1
|
Kołodziejczyk J, Fijarczyk A, Porth I, Robakowski P, Vella N, Vella A, Kloch A, Biedrzycka A. Genomic investigations of successful invasions: the picture emerging from recent studies. Biol Rev Camb Philos Soc 2025; 100:1396-1418. [PMID: 39956989 PMCID: PMC12120398 DOI: 10.1111/brv.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Invasion biology aims to identify traits and mechanisms that contribute to successful invasions, while also providing general insights into the mechanisms underlying population expansion and adaptation to rapid climate and habitat changes. Certain phenotypic attributes have been linked to successful invasions, and the role of genetics has been critical in understanding adaptation of invasive species. Nevertheless, a comprehensive summary evaluating the most common evolutionary mechanisms associated with successful invasions across species and environments is still lacking. Here we present a systematic review of studies since 2015 that have applied genomic tools to investigate mechanisms of successful invasions across different organisms. We examine demographic patterns such as changes in genomic diversity at the population level, the presence of genetic bottlenecks and gene flow in the invasive range. We review mechanisms of adaptation such as selection from standing genetic variation and de novo mutations, hybridisation and introgression, all of which can have an impact on invasion success. This comprehensive review of recent articles on the genomic diversity of invasive species led to the creation of a searchable database to provide researchers with an accessible resource. Analysis of this database allowed quantitative assessment of demographic and adaptive mechanisms acting in invasive species. A predominant role of admixture in increasing levels of genetic diversity enabling molecular adaptation in novel habitats is the most important finding of our study. The "genetic paradox" of invasive species was not validated in genomic data across species and ecosystems. Even though the presence of genetic drift and bottlenecks is commonly reported upon invasion, a large reduction in genomic diversity is rarely observed. Any decrease in genetic diversity is often relatively mild and almost always restored via gene flow between different invasive populations. The fact that loci under selection are frequently detected suggests that adaptation to novel habitats on a molecular level is not hindered. The above findings are confirmed herein for the first time in a semi-quantitative manner by molecular data. We also point to gaps and potential improvements in the design of studies of mechanisms driving rapid molecular adaptation in invasive populations. These include the scarcity of comprehensive studies that include sampling from multiple native and invasive populations, identification of invasion sources, longitudinal population sampling, and the integration of fitness measures into genomic analyses. We also note that the potential of whole genome studies is often not exploited fully in predicting invasive potential. Comparative genomic studies identifying genome features promoting invasions are underrepresented despite their potential for use as a tool in invasive species control.
Collapse
Affiliation(s)
- Joanna Kołodziejczyk
- Institute of Nature Conservation, Polish Academy of SciencesMickiewicza 33Kraków31‐120Poland
| | - Anna Fijarczyk
- Natural Resources Canada, Laurentian Forestry Centre1055 Rue du PepsQuébec CityQuebecG1V 4C7Canada
- Department of BiologyLaval University1045 Avenue de la MédecineQuébec CityQuebecG1V 0A6Canada
- Institute of Integrative Biology and SystemsLaval University1030 Avenue de La MédecineQuébec CityQuebecG1V 0A6Canada
| | - Ilga Porth
- Institute of Integrative Biology and SystemsLaval University1030 Avenue de La MédecineQuébec CityQuebecG1V 0A6Canada
- Department of Wood and Forest SciencesLaval University1030 Avenue de La MédecineQuébec CityQuebecG1V 0A6Canada
- Centre for Forest ResearchLaval University2405 Rue de La TerrasseQuébec CityQuebecG1V 0A6Canada
| | - Piotr Robakowski
- Faculty of Forestry and Wood TechnologyPoznań University of Life Sciences71E Wojska Polskiego StreetPoznańPL 60‐625Poland
| | - Noel Vella
- Conservation Biology Research Group, Department of BiologyUniversity of MaltaMsidaMSD2080Malta
| | - Adriana Vella
- Conservation Biology Research Group, Department of BiologyUniversity of MaltaMsidaMSD2080Malta
| | - Agnieszka Kloch
- Faculty of BiologyUniversity of WarsawMiecznikowa 1Warsaw02‐089Poland
| | - Aleksandra Biedrzycka
- Institute of Nature Conservation, Polish Academy of SciencesMickiewicza 33Kraków31‐120Poland
| |
Collapse
|
2
|
Cerca J, Díaz PJ, Goubert C, Yang H, Bieker VC, Fernández-Mazuecos M, Vargas P, Schley R, Li S, Guevara-Andino JE, Petersen B, Petersen G, Sinha NR, Nielsen LR, Leebens-Mack JH, Rivas-Torres G, Rieseberg LH, Martin MD. No evidence of transposable element bursts in the Galápagos Scalesia adaptive radiation despite hybridization, diversification and ecological niche shifts. Mob DNA 2025; 16:23. [PMID: 40450335 DOI: 10.1186/s13100-025-00362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/21/2025] [Indexed: 06/03/2025] Open
Abstract
Transposable elements (TEs) have been hypothesized to play a pivotal role in driving diversification by facilitating the emergence of novel phenotypes and the accumulation of divergence between species. Hybridization and adaptation to novel niches have been proposed to destabilize mechanisms constraining TE proliferation, potentially inducing a 'TE burst' that promotes TE accumulation on the genome. The rapid speciation and ecological diversification characteristic of adaptive radiations offer a unique opportunity to examine the link between TE accumulation and speciation, diversification, hybridization and adaptation. Here, focusing on all 15 species of the genus Scalesia (Asteraceae), a radiation endemic to the Galápagos Islands, we test whether diversification, hybridization, or shifts in ecological niche are associated with changes in TE accumulation in genomes. Our analyses reveal little to no variation in TE accumulation among Scalesia species nor its hybrid populations. Shifts in ecological niches, linked to climatic variation, did not result in discernible changes in TE accumulation, a surprising finding given the anticipated selective pressure imposed by aridity, a factor often linked to genome size reduction. We found no distinct patterns in the temporal accumulation of TEs, and no effects at the class or superfamily level. Our findings suggest that while TEs may play a key role in evolution at the locus level, their macroevolutionary association with diversification or speciation appears weak. Rather than actively driving evolutionary diversification, TEs may simply be'along for the ride.
