing hyperaccumulating plants to remediate TME contaminated sites could provide a sustainable alternative to industrial approaches. A major hurdle that currently hampers this approach is the complexity of the plant-soil relationship. To better anticipate the outcome of future phytoremediation efforts, we evaluated the potential for soil metal-bioavailability to predict TME accumulation in two non-metallicolous and two metallicolous populations of the Zn/Cd hyperaccumulator Arabidopsis halleri. We also examined the relationship between a population's habitat and its phytoextraction efficiency. Total Zn and Cd concentrations were quantified in soil and plant material, and bioavailable fractions in soil were quantified via Diffusive Gradients in Thin-films (DGT). We found that shoot TME accumulation varied independent from both total and bioavailable soil TME concentrations in metallicolous individuals. In fact, hyperaccumulation patterns appear more plant- and less soil-driven: one non-metallicolous population proved to be as efficient in accumulating Zn on non-polluted soil as the metallicolous populations in their highly contaminated environment. Our findings demonstrate that in-situ information on plant phytoextraction efficiency is indispensable to optimize site-specific phytoremediation measures. If successful, hyperaccumulating plant biomass may provide valuable source material for application in the emerging field of green chemistry.
Collapse
Affiliation(s)
- Charlotte C Dietrich
- W. Szafer Institute of Botany Polish Academy of Sciences, Department of Ecology, Lubicz 46, PL-31512, Krakow, Poland
| | - Susan Tandy
- Soil Protection, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH), 8092, Zurich, Switzerland; Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB, United Kingdom
| | | | - Angelika Banaś
- W. Szafer Institute of Botany Polish Academy of Sciences, Department of Ecology, Lubicz 46, PL-31512, Krakow, Poland
| | - Urszula Korzeniak
- W. Szafer Institute of Botany Polish Academy of Sciences, Department of Ecology, Lubicz 46, PL-31512, Krakow, Poland
| | - Barbara Seget
- W. Szafer Institute of Botany Polish Academy of Sciences, Department of Ecology, Lubicz 46, PL-31512, Krakow, Poland
| | - Alicja Babst-Kostecka
- Department of Environmental Science, The University of Arizona, Tucson, AZ, 85721, USA; WSL Swiss Federal Research Institute, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland.
| |
Collapse
|
6
|
van der Zee L, Corzo Remigio A, Casey LW, Purwadi I, Yamjabok J, van der Ent A, Kootstra G, Aarts MGM. Quantification of spatial metal accumulation patterns in Noccaea caerulescens by X-ray fluorescence image processing for genetic studies. PLANT METHODS 2021; 17:86. [PMID: 34344412 PMCID: PMC8336263 DOI: 10.1186/s13007-021-00784-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Hyperaccumulation of trace elements is a rare trait among plants which is being investigated to advance our understanding of the regulation of metal accumulation and applications in phytotechnologies. Noccaea caerulescens (Brassicaceae) is an intensively studied hyperaccumulator model plant capable of attaining extremely high tissue concentrations of zinc and nickel with substantial genetic variation at the population-level. Micro-X-ray Fluorescence spectroscopy (µXRF) mapping is a sensitive high-resolution technique to obtain information of the spatial distribution of the plant metallome in hydrated samples. We used laboratory-based µXRF to characterize a collection of 86 genetically diverse Noccaea caerulescens accessions from across Europe. We developed an image-processing method to segment different plant substructures in the µXRF images. We introduced the concentration quotient (CQ) to quantify spatial patterns of metal accumulation and linked that to genetic variation. RESULTS Image processing resulted in automated segmentation of µXRF plant images into petiole, leaf margin, leaf interveinal and leaf vasculature substructures. The harmonic means of recall and precision (F1 score) were 0.79, 0.80, 0.67, and 0.68, respectively. Spatial metal accumulation as determined by CQ is highly heritable in Noccaea caerulescens for all substructures, with broad-sense heritability (H2) ranging from 76 to 92%, and correlates only weakly with other heritable traits. Insertion of noise into the image segmentation algorithm barely decreases heritability scores of CQ for the segmented substructures, illustrating the robustness of the trait and the quantification method. Very low heritability was found for CQ if randomly generated substructures were compared, validating the approach. CONCLUSIONS A strategy for segmenting µXRF images of Noccaea caerulescens is proposed and the concentration quotient is developed to provide a quantitative measure of metal accumulation pattern, which can be used to determine genetic variation for such pattern. The metric is robust to segmentation error and provides reliable H2 estimates. This strategy provides an avenue for quantifying XRF data for analysis of the genetics of metal distribution patterns in plants and the subsequent discovery of new genes that regulate metal homeostasis and sequestration in plants.
Collapse
Affiliation(s)
- Lucas van der Zee
- Farm Technology, Department of Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Amelia Corzo Remigio
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Lachlan W Casey
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Australia
| | - Imam Purwadi
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Jitpanu Yamjabok
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia
| | - Gert Kootstra
- Farm Technology, Department of Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands.
| | - Mark G M Aarts
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Yung L, Sirguey C, Azou-Barré A, Blaudez D. Natural Fungal Endophytes From Noccaea caerulescens Mediate Neutral to Positive Effects on Plant Biomass, Mineral Nutrition and Zn Phytoextraction. Front Microbiol 2021; 12:689367. [PMID: 34295322 PMCID: PMC8290495 DOI: 10.3389/fmicb.2021.689367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 11/14/2022] Open
Abstract
Phytoextraction using hyperaccumulating plants is a method for the remediation of soils contaminated with trace elements (TEs). As a strategy for improvement, the concept of fungal-assisted phytoextraction has emerged in the last decade. However, the role played by fungal endophytes of hyperaccumulating plants in phytoextraction is poorly studied. Here, fungal endophytes isolated from calamine or non-metalliferous populations of the Cd/Zn hyperaccumulator Noccaea caerulescens were tested for their growth promotion abilities affecting the host plant. Plants were inoculated with seven different isolates and grown for 2 months in trace element (TE)-contaminated soil. The outcomes of the interactions between N. caerulescens and its native strains ranged from neutral to beneficial. Among the strains, Alternaria thlaspis and Metapochonia rubescens, respectively, isolated from the roots of a non-metallicolous and a calamine population of N. caerulescens, respectively, exhibited the most promising abilities to enhance the Zn phytoextraction potential of N. caerulescens related to a significant increase of the plant biomass. These strains significantly increased the root elemental composition, particularly in the case of K, P, and S, suggesting an improvement of the plant nutrition. Results obtained in this study provide new insights into the relevance of microbial-assisted phytoextraction approaches in the case of hyperaccumulating plants.
Collapse
Affiliation(s)
- Loïc Yung
- Université de Lorraine, CNRS, LIEC, Nancy, France
| | | | - Antonin Azou-Barré
- Université de Lorraine, CNRS, LIEC, Nancy, France
- Université de Lorraine, INRAE, LSE, Nancy, France
| | | |
Collapse
|
8
|
Ricachenevsky FK, Punshon T, Salt DE, Fett JP, Guerinot ML. Arabidopsis thaliana zinc accumulation in leaf trichomes is correlated with zinc concentration in leaves. Sci Rep 2021; 11:5278. [PMID: 33674630 PMCID: PMC7935932 DOI: 10.1038/s41598-021-84508-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/17/2021] [Indexed: 11/21/2022] Open
Abstract
Zinc (Zn) is a key micronutrient for plants and animals, and understanding Zn homeostasis in plants can improve both agriculture and human health. While root Zn transporters in plant model species have been characterized in detail, comparatively little is known about shoot processes controlling Zn concentrations and spatial distribution. Previous work showed that Zn hyperaccumulator species such as Arabidopsis halleri accumulate Zn and other metals in leaf trichomes. To date there is no systematic study regarding Zn accumulation in the trichomes of the non-accumulating, genetic model species A. thaliana. Here, we used Synchrotron X-Ray Fluorescence mapping to show that Zn accumulates at the base of trichomes of A. thaliana. Using transgenic and natural accessions of A thaliana that vary in bulk leaf Zn concentration, we demonstrate that higher leaf Zn increases total Zn found at the base of trichome cells. Our data indicates that Zn accumulation in trichomes is a function of the Zn status of the plant, and provides the basis for future studies on a genetically tractable plant species to understand the molecular steps involved in Zn spatial distribution in leaves.