Collapse
Affiliation(s)
- José Cerca
- Department of Natural History, University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.
- , SciLifeLab, Karolinska Institutet Science Park, Tomtebodavägen 23, Solna, 171 65, Sweden.
| | - Patricia Jaramillo Díaz
- Estación Científica Charles Darwin, Fundación Charles Darwin, Santa Cruz, Galápagos, Ecuador
- Department of Botany and Plant Physiology, University of Málaga, Málaga, Spain
- IUCN SSC Galapagos Plant Specialist Group, Puerto Ayora, Galapagos, 200102, Ecuador
| | - Clément Goubert
- McGill Genome Centre, McGill University, Montreal, QC, H3A 0G1, Canada
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Heidi Yang
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vanessa C Bieker
- Department of Natural History, University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Pablo Vargas
- Department of Biodiversity and Conservation, Real Jardín Botánico de Madrid (RJB-CSIC), Madrid, 28014, Spain
| | - Rowan Schley
- Department of Geography, University of Exeter, Laver Building, North Park Road, Exeter, Devon, UK
| | - Siyu Li
- Department of Plant Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Juan Ernesto Guevara-Andino
- Grupo de Investigación en Ecología y Evolución en los Trópicos-EETrop, Universidad de las Américas, Quito, Ecuador
| | - Bent Petersen
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, DK-1353, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Gitte Petersen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - Neelima R Sinha
- Department of Plant Biology, University of California, Davis, Davis, CA, 95616, USA
| | - Lene R Nielsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, Frederiksberg C, 1958, Denmark
| | | | - Gonzalo Rivas-Torres
- Colegio de Ciencias Biológicas y Ambientales, Galapagos Science Center, Universidad San Francisco de Quito USFQ, 170901, Quito, Ecuador
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michael D Martin
- Department of Natural History, University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
3
|
Zheng Y, Shang X. FindCSV: a long-read based method for detecting complex structural variations. BMC Bioinformatics 2024; 25:315. [PMID: 39342151 PMCID: PMC11439270 DOI: 10.1186/s12859-024-05937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Structural variations play a significant role in genetic diseases and evolutionary mechanisms. Extensive research has been conducted over the past decade to detect simple structural variations, leading to the development of well-established detection methods. However, recent studies have highlighted the potentially greater impact of complex structural variations on individuals compared to simple structural variations. Despite this, the field still lacks precise detection methods specifically designed for complex structural variations. Therefore, the development of a highly efficient and accurate detection method is of utmost importance. RESULT In response to this need, we propose a novel method called FindCSV, which leverages deep learning techniques and consensus sequences to enhance the detection of SVs using long-read sequencing data. Compared to current methods, FindCSV performs better in detecting complex and simple structural variations. CONCLUSIONS FindCSV is a new method to detect complex and simple structural variations with reasonable accuracy in real and simulated data. The source code for the program is available at https://github.com/nwpuzhengyan/FindCSV .
Collapse
Affiliation(s)
- Yan Zheng
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi'an, 710072, China.
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi'an, 710072, China.
| |
Collapse
|
4
|
Zhang Z, Liu Y, Li X, Liu Y, Wang Y, Jiang T. HapKled: a haplotype-aware structural variant calling approach for Oxford nanopore sequencing data. Front Genet 2024; 15:1435087. [PMID: 39045321 PMCID: PMC11263161 DOI: 10.3389/fgene.2024.1435087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction: Structural Variants (SVs) are a type of variation that can significantly influence phenotypes and cause diseases. Thus, the accurate detection of SVs is a vital part of modern genetic analysis. The advent of long-read sequencing technology ushers in a new era of more accurate and comprehensive SV calling, and many tools have been developed to call SVs using long-read data. Haplotype-tagging is a procedure that can tag haplotype information on reads and can thus potentially improve the SV detection; nevertheless, few methods make use of this information. In this article, we introduce HapKled, a new SV detection tool that can accurately detect SVs from Oxford Nanopore Technologies (ONT) long-read alignment data. Methods: HapKled utilizes haplotype information underlying alignment data by conducting haplotype-tagging using Whatshap on the reads to improve the detection performance, with three unique calling mechanics including altering clustering conditions according to haplotype information of signatures, determination of similar SVs based on haplotype information, and slack filtering conditions based on haplotype quality. Results: In our evaluations, HapKled outperformed state-of-the-art tools and can deliver better SV detection results on both simulated and real sequencing data. The code and experiments of HapKled can be obtained from https://github.com/CoREse/HapKled. Discussion: With the superb SV detection performance that HapKled can deliver, HapKled could be useful in bioinformatics research, clinical diagnosis, and medical research and development.
Collapse
Affiliation(s)
- Zhendong Zhang
- Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yue Liu
- Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Xin Li
- Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yadong Liu
- Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, China
| | - Yadong Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, China
| | - Tao Jiang
- Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Zhang Z, Jiang T, Li G, Cao S, Liu Y, Liu B, Wang Y. Kled: an ultra-fast and sensitive structural variant detection tool for long-read sequencing data. Brief Bioinform 2024; 25:bbae049. [PMID: 38385878 PMCID: PMC10883419 DOI: 10.1093/bib/bbae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Structural Variants (SVs) are a crucial type of genetic variant that can significantly impact phenotypes. Therefore, the identification of SVs is an essential part of modern genomic analysis. In this article, we present kled, an ultra-fast and sensitive SV caller for long-read sequencing data given the specially designed approach with a novel signature-merging algorithm, custom refinement strategies and a high-performance program structure. The evaluation results demonstrate that kled can achieve optimal SV calling compared to several state-of-the-art methods on simulated and real long-read data for different platforms and sequencing depths. Furthermore, kled excels at rapid SV calling and can efficiently utilize multiple Central Processing Unit (CPU) cores while maintaining low memory usage. The source code for kled can be obtained from https://github.com/CoREse/kled.
Collapse
Affiliation(s)
- Zhendong Zhang
- Center for Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Key Laboratory of Biological Bigdata, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Tao Jiang
- Center for Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, 450000, China
- Key Laboratory of Biological Bigdata, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Gaoyang Li
- Center for Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Key Laboratory of Biological Bigdata, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Shuqi Cao
- Center for Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Key Laboratory of Biological Bigdata, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yadong Liu
- Center for Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, 450000, China
- Key Laboratory of Biological Bigdata, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Bo Liu
- Center for Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, 450000, China
- Key Laboratory of Biological Bigdata, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yadong Wang
- Center for Bioinformatics, Faculty of Computing, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan, 450000, China
- Key Laboratory of Biological Bigdata, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| |
Collapse
|
6
|
Zheng Y, Shang X. SVvalidation: A long-read-based validation method for genomic structural variation. PLoS One 2024; 19:e0291741. [PMID: 38181020 PMCID: PMC10769053 DOI: 10.1371/journal.pone.0291741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/05/2023] [Indexed: 01/07/2024] Open
Abstract
Although various methods have been developed to detect structural variations (SVs) in genomic sequences, few are used to validate these results. Several commonly used SV callers produce many false positive SVs, and existing validation methods are not accurate enough. Therefore, a highly efficient and accurate validation method is essential. In response, we propose SVvalidation-a new method that uses long-read sequencing data for validating SVs with higher accuracy and efficiency. Compared to existing methods, SVvalidation performs better in validating SVs in repeat regions and can determine the homozygosity or heterozygosity of an SV. Additionally, SVvalidation offers the highest recall, precision, and F1-score (improving by 7-16%) across all datasets. Moreover, SVvalidation is suitable for different types of SVs. The program is available at https://github.com/nwpuzhengyan/SVvalidation.
Collapse
Affiliation(s)
- Yan Zheng
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
7
|
Han R, Han L, Zhao X, Wang Q, Xia Y, Li H. Haplotype-resolved Genome of Sika Deer Reveals Allele-specific Gene Expression and Chromosome Evolution. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:470-482. [PMID: 36395998 PMCID: PMC10787017 DOI: 10.1016/j.gpb.2022.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Despite the scientific and medicinal importance of diploid sika deer (Cervus nippon), its genome resources are limited and haplotype-resolved chromosome-scale assembly is urgently needed. To explore mechanisms underlying the expression patterns of the allele-specific genes in antlers and the chromosome evolution in Cervidae, we report, for the first time, a high-quality haplotype-resolved chromosome-scale genome of sika deer by integrating multiple sequencing strategies, which was anchored to 32 homologous groups with a pair of sex chromosomes (XY). Several expanded genes (RET, PPP2R1A, PPP2R1B, YWHAB, YWHAZ, and RPS6) and positively selected genes (eIF4E, Wnt8A, Wnt9B, BMP4, and TP53) were identified, which could contribute to rapid antler growth without carcinogenesis. A comprehensive and systematic genome-wide analysis of allele expression patterns revealed that most alleles were functionally equivalent in regulating rapid antler growth and inhibiting oncogenesis. Comparative genomic analysis revealed that chromosome fission might occur during the divergence of sika deer and red deer (Cervus elaphus), and the olfactory sensation of sika deer might be more powerful than that of red deer. Obvious inversion regions containing olfactory receptor genes were also identified, which arose since the divergence. In conclusion, the high-quality allele-aware reference genome provides valuable resources for further illustration of the unique biological characteristics of antler, chromosome evolution, and multi-omics research of cervid animals.
Collapse
Affiliation(s)
- Ruobing Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Xunwu Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Qianghui Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yanling Xia
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Heping Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
8
|
Zheng Y, Shang X. SVcnn: an accurate deep learning-based method for detecting structural variation based on long-read data. BMC Bioinformatics 2023; 24:213. [PMID: 37221476 DOI: 10.1186/s12859-023-05324-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Structural variations (SVs) refer to variations in an organism's chromosome structure that exceed a length of 50 base pairs. They play a significant role in genetic diseases and evolutionary mechanisms. While long-read sequencing technology has led to the development of numerous SV caller methods, their performance results have been suboptimal. Researchers have observed that current SV callers often miss true SVs and generate many false SVs, especially in repetitive regions and areas with multi-allelic SVs. These errors are due to the messy alignments of long-read data, which are affected by their high error rate. Therefore, there is a need for a more accurate SV caller method. RESULT We propose a new method-SVcnn, a more accurate deep learning-based method for detecting SVs by using long-read sequencing data. We run SVcnn and other SV callers in three real datasets and find that SVcnn improves the F1-score by 2-8% compared with the second-best method when the read depth is greater than 5×. More importantly, SVcnn has better performance for detecting multi-allelic SVs. CONCLUSIONS SVcnn is an accurate deep learning-based method to detect SVs. The program is available at https://github.com/nwpuzhengyan/SVcnn .
Collapse
Affiliation(s)
- Yan Zheng
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi'an, 710072, China.