Collapse
Affiliation(s)
- Felipe K Ricachenevsky
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul, Porto Alegre, Brazil. .,Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Porto Alegre, RS, 9500, Brazil. .,Department of Biological Sciences, Life Sciences Center, Dartmouth College, 78 College St, Hanover, NH, 03755, USA.
| | - Tracy Punshon
- Department of Biological Sciences, Life Sciences Center, Dartmouth College, 78 College St, Hanover, NH, 03755, USA
| | - David E Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Janette P Fett
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul, Porto Alegre, Brazil.,Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Porto Alegre, RS, 9500, Brazil
| | - Mary Lou Guerinot
- Department of Biological Sciences, Life Sciences Center, Dartmouth College, 78 College St, Hanover, NH, 03755, USA.
| |
Collapse
|
9
|
Manara A, Fasani E, Furini A, DalCorso G. Evolution of the metal hyperaccumulation and hypertolerance traits. PLANT, CELL & ENVIRONMENT 2020; 43:2969-2986. [PMID: 32520430 DOI: 10.1111/pce.13821] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 05/21/2023]
Abstract
To succeed in life, living organisms have to adapt to the environmental issues to which they are subjected. Some plants, defined as hyperaccumulators, have adapted to metalliferous environments, acquiring the ability to tolerate and accommodate high amounts of toxic metal into their shoot, without showing symptoms of toxicity. The determinants for these traits and their mode of action have long been the subject of research, whose attention lately moved to the evolution of the hypertolerance and hyperaccumulation traits. Genetic evidence indicates that the evolution of both traits includes significant evolutionary events that result in species-wide tolerant and accumulating backgrounds. Different edaphic environments are responsible for subsequent refinement, by local adaptive processes, leading to specific strategies and various degrees of hypertolerance and hyperaccumulation, which characterize metallicolous from non-metallicolous ecotypes belonging to the same genetic unit. In this review, we overview the most updated concepts regarding the evolution of hyperaccumulation and hypertolerance, highlighting also the ecological context concerning the plant populations displaying this fascinating phenomenon.
Collapse
Affiliation(s)
- Anna Manara
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elisa Fasani
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Antonella Furini
- Department of Biotechnology, University of Verona, Verona, Italy
| | | |
Collapse
|
10
|
van der Ent A, Spiers KM, Brueckner D, Echevarria G, Aarts MGM, Montargès-Pelletier E. Spatially-resolved localization and chemical speciation of nickel and zinc in Noccaea tymphaea and Bornmuellera emarginata. Metallomics 2020; 11:2052-2065. [PMID: 31651002 DOI: 10.1039/c9mt00106a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hyperaccumulator plants present the ideal model system for studying the physiological regulation of the essential (and potentially toxic) transition elements nickel and zinc. This study used synchrotron X-ray Fluorescence Microscopy (XFM) elemental imaging and spatially resolved X-ray Absorption Spectroscopy (XAS) to elucidate elemental localization and chemical speciation of nickel and zinc in the hyperaccumulators Noccaea tymphaea and Bornmuellera emarginata (synonym Leptoplax emarginata). The results show that in the leaves of N. tymphaea nickel and zinc have contrasting localization, and whereas nickel is present in vacuoles of epidermal cells, zinc occurs mainly in the mesophyll cells. In the seeds Ni and Zn are similarly localized and strongly enriched in the cotyledons in N. tymphaea. Nickel is strongly enriched in the tip of the radicle of B. emarginata. Noccaea tymphaea has an Fe-rich provascular strand network in the cotyledons of the seed. The chemical speciation of Ni in the seeds of N. tymphaea is unequivocally associated with carboxylic acids, whereas Zn is present as the phytate complex. The spatially resolved spectroscopy did not reveal any spatial variation in chemical speciation of Ni and Zn within the N. tymphaea seed. The dissimilar ecophysiological behaviour of Ni and Zn in N. tymphaea and B. emarginata raises questions about the evolution of hyperaccumulation in these species.