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi'an, 710072, China.
| |
Collapse
|
9
|
Zheng Y, Shang X, Sung WK. SVsearcher: A more accurate structural variation detection method in long read data. Comput Biol Med 2023; 158:106843. [PMID: 37019014 DOI: 10.1016/j.compbiomed.2023.106843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Structural variations (SVs) represent genomic rearrangements (such as deletions, insertions, and inversions) whose sizes are larger than 50bp. They play important roles in genetic diseases and evolution mechanism. Due to the advance of long-read sequencing (i.e. PacBio long-read sequencing and Oxford Nanopore (ONT) long-read sequencing), we can call SVs accurately. However, for ONT long reads, we observe that existing long read SV callers miss a lot of true SVs and call a lot of false SVs in repetitive regions and in regions with multi-allelic SVs. Those errors are caused by messy alignments of ONT reads due to their high error rate. Hence, we propose a novel method, SVsearcher, to solve these issues. We run SVsearcher and other callers in three real datasets and find that SVsearcher improves the F1 score by approximately 10% for high coverage (50×) datasets and more than 25% for low coverage (10×) datasets. More importantly, SVsearcher can identify 81.7%-91.8% multi-allelic SVs while existing methods only identify 13.2% (Sniffles)-54.0% (nanoSV) of them. SVsearcher is available at https://github.com/kensung-lab/SVsearcher.
Collapse
Affiliation(s)
- Yan Zheng
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, 710072 Xi'an, China.
| | - Wing-Kin Sung
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China; Hong Kong Genome Institute, Hong Kong Science Park, Shatin, Hong Kong, China; Laboratory of Computational Genomics, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Hanson HE, Wang C, Schrey AW, Liebl AL, Ravinet M, Jiang RH, Martin LB. Epigenetic Potential and DNA Methylation in an Ongoing House Sparrow (Passer domesticus) Range Expansion. Am Nat 2022; 200:662-674. [DOI: 10.1086/720950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
North HL, McGaughran A, Jiggins CD. Insights into invasive species from whole-genome resequencing. Mol Ecol 2021; 30:6289-6308. [PMID: 34041794 DOI: 10.1111/mec.15999] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Studies of invasive species can simultaneously inform management strategies and quantify rapid evolution in the wild. The role of genomics in invasion science is increasingly recognised, and the growing availability of reference genomes for invasive species is paving the way for whole-genome resequencing studies in a wide range of systems. Here, we survey the literature to assess the application of whole-genome resequencing data in invasion biology. For some applications, such as the reconstruction of invasion routes in time and space, sequencing the whole genome of many individuals can increase the accuracy of existing methods. In other cases, population genomic approaches such as haplotype analysis can permit entirely new questions to be addressed and new technologies applied. To date whole-genome resequencing has only been used in a handful of invasive systems, but these studies have confirmed the importance of processes such as balancing selection and hybridization in allowing invasive species to reuse existing adaptations and rapidly overcome the challenges of a foreign ecosystem. The use of genomic data does not constitute a paradigm shift per se, but by leveraging new theory, tools, and technologies, population genomics can provide unprecedented insight into basic and applied aspects of invasion science.
Collapse
Affiliation(s)
- Henry L North
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Angela McGaughran
- Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Evolutionary and genomic comparisons of hybrid uninucleate and nonhybrid Rhizoctonia fungi. Commun Biol 2021; 4:201. [PMID: 33589695 PMCID: PMC7884421 DOI: 10.1038/s42003-021-01724-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
The basidiomycetous fungal genus, Rhizoctonia, can cause severe damage to many plants and is composed of multinucleate, binucleate, and uninucleate species differing in pathogenicity. Here we generated chromosome-scale genome assemblies of the three nuclear types of Rhizoctonia isolates. The genomic comparisons revealed that the uninucleate JN strain likely arose by somatic hybridization of two binucleate isolates, and maintained a diploid nucleus. Homeolog gene pairs in the JN genome have experienced both decelerated or accelerated evolution. Homeolog expression dominance occurred between JN subgenomes, in which differentially expressed genes show potentially less evolutionary constraint than the genes without. Analysis of mating-type genes suggested that Rhizoctonia maintains the ancestral tetrapolarity of the Basidiomycota. Long terminal repeat-retrotransposons displayed a reciprocal correlation with the chromosomal GC content in the three chromosome-scale genomes. The more aggressive multinucleate XN strain had more genes encoding enzymes for host cell wall decomposition. These findings demonstrate some evolutionary changes of a recently derived hybrid and in multiple nuclear types of Rhizoctonia.
Collapse
|
13
|
Carducci F, Barucca M, Canapa A, Carotti E, Biscotti MA. Mobile Elements in Ray-Finned Fish Genomes. Life (Basel) 2020; 10:E221. [PMID: 32992841 PMCID: PMC7599744 DOI: 10.3390/life10100221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Ray-finned fishes (Actinopterygii) are a very diverse group of vertebrates, encompassing species adapted to live in freshwater and marine environments, from the deep sea to high mountain streams. Genome sequencing offers a genetic resource for investigating the molecular bases of this phenotypic diversity and these adaptations to various habitats. The wide range of genome sizes observed in fishes is due to the role of transposable elements (TEs), which are powerful drivers of species diversity. Analyses performed to date provide evidence that class II DNA transposons are the most abundant component in most fish genomes and that compared to other vertebrate genomes, many TE superfamilies are present in actinopterygians. Moreover, specific TEs have been reported in ray-finned fishes as a possible result of an intricate relationship between TE evolution and the environment. The data summarized here underline the biological interest in Actinopterygii as a model group to investigate the mechanisms responsible for the high biodiversity observed in this taxon.