Collapse
Affiliation(s)
- Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
11
|
Balafrej H, Bogusz D, Triqui ZEA, Guedira A, Bendaou N, Smouni A, Fahr M. Zinc Hyperaccumulation in Plants: A Review. PLANTS (BASEL, SWITZERLAND) 2020; 9:E562. [PMID: 32365483 PMCID: PMC7284839 DOI: 10.3390/plants9050562] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022]
Abstract
Zinc is an essential microelement involved in many aspects of plant growth and development. Abnormal zinc amounts, mostly due to human activities, can be toxic to flora, fauna, and humans. In plants, excess zinc causes morphological, biochemical, and physiological disorders. Some plants have the ability to resist and even accumulate zinc in their tissues. To date, 28 plant species have been described as zinc hyperaccumulators. These plants display several morphological, physiological, and biochemical adaptations resulting from the activation of molecular Zn hyperaccumulation mechanisms. These adaptations can be varied between species and within populations. In this review, we describe the physiological and biochemical as well as molecular mechanisms involved in zinc hyperaccumulation in plants.
Collapse
Affiliation(s)
- Habiba Balafrej
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de biotechnologie végétale et microbienne biodiversité et environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Maroc
| | - Didier Bogusz
- Equipe Rhizogenèse, Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et développement des Plantes, Université Montpellier 2, 34394 Montpellier, France
| | - Zine-El Abidine Triqui
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de biotechnologie végétale et microbienne biodiversité et environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Maroc
| | - Abdelkarim Guedira
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de biotechnologie végétale et microbienne biodiversité et environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Maroc
| | - Najib Bendaou
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de biotechnologie végétale et microbienne biodiversité et environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Maroc
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de biotechnologie végétale et microbienne biodiversité et environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Maroc
| | - Mouna Fahr
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de biotechnologie végétale et microbienne biodiversité et environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Maroc
| |
Collapse
|
12
|
Corso M, García de la Torre VS. Biomolecular approaches to understanding metal tolerance and hyperaccumulation in plants. Metallomics 2020; 12:840-859. [DOI: 10.1039/d0mt00043d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Trace metal elements are essential for plant growth but become toxic at high concentrations, while some non-essential elements, such as Cd and As, show toxicity even in traces.
Collapse
Affiliation(s)
- Massimiliano Corso
- Institut Jean-Pierre Bourgin
- Université Paris-Saclay
- INRAE
- AgroParisTech
- 78000 Versailles
| | - Vanesa S. García de la Torre
- Molecular Genetics and Physiology of Plants
- Faculty of Biology and Biotechnology
- Ruhr University Bochum
- 44801 Bochum
- Germany
| |
Collapse
|
13
|
Babst-Kostecka A, Przybyłowicz WJ, van der Ent A, Ryan C, Dietrich CC, Mesjasz-Przybyłowicz J. Endosperm prevents toxic amounts of Zn from accumulating in the seed embryo – an adaptation to metalliferous sites in metal-tolerant Biscutella laevigata. Metallomics 2020; 12:42-53. [DOI: 10.1039/c9mt00239a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The pseudometallophyte Biscutella laevigata adapts to metalliferous soils by allocating excess metal(loid)s to the endosperm (E) of seeds to protect embryonic tissues and improve reproductive success.