Collapse
Affiliation(s)
| | | | | | | | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.C.); (M.B.); (A.C.); (E.C.)
| |
Collapse
|
14
|
Jiang T, Liu Y, Jiang Y, Li J, Gao Y, Cui Z, Liu Y, Liu B, Wang Y. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol 2020; 21:189. [PMID: 32746918 PMCID: PMC7477834 DOI: 10.1186/s13059-020-02107-y] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
Long-read sequencing is promising for the comprehensive discovery of structural variations (SVs). However, it is still non-trivial to achieve high yields and performance simultaneously due to the complex SV signatures implied by noisy long reads. We propose cuteSV, a sensitive, fast, and scalable long-read-based SV detection approach. cuteSV uses tailored methods to collect the signatures of various types of SVs and employs a clustering-and-refinement method to implement sensitive SV detection. Benchmarks on simulated and real long-read sequencing datasets demonstrate that cuteSV has higher yields and scaling performance than state-of-the-art tools. cuteSV is available at https://github.com/tjiangHIT/cuteSV.
Collapse
Affiliation(s)
- Tao Jiang
- Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Yongzhuang Liu
- Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Yue Jiang
- Nebula Genomics, Harbin, 150030, Heilongjiang, China
| | - Junyi Li
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, Guangdong, China
| | - Yan Gao
- Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Zhe Cui
- Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Yadong Liu
- Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Bo Liu
- Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China.
| | - Yadong Wang
- Center for Bioinformatics, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
15
|
Dalziel AC, Tirbhowan S, Drapeau HF, Power C, Jonah LS, Gbotsyo YA, Dion‐Côté A. Using asexual vertebrates to study genome evolution and animal physiology: Banded ( Fundulus diaphanus) x Common Killifish ( F. heteroclitus) hybrid lineages as a model system. Evol Appl 2020; 13:1214-1239. [PMID: 32684956 PMCID: PMC7359844 DOI: 10.1111/eva.12975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Wild, asexual, vertebrate hybrids have many characteristics that make them good model systems for studying how genomes evolve and epigenetic modifications influence animal physiology. In particular, the formation of asexual hybrid lineages is a form of reproductive incompatibility, but we know little about the genetic and genomic mechanisms by which this mode of reproductive isolation proceeds in animals. Asexual lineages also provide researchers with the ability to produce genetically identical individuals, enabling the study of autonomous epigenetic modifications without the confounds of genetic variation. Here, we briefly review the cellular and molecular mechanisms leading to asexual reproduction in vertebrates and the known genetic and epigenetic consequences of the loss of sex. We then specifically discuss what is known about asexual lineages of Fundulus diaphanus x F. heteroclitus to highlight gaps in our knowledge of the biology of these clones. Our preliminary studies of F. diaphanus and F. heteroclitus karyotypes from Porter's Lake (Nova Scotia, Canada) agree with data from other populations, suggesting a conserved interspecific chromosomal arrangement. In addition, genetic analyses suggest that: (a) the same major clonal lineage (Clone A) of F. diaphanus x F. heteroclitus has remained dominant over the past decade, (b) some minor clones have also persisted, (c) new clones may have recently formed, and iv) wild clones still mainly descend from F. diaphanus ♀ x F. heteroclitus ♂ crosses (96% in 2017-2018). These data suggest that clone formation may be a relatively rare, but continuous process, and there are persistent environmental or genetic factors causing a bias in cross direction. We end by describing our current research on the genomic causes and consequences of a transition to asexuality and the potential physiological consequences of epigenetic variation.
Collapse
Affiliation(s)
| | - Svetlana Tirbhowan
- Department of BiologySaint Mary's UniversityHalifaxNSCanada
- Département de biologieUniversité de MonctonMonctonNBCanada
| | | | - Claude Power
- Département de biologieUniversité de MonctonMonctonNBCanada
| | | | | | | |
Collapse
|
16
|
Abstract
Interspecific hybridization is the process where closely related species mate and produce offspring with admixed genomes. The genomic revolution has shown that hybridization is common, and that it may represent an important source of novel variation. Although most interspecific hybrids are sterile or less fit than their parents, some may survive and reproduce, enabling the transfer of adaptive variants across the species boundary, and even result in the formation of novel evolutionary lineages. There are two main variants of hybrid species genomes: allopolyploid, which have one full chromosome set from each parent species, and homoploid, which are a mosaic of the parent species genomes with no increase in chromosome number. The establishment of hybrid species requires the development of reproductive isolation against parental species. Allopolyploid species often have strong intrinsic reproductive barriers due to differences in chromosome number, and homoploid hybrids can become reproductively isolated from the parent species through assortment of genetic incompatibilities. However, both types of hybrids can become further reproductively isolated, gaining extrinsic isolation barriers, by exploiting novel ecological niches, relative to their parents. Hybrids represent the merging of divergent genomes and thus face problems arising from incompatible combinations of genes. Thus hybrid genomes are highly dynamic and undergo rapid evolutionary change, including genome stabilization in which selection against incompatible combinations results in fixation of compatible ancestry block combinations within the hybrid species. The potential for rapid adaptation or speciation makes hybrid genomes a particularly exciting subject of in evolutionary biology. Here we summarize how introgressed alleles or hybrid species can establish and how the resulting hybrid genomes evolve.