Collapse
Affiliation(s)
- Alicja Babst-Kostecka
- W. Szafer Institute of Botany
- Polish Academy of Sciences
- Department of Ecology
- 31-512 Krakow
- Poland
| | - Wojciech J. Przybyłowicz
- AGH University of Science and Technology
- Faculty of Physics & Applied Computer Science
- 30-059 Kraków
- Poland
- Department of Botany and Zoology
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation
- Sustainable Minerals Institute
- The University of Queensland
- Australia
- Laboratoire Sols et Environnement
| | | | - Charlotte C. Dietrich
- W. Szafer Institute of Botany
- Polish Academy of Sciences
- Department of Ecology
- 31-512 Krakow
- Poland
| | | |
Collapse
|
14
|
Sterckeman T, Cazes Y, Sirguey C. Breeding the hyperaccumulator Noccaea caerulescens for trace metal phytoextraction: first results of a pure-line selection. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:448-455. [PMID: 30698040 DOI: 10.1080/15226514.2018.1537250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To initiate the creation of phytoextraction cultivars, plants were selected from 60 populations of N. caerulescens for their high shoot biomass or Cd, Ni, and Zn concentrations. They were self-pollinated, and the selection and fixation were continued for three generations in greenhouse conditions. Selected plants showed a potential to produce 5-10 t dry matter ha-1, which is required to decontaminate soils which have been moderately contaminated with Cd. However, the high biomass genotypes could not be fixed, probably both because of their complexity and to the sensitivity of this trait to environmental conditions, and plant density in particular. The selection led to an improvement to the Cd and Zn accumulation capacities of the plants, yet caused a decrease in their Ni accumulation. This is most likely due to a decline in Ni availability in soil, rather than to a deleterious effect of inbreeding. Metal accumulation appeared to be more heritable than biomass production and fixation for the former trait should be quicker than for the latter. The accumulation capacities of the selected plants permitted offtakes representing around 25% of the soil Cd in a single cropping. This potential has to be confirmed in field conditions.
Collapse
Affiliation(s)
- Thibault Sterckeman
- a Laboratoire Sols et Environnement , Université de Lorraine, INRA , Nancy , France
| | - Yannick Cazes
- a Laboratoire Sols et Environnement , Université de Lorraine, INRA , Nancy , France
| | - Catherine Sirguey
- a Laboratoire Sols et Environnement , Université de Lorraine, INRA , Nancy , France
| |
Collapse
|
15
|
Fones HN, Preston GM, Smith JAC. Variation in defence strategies in the metal hyperaccumulator plant Noccaea caerulescens is indicative of synergies and trade-offs between forms of defence. ROYAL SOCIETY OPEN SCIENCE 2019; 6:172418. [PMID: 30800336 PMCID: PMC6366173 DOI: 10.1098/rsos.172418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 12/18/2018] [Indexed: 05/18/2023]
Abstract
In the metal hyperaccumulator plant Noccaea caerulescens, zinc may provide a defence against pathogens. However, zinc accumulation is a variable trait in this species. We hypothesize that this variability affects the outcome of interactions between metal accumulation and the various constitutive and inducible defences that N. caerulescens shares with non-accumulator plants. We compare zinc concentrations, glucosinolate concentrations and inducible stress responses, including reactive oxygen species (ROS) and cell death, in four N. caerulescens populations, and relate these to the growth of the plant pathogen Pseudomonas syringae, its zinc tolerance mutants and Pseudomonas pathogens isolated from a natural population of N. caerulescens. The populations display strikingly different combinations of defences. Where defences are successful, pathogens are limited primarily by metals, cell death or organic defences; there is evidence of population-dependent trade-offs or synergies between these. In addition, we find evidence that Pseudomonas pathogens have the capacity to overcome any of these defences, indicating that the arms race continues. These data indicate that defensive enhancement, joint effects and trade-offs between different forms of defence are all plausible explanations for the variation we observe between populations, with factors including metal availability and metal-tolerant pathogen load probably shaping the response of each population to infection.
Collapse
Affiliation(s)
- Helen N. Fones
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Gail M. Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | |
Collapse
|
16
|
Nowak J, Frérot H, Faure N, Glorieux C, Liné C, Pourrut B, Pauwels M. Can zinc pollution promote adaptive evolution in plants? Insights from a one-generation selection experiment. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5561-5572. [PMID: 30215761 PMCID: PMC6255711 DOI: 10.1093/jxb/ery327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Human activities generate environmental stresses that can lead plant populations to become extinct. Population survival would require the evolution of adaptive responses that increase tolerance to these stresses. Thus, in pseudometallophyte species that have colonized anthropogenic metalliferous habitats, the evolution of increased metal tolerance is expected in metallicolous populations. However, the mechanisms by which metal tolerance evolves remain unclear. In this study, parent populations were created from non-metallicolous families of Noccaea caerulescens. They were cultivated for one generation in mesocosms and under various levels of zinc (Zn) contamination to assess whether Zn in soil represents a selective pressure. Individual plant fitness estimates were used to create descendant populations, which were cultivated in controlled conditions with moderate Zn contamination to test for adaptive evolution in functional traits. The number of families showing high fitness estimates in mesocosms was progressively reduced with increasing Zn levels in soil, suggesting increasing selection for metal tolerance. In the next generation, adaptive evolution was suggested for some physiological and ecological traits in descendants of the most exposed populations, together with a significant decrease of Zn hyperaccumulation. Our results confirm experimentally that Zn alone can be a significant evolutionary pressure promoting adaptive divergence among populations.
Collapse
Affiliation(s)
- Julien Nowak
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| | - Hélène Frérot
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| | - Nathalie Faure
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| | - Cédric Glorieux
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| | - Clarisse Liné
- ISA, Laboratoire Sols et Environnement, Lille Cedex, France
| | | | - Maxime Pauwels
- Université de Lille, CNRS, UMR – Unité Evolution-Ecologie-Paléontologie, Lille, France
| |
Collapse
|
17
|
Babst-Kostecka A, Schat H, Saumitou-Laprade P, Grodzińska K, Bourceaux A, Pauwels M, Frérot H. Evolutionary dynamics of quantitative variation in an adaptive trait at the regional scale: The case of zinc hyperaccumulation in Arabidopsis halleri. Mol Ecol 2018; 27:3257-3273. [PMID: 30010225 DOI: 10.1111/mec.14800] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 01/06/2023]
Abstract
Metal hyperaccumulation in plants is an ecological trait whose biological significance remains debated, in particular because the selective pressures that govern its evolutionary dynamics are complex. One of the possible causes of quantitative variation in hyperaccumulation may be local adaptation to metalliferous soils. Here, we explored the population genetic structure of Arabidopsis halleri at fourteen metalliferous and nonmetalliferous sampling sites in southern Poland. The results were integrated with a quantitative assessment of variation in zinc hyperaccumulation to trace local adaptation. We identified a clear hierarchical structure with two distinct genetic groups at the upper level of clustering. Interestingly, these groups corresponded to different geographic subregions, rather than to ecological types (i.e., metallicolous vs. nonmetallicolous). Also, approximate Bayesian computation analyses suggested that the current distribution of A. halleri in southern Poland could be relictual as a result of habitat fragmentation caused by climatic shifts during the Holocene, rather than due to recent colonization of industrially polluted sites. In addition, we find evidence that some nonmetallicolous lowland populations may have actually derived from metallicolous populations. Meanwhile, the distribution of quantitative variation in zinc hyperaccumulation did separate metallicolous and nonmetallicolous accessions, indicating more recent adaptive evolution and diversifying selection between metalliferous and nonmetalliferous habitats. This suggests that zinc hyperaccumulation evolves both ways-towards higher levels at nonmetalliferous sites and lower levels at metalliferous sites. Our results open a new perspective on possible evolutionary relationships between A. halleri edaphic types that may inspire future genetic studies of quantitative variation in metal hyperaccumulation.