Collapse
Affiliation(s)
- Anna Runemark
- Department of Biology, Lund University, Lund, Sweden
- * E-mail:
| | - Mario Vallejo-Marin
- Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Joana I. Meier
- St John's College, Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Expansion of LINEs and species-specific DNA repeats drives genome expansion in Asian Gypsy Moths. Sci Rep 2019; 9:16413. [PMID: 31712581 PMCID: PMC6848174 DOI: 10.1038/s41598-019-52840-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/18/2019] [Indexed: 01/16/2023] Open
Abstract
Two subspecies of Asian gypsy moth (AGM), Lymantria dispar asiatica and L. dispar japonica, pose a serious alien invasive threat to North American forests. Despite decades of research on the ecology and biology of this pest, limited AGM-specific genomic resources are currently available. Here, we report on the genome sequences and functional content of these AGM subspecies. The genomes of L.d. asiatica and L.d. japonica are the largest lepidopteran genomes sequenced to date, totaling 921 and 999 megabases, respectively. Large genome size in these subspecies is driven by the accumulation of specific classes of repeats. Genome-wide metabolic pathway reconstructions suggest strong genomic signatures of energy-related pathways in both subspecies, dominated by metabolic functions related to thermogenesis. The genome sequences reported here will provide tools for probing the molecular mechanisms underlying phenotypic traits that are thought to enhance AGM invasiveness.
Collapse
|
18
|
Choudhury RR, Parisod C. Jumping genes: Genomic ballast or powerhouse of biological diversification. Mol Ecol 2019; 26:4587-4590. [PMID: 28949090 DOI: 10.1111/mec.14247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 01/08/2023]
Abstract
Studying hybridization has the potential to elucidate challenging questions in evolutionary biology such as the nature of adaptive genetic variation and reproductive isolation. A growing body of work highlights that the merging of divergent genomes goes beyond the reshuffling of standing variation from related species and promotes mutations (Abbott et al., ). However, to what extent such genome instability generates evolutionary significant variation remains largely elusive. In this issue of Molecular Ecology, Dennenmoser et al. () report considerable dynamics of transposable elements (TEs) in a recent invasive fish species of hybrid origin (Cottus; Figure ). It adds to the recent examples from plants to support TE-specific genome variation following hybridization. Insights from early, as well as established, hybrids are largely coherent with increased TE activity, and this fish system thus represents an inspiring opportunity to further address the possible association between genome dynamics and "rapid evolution of hybrid species." This work based on genome (re)sequencing contrasts with prior transcriptomics or PCR-based studies of TEs and illustrates how unprecedented amount of information promises a better understanding of the multiple patterns of variation across eukaryotic genomes; provided that we get the better of methodological advances. As discussed here, unbiased assessment of TE variation from genome surveys indeed remains a challenge precluding firm conclusions to be reached about the evolutionary significance of TEs. Despite methodological and conceptual developments that appear necessary to unambiguously uncover the unexplored iceberg below the known tip, the role of coding genes vs. TEs in promoting adaptation and speciation might be clarified in a not so remote future.
Collapse
Affiliation(s)
| | - Christian Parisod
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
19
|
Marin P, Genitoni J, Barloy D, Maury S, Gibert P, Ghalambor CK, Vieira C. Biological invasion: The influence of the hidden side of the (epi)genome. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13317] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pierre Marin
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1 Université de Lyon Villeurbanne France
| | - Julien Genitoni
- ESE, Ecology and Ecosystem Health, Agrocampus Ouest INRA Rennes France
- LBLGC EA 1207 INRA, Université d'Orléans, USC 1328 Orléans France
| | - Dominique Barloy
- ESE, Ecology and Ecosystem Health, Agrocampus Ouest INRA Rennes France
| | - Stéphane Maury
- LBLGC EA 1207 INRA, Université d'Orléans, USC 1328 Orléans France
| | - Patricia Gibert
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1 Université de Lyon Villeurbanne France
| | - Cameron K. Ghalambor
- Department of Biology and Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1 Université de Lyon Villeurbanne France
| |
Collapse
|
20
|
Dennenmoser S, Sedlazeck FJ, Schatz MC, Altmüller J, Zytnicki M, Nolte AW. Genome‐wide patterns of transposon proliferation in an evolutionary young hybrid fish. Mol Ecol 2019; 28:1491-1505. [DOI: 10.1111/mec.14969] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Stefan Dennenmoser
- Institute for Biology and Environmental Sciences Carl von Ossietzky University Oldenburg Oldenburg Germany
| | | | - Michael C. Schatz
- Cold Spring Harbor Laboratory Cold Spring Harbor New York
- Departments of Computer Science and Biology Johns Hopkins University Baltimore Maryland
| | - Janine Altmüller
- Cologne Center for Genomics, and Institute of Human Genetics University of Cologne Cologne Germany
| | | | - Arne W. Nolte
- Institute for Biology and Environmental Sciences Carl von Ossietzky University Oldenburg Oldenburg Germany
| |
Collapse
|
21
|
Taylor SA, Larson EL. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat Ecol Evol 2019; 3:170-177. [DOI: 10.1038/s41559-018-0777-y] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/04/2018] [Indexed: 01/27/2023]
|
22
|
Rogers J, Raveendran M, Harris RA, Mailund T, Leppälä K, Athanasiadis G, Schierup MH, Cheng J, Munch K, Walker JA, Konkel MK, Jordan V, Steely CJ, Beckstrom TO, Bergey C, Burrell A, Schrempf D, Noll A, Kothe M, Kopp GH, Liu Y, Murali S, Billis K, Martin FJ, Muffato M, Cox L, Else J, Disotell T, Muzny DM, Phillips-Conroy J, Aken B, Eichler EE, Marques-Bonet T, Kosiol C, Batzer MA, Hahn MW, Tung J, Zinner D, Roos C, Jolly CJ, Gibbs RA, Worley KC, Baboon Genome Analysis Consortium. The comparative genomics and complex population history of Papio baboons. SCIENCE ADVANCES 2019; 5:eaau6947. [PMID: 30854422 PMCID: PMC6401983 DOI: 10.1126/sciadv.aau6947] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/06/2018] [Indexed: 05/26/2023]
Abstract
Recent studies suggest that closely related species can accumulate substantial genetic and phenotypic differences despite ongoing gene flow, thus challenging traditional ideas regarding the genetics of speciation. Baboons (genus Papio) are Old World monkeys consisting of six readily distinguishable species. Baboon species hybridize in the wild, and prior data imply a complex history of differentiation and introgression. We produced a reference genome assembly for the olive baboon (Papio anubis) and whole-genome sequence data for all six extant species. We document multiple episodes of admixture and introgression during the radiation of Papio baboons, thus demonstrating their value as a model of complex evolutionary divergence, hybridization, and reticulation. These results help inform our understanding of similar cases, including modern humans, Neanderthals, Denisovans, and other ancient hominins.
Collapse
Affiliation(s)
- Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - R. Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, CF Møllers Alle 8, DK-8000 Aarhus, Denmark
| | - Kalle Leppälä
- Bioinformatics Research Centre, Aarhus University, CF Møllers Alle 8, DK-8000 Aarhus, Denmark
| | - Georgios Athanasiadis
- Bioinformatics Research Centre, Aarhus University, CF Møllers Alle 8, DK-8000 Aarhus, Denmark
| | - Mikkel Heide Schierup
- Bioinformatics Research Centre, Aarhus University, CF Møllers Alle 8, DK-8000 Aarhus, Denmark
| | - Jade Cheng
- Bioinformatics Research Centre, Aarhus University, CF Møllers Alle 8, DK-8000 Aarhus, Denmark
| | - Kasper Munch
- Bioinformatics Research Centre, Aarhus University, CF Møllers Alle 8, DK-8000 Aarhus, Denmark
| | - Jerilyn A. Walker
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Miriam K. Konkel
- Department of Genetics and Biochemistry, 105 Collings Street, Clemson University, Clemson, SC 29634, USA
| | - Vallmer Jordan
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Cody J. Steely
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thomas O. Beckstrom
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Christina Bergey
- Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA
- Departments of Anthropology and Biology, Pennsylvania State University, 514 Carpenter Building, University Park, PA 16802, USA
| | - Andrew Burrell
- Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA
| | - Dominik Schrempf
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 11210 Vienna, Austria
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Maximillian Kothe
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Gisela H. Kopp
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Biology, University of Konstanz, Universitätsstr. 10, 78467 Konstanz, Germany
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg 1, 78315 Radolfzell, Germany
| | - Yue Liu
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shwetha Murali
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, S413C, Box 355065, Seattle, WA 98195-5065, USA
- Howard Hughes Medical Institute, University of Washington, 3720 15th Avenue NE, S413C, Box 355065, Seattle, WA 98195-5065, USA
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Fergal J. Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Laura Cox
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, 475 Vine Street, Winston-Salem, NC 27101, USA
| | - James Else
- Department of Pathology and Laboratory Medicine and Yerkes Primate Research Center, 954 Gatewood Road, Emory University, Atlanta, GA 30322, USA
| | - Todd Disotell
- Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jane Phillips-Conroy
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
- Department of Anthropology, Washington University, McMillan Hall, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Bronwen Aken
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, S413C, Box 355065, Seattle, WA 98195-5065, USA
- Howard Hughes Medical Institute, University of Washington, 3720 15th Avenue NE, S413C, Box 355065, Seattle, WA 98195-5065, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader, 88. 08003, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Baldiri Reixac, 4, 08028, Barcelona, Spain
- Institut Catala de Paleontologia Miquel Crusafont, Universitat Autonoma de Barcelona, c/de les Columnes, s/n. Campus de la UAB. 08193–Cerdanyola del Vallès, Barcelona, Spain
| | - Carolin Kosiol
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 11210 Vienna, Austria
- Centre for Biological Diversity, School of Biology, University of St. Andrews, Dyers Brae House, Greenside Place, St Andrews, Fife, KY16 9TH, UK
| | - Mark A. Batzer
- Department of Biological Sciences, 202 Life Sciences Building, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Matthew W. Hahn
- Department of Biology and Department of Computer Science, Indiana University, 1001 E. 3rd Street, Bloomington, IN 47405, USA
| | - Jenny Tung
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
- Duke Population Research Institute, Duke University, Box 90989, Durham, NC 27708, USA
- Institute of Primate Research, P.O. Box 24481, Nairobi, Kenya
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Clifford J. Jolly
- Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kim C. Worley
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
23
|
Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, Schatz MC. Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods 2018; 15:461-468. [PMID: 29713083 PMCID: PMC5990442 DOI: 10.1038/s41592-018-0001-7] [Citation(s) in RCA: 974] [Impact Index Per Article: 139.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 03/16/2018] [Indexed: 02/08/2023]
Abstract
Structural variations are the greatest source of genetic variation, but they remain poorly understood because of technological limitations. Single-molecule long-read sequencing has the potential to dramatically advance the field, although high error rates are a challenge with existing methods. Addressing this need, we introduce open-source methods for long-read alignment (NGMLR; https://github.com/philres/ngmlr ) and structural variant identification (Sniffles; https://github.com/fritzsedlazeck/Sniffles ) that provide unprecedented sensitivity and precision for variant detection, even in repeat-rich regions and for complex nested events that can have substantial effects on human health. In several long-read datasets, including healthy and cancerous human genomes, we discovered thousands of novel variants and categorized systematic errors in short-read approaches. NGMLR and Sniffles can automatically filter false events and operate on low-coverage data, thereby reducing the high costs that have hindered the application of long reads in clinical and research settings.