Collapse
Affiliation(s)
- Alicja Babst-Kostecka
- W. Szafer Institute of Botany, Department of Ecology, Polish Academy of Sciences, Krakow, Poland
- CNRS, UMR 8198 - Evo-Eco-Paleo, Université de Lille - Sciences et Technologies, Villeneuve d'Ascq, France
| | - Henk Schat
- Institute of Ecological Science, Free University of Amsterdam, Amsterdam, The Netherlands
| | - Pierre Saumitou-Laprade
- CNRS, UMR 8198 - Evo-Eco-Paleo, Université de Lille - Sciences et Technologies, Villeneuve d'Ascq, France
| | - Krystyna Grodzińska
- W. Szafer Institute of Botany, Department of Ecology, Polish Academy of Sciences, Krakow, Poland
| | - Angélique Bourceaux
- CNRS, UMR 8198 - Evo-Eco-Paleo, Université de Lille - Sciences et Technologies, Villeneuve d'Ascq, France
| | - Maxime Pauwels
- CNRS, UMR 8198 - Evo-Eco-Paleo, Université de Lille - Sciences et Technologies, Villeneuve d'Ascq, France
| | - Hélène Frérot
- CNRS, UMR 8198 - Evo-Eco-Paleo, Université de Lille - Sciences et Technologies, Villeneuve d'Ascq, France
| |
Collapse
|
18
|
Jacobs A, Drouet T, Sterckeman T, Noret N. Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous 'Ganges' in field trials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8176-8188. [PMID: 28144868 DOI: 10.1007/s11356-017-8504-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Urban soil contamination with trace metals is a major obstacle to the development of urban agriculture as crops grown in urban gardens are prone to accumulate trace metals up to toxic levels for human consumption. Phytoextraction is considered as a potentially cost-effective alternative to conventional methods such as excavation. Field trials of phytoextraction with Noccaea caerulescens were conducted on urban soils contaminated with Cd, Cu, Pb, and Zn (respectively around 2, 150-200, 400-500, and 400-700 μg g-1 of dry soil). Metallicolous (Ganges population) and non-metallicolous (NMET) populations were compared for biomass production and trace metal uptake. Moreover, we tested the effect of compost and fertilizer addition. Maximal biomass of 5 t ha-1 was obtained with NMET populations on some plots. Compared to Ganges- the high Cd-accumulating ecotype from South of France often used in phytoextraction trials- NMET populations have an advantage for biomass production and for Zn accumulation, with an average Zn uptake of 2.5 times higher. The addition of compost seems detrimental due to metal immobilization in the soil with little or no effect on plant growth. In addition to differences between populations, variations of growth and metal accumulation were mostly explained by soil Cd and Zn concentrations and texture. Our field trials confirm the potential of using N. caerulescens for both Cd and Zn remediation of moderately contaminated soils-with uptake values of up to 200 g Cd ha-1 and 47 kg Zn ha-1-and show the interest of selecting the adequate population according to the targeted metal.
Collapse
Affiliation(s)
- Arnaud Jacobs
- Laboratoire d'Écologie Végétale et Biogéochimie, CP 244, Faculté des Sciences, Université Libre de Bruxelles, 50 av. F. D. Roosevelt, B-1050, Brussels, Belgium.
| | - Thomas Drouet
- Laboratoire d'Écologie Végétale et Biogéochimie, CP 244, Faculté des Sciences, Université Libre de Bruxelles, 50 av. F. D. Roosevelt, B-1050, Brussels, Belgium
| | - Thibault Sterckeman
- Laboratoire Sols et Environnement, INRA-Université de Lorraine, 2 avenue de la Forêt de Haye, TSA 40602, F-54518, Vandoeuvre-lès-Nancy Cédex, France
| | - Nausicaa Noret
- Laboratoire d'Écologie Végétale et Biogéochimie, CP 244, Faculté des Sciences, Université Libre de Bruxelles, 50 av. F. D. Roosevelt, B-1050, Brussels, Belgium
| |
Collapse
|