Collapse
Affiliation(s)
- Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| | - Philipp Rescheneder
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Moritz Smolka
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Han Fang
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Maria Nattestad
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Michael C Schatz
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Departments of Computer Science and Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
24
|
da Silva VH, Laine VN, Bosse M, Oers KV, Dibbits B, Visser ME, M A Crooijmans RP, Groenen MAM. CNVs are associated with genomic architecture in a songbird. BMC Genomics 2018; 19:195. [PMID: 29703149 PMCID: PMC6389189 DOI: 10.1186/s12864-018-4577-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/02/2018] [Indexed: 12/11/2022] Open
Abstract
Background Understanding variation in genome structure is essential to understand phenotypic differences within populations and the evolutionary history of species. A promising form of this structural variation is copy number variation (CNV). CNVs can be generated by different recombination mechanisms, such as non-allelic homologous recombination, that rely on specific characteristics of the genome architecture. These structural variants can therefore be more abundant at particular genes ultimately leading to variation in phenotypes under selection. Detailed characterization of CNVs therefore can reveal evolutionary footprints of selection and provide insight in their contribution to phenotypic variation in wild populations. Results Here we use genotypic data from a long-term population of great tits (Parus major), a widely studied passerine bird in ecology and evolution, to detect CNVs and identify genomic features prevailing within these regions. We used allele intensities and frequencies from high-density SNP array data from 2,175 birds. We detected 41,029 CNVs concatenated into 8,008 distinct CNV regions (CNVRs). We successfully validated 93.75% of the CNVs tested by qPCR, which were sampled at different frequencies and sizes. A mother-daughter family structure allowed for the evaluation of the inheritance of a number of these CNVs. Thereby, only CNVs with 40 probes or more display segregation in accordance with Mendelian inheritance, suggesting a high rate of false negative calls for smaller CNVs. As CNVRs are a coarse-grained map of CNV loci, we also inferred the frequency of coincident CNV start and end breakpoints. We observed frequency-dependent enrichment of these breakpoints at homologous regions, CpG sites and AT-rich intervals. A gene ontology enrichment analyses showed that CNVs are enriched in genes underpinning neural, cardiac and ion transport pathways. Conclusion Great tit CNVs are present in almost half of the genes and prominent at repetitive-homologous and regulatory regions. Although overlapping genes under selection, the high number of false negatives make neutrality or association tests on CNVs detected here difficult. Therefore, CNVs should be further addressed in the light of their false negative rate and architecture to improve the comprehension of their association with phenotypes and evolutionary history. Electronic supplementary material The online version of this article (10.1186/s12864-018-4577-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vinicius H da Silva
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands. .,Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708PB, The Netherlands.
| | - Veronika N Laine
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands.,Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708PB, The Netherlands.,Swedish University of Agricultural Sciences (SLU), Ulls väg 26, Uppsala, 750 07, Sweden
| | - Mirte Bosse
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708PB, The Netherlands
| | - Kees van Oers
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Bert Dibbits
- Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708PB, The Netherlands
| | - Marcel E Visser
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Richard P M A Crooijmans
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands.,Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708PB, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics Centre, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| |
Collapse
|
25
|
Dennenmoser S, Sedlazeck FJ, Iwaszkiewicz E, Li X, Altmüller J, Nolte AW. Copy number increases of transposable elements and protein-coding genes in an invasive fish of hybrid origin. Mol Ecol 2017; 26:4712-4724. [PMID: 28390096 PMCID: PMC5638112 DOI: 10.1111/mec.14134] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022]
Abstract
Evolutionary dynamics of structural genetic variation in lineages of hybrid origin is not well explored, although structural mutations may increase in controlled hybrid crosses. We therefore tested whether structural variants accumulate in a fish of recent hybrid origin, invasive Cottus, relative to both parental species Cottus rhenanus and Cottus perifretum. Copy-number variation in exons of 10,979 genes was assessed using comparative genome hybridization arrays. Twelve genes showed significantly higher copy numbers in invasive Cottus compared to both parents. This coincided with increased expression for three genes related to vision, detoxification and muscle development, suggesting possible gene dosage effects. Copy number increases of putative transposons were assessed by comparative mapping of genomic DNA reads against a de novo assembly of 1,005 repetitive elements. In contrast to exons, copy number increases of repetitive elements were common (20.7%) in invasive Cottus, whereas decrease was very rare (0.01%). Among the increased repetitive elements, 53.8% occurred at higher numbers in C. perifretum compared to C. rhenanus, while only 1.4% were more abundant in C. rhenanus. This implies a biased mutational process that amplifies genetic material from one ancestor. To assess the frequency of de novo mutations through hybridization, we screened 64 laboratory-bred F2 offspring between the parental species for copy-number changes at five candidate loci. We found no evidence for new structural variants, indicating that they are too rare to be detected given our sampling scheme. Instead, they must have accumulated over more generations than we observed in a controlled cross.
Collapse
Affiliation(s)
- Stefan Dennenmoser
- Department for Evolutionary GeneticsMax‐Planck Institute for Evolutionary BiologyPlönGermany
- Institute for BiologyCarl von Ossietzky University OldenburgOldenburgGermany
| | | | - Elzbieta Iwaszkiewicz
- Department for Evolutionary GeneticsMax‐Planck Institute for Evolutionary BiologyPlönGermany
| | - Xiang‐Yi Li
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Janine Altmüller
- Cologne Center for Genomics, and Institute of Human GeneticsUniversity of CologneCologneGermany
| | - Arne W. Nolte
- Department for Evolutionary GeneticsMax‐Planck Institute for Evolutionary BiologyPlönGermany
- Institute for BiologyCarl von Ossietzky University OldenburgOldenburgGermany
| |
Collapse
